US 20230351547A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2023/0351547 A1

Mou et al. 43) Pub. Date: Nov. 2, 2023
(54) METHODS AND CONTROL SYSTEMS THAT Publication Classification
USE DIMENSIONAL-TRANSFORM-BASED (51) Int. Cl
THREE-DIMENSIONAL SEARCHING AND GO6T 3/00 (2006.01)
VOXEL MAPPING GO6T 7/73 (2006.01)
GO6T 17/00 2006.01
(71) Applicants:Zhijing George Mou, Seattle, WA (52) US.Cl ()
(US); Qingging Xiao, Seattle, WA (US) o cR— GOG6T 3/0031 (2013.01); GO6T 7/75
2017.01); GO6T 17/005 (2013.01
(72) Inventors: Zhijing George Mou, Seattle, WA (); ()
(US); Qingging Xiao, Seattle, WA (US) (57) ABSTRACT
The current document is directed to systems and methods
that incorporate a dimensional transform that maps a
hat incorp di ional fi h: ps a 3D
(21) Appl. No.: 18/207,067 space to a one-dimensional space with an implicit recursive
hierarchical structure that preserves 3D neighborhoods. A
) regional or neighborhood search for points in a 3D subspace
(22) Filed: Jun. 7, 2023 is reduced, by the dimensional transform, to one or more
searches in the transformed 1D space. The search is per-
L. formed by either recursive decomposition of the 3D space
Related U.S. Application Data indexed by the transform into subspaces, exploiting the
(63) Continuation-in-part of application No. 16/807,494, transformed space structure, or by direct indexing into the
filed on Mar. 3, 2020, now Pat. No. 11,710,211, which region of. interest. Performance Qf the cont.rol systems and
is a continuation-in-part of application No. 15/940, methods 15 further enhgnced by incorporating one of more
789. filed on Mar. 29. 2018. now Pat. No. 10.580.114 black-white arrays, which support-searches over one-dimen-
’ T ’ oo Tmmmee sional spaces as well as dynamic 3D spaces. Dimensional-
(60) Provisional application No. 62/478,442, filed on Mar. transform-based methods also provide for point-cloud
29, 2017. voxelization and voxel map operations.
200
N
Vag .
Z | Yy
o303 AN T 7 B B U I R

A') o
uy (- 208

DR Trausioen 1

Patent Application Publication Nov. 2,2023 Sheet 1 of 11 US 2023/0351547 A1

SEMORY

et SPECIALIZED |
-~ PROCESRCR

T Setets

' H
§1§8 Mw..,;/ % \4’3

e 127

150 Yy 5 Y S

w13 w4 w1 |«

o MASS
146~ L STORAGE -
DEVICE

Patent Application Publication Nov. 2, 2023 Sheet 2 of 11 US 2023/0351547 A1

z y X s

UL I T NI RNV I 212
SIS SN BEC W IRV IR G A 2T U O L2 IR B e

P ULy {"U..]_(} S Uy Uy U Ue Mg

DS Transiarn 1

Fig. 2

; e : a0
DU U Uy L Ux My U Uy My g W Uy Uy siét/"on*"

H
H

H

Diverse DST Transfm 117

Fig. 3

Patent Application Publication Nov. 2, 2023 Sheet 3 of 11 US 2023/0351547 A1

Fig. 4

Patent Application Publication Nov. 2, 2023 Sheet 4 of 11 US 2023/0351547 A1

(o) 7 {000 1) N G P LB IEY) {01 P {1 T

DAy P R L BLTENOY: 7t P e LAY

Patent Application Publication Nov. 2, 2023 Sheet 5 of 11 US 2023/0351547 A1

601

Nov. 2, 2023

Patent Application Publication

Sheet 6 of 11 US 2023/0351547 Al

Patent Application Publication Nov. 2, 2023 Sheet 7 of 11 US 2023/0351547 A1

vauk:

WHITE

BLACK S %02 . il
index: 115 1413 12 11 1 90 %

i 5 4

A AW Black Areveeowith Fed, Mol

Fig. 8

Patent Application Publication Nov. 2, 2023 Sheet 8 of 11 US 2023/0351547 A1

rank:

WHITE

BLACK

index:

rank:

WHITE

BLACK

index:

rank:

WHITE

BLACK

index: | 15 14 13 12 it moou ¥

rank:

WHITE

BLACK

index:

PR PR " . TN N) "
iy Merge of Seg™ {2 and Feg®{2) = Seg

Fig. 9

Patent Application Publication Nov. 2, 2023 Sheet 9 of 11 US 2023/0351547 A1

rank: | 3 ‘ 2 . X 0

wire {831 0 187159152 ¢ & &

BLALK

imdex: 115 14 13 12 11 10 9 K17 6 &5 41
{ A BWA with some VOID (b walues from deletivas

rasiks 3

WHITE

BLACK

fnde: 115 14 13 12 11 10 9 8

(b} g0 is delered and replaced by VO (o 3t Wil

runk:

WHITE

BLACK

14 13 12 11 10 4§ &
& Bepfa) was demazad for ity gooupancy rate seached B%

rank: 3 2 ? 1 l o %

w

dex:

8377 67 52 21

WHITE

BLACK

imdex: 115 14 13 12 11 10 9 8:7 6 5 413

{d} Afver @ mesgt at vank 2, the delete is completed

Fig. 10

Patent Application Publication Nov. 2,2023 Sheet 10 of 11 US 2023/0351547 A1l

Fig. 11

Patent Application Publication Nov. 2,2023 Sheet 11 of 11 US 2023/0351547 A1l

%

US 2023/0351547 Al

METHODS AND CONTROL SYSTEMS THAT
USE DIMENSIONAL-TRANSFORM-BASED
THREE-DIMENSIONAL SEARCHING AND

VOXEL MAPPING

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation-in-part of appli-
cation Ser. No. 16/807,494, filed Mar. 3, 2020, which is a
continuation-in-part of U.S. Pat. No. 10,580,114, issued
Mar. 3, 2020, which claims the benefit of Provisional
Application No. 62/478,422, filed Mar. 29, 2017.

TECHNICAL FIELD

[0002] The current document is directed to methods and
control systems that receive three-dimensional data and use
the three-dimensional data to characterize an environment
and, in particular, to efficient three-dimensional searching
and voxel-mapping methods, based on dimensional trans-
forms, incorporated into the methods and control systems.

BACKGROUND

[0003] A point cloud is a 3D data set collected by various
sensors, such as light detection-and-ranging “LLIDAR” sen-
sors, depth cameras, and others. Point cloud registration
iteratively aligns a new frame of a 3D data set with previ-
ously aligned frames. Aligned 3D-data-set frames are
referred to as a “map.” In many applications, a sensor moves
in a 3D space with six degrees of freedom and each new
frame relates to a previous frame or to a set of aligned
previous frames by a spatial transformation. The registration
of a sequence of frames of a 3D data set is a process that
involves finding the rigid transformations, consisting of
translations and rotations, that align the frames in a selected
coordinate system.

[0004] Point-cloud registration has a broad range of appli-
cations in areas including computer vision, simultaneous
localization and mapping (“SLAM”), robot-path planning,
autonomous driving, object recognition, medical imaging,
magnetic-resonance imaging, virtual and augmented reality,
and 3D model construction in remote sensing. Many new
applications have become possible, in recent years, due to
rapid advances in sensing and computing technologies, as a
result of which 3D data-set registration is becoming an
increasingly significant component within many scientific,
technological, and commercial applications and fields.
[0005] TIterative Closest Point (“ICP”) and Generalized
ITterative Closest Point (“GICP”) are widely adopted
approaches for point-cloud registration. As suggested by its
name, ICP depends on iterative searching of 3D spaces and,
indeed, its performance is dominated by the cost of such
searches. K-d trees and other tree-based approaches are used
to search for closest points and these tree-based approaches
involve expensive tree traversals and re-balancing. Empiri-
cal testing has shown that it is unrealistic to perform
real-time point-cloud registration with any known tree-
based approach to 3D space searching in order to meet a
desired precision.

[0006] A point-cloud frame is generally compressed by
sampling to reduce its cardinality prior to frame alignment
in order to decrease processing costs. To ensure that the
compression does not result in significant decrease in accu-
racy, many compression techniques are designed to ensure

Nov. 2, 2023

that each 3D voxel contains only up to a threshold number
of data points by removing data points from those 3D voxels
with more than the threshold number of data points. Octree
has been suggested and used for these compression tech-
niques. Octree uses a storage space of a size proportional to
the product of the ranges of the spatial coordinates in each
of the three dimensions and employs processing times
proportional to the logarithm of the size of the octree for
each point examined. The aligned point-cloud frames, or
map, produced by point-cloud registration are stored in a
data repository. The data repository is incrementally built up
along with the processing of each new frame, and, at the
same time, is searched repeatedly for certain points in each
frame.

[0007] The computational efficiency of a method or sub-
system within a computer system, measured by the number
of instructions processed and the amount of memory used to
carry out particular tasks, is directly related to thermody-
namic efficiency of the computer system, and is a significant
real-word, physical characteristic of electromechanical com-
puting systems. The time efficiency of a method or subsys-
tem within a computer system is directly related to the
real-world performance of the physical computer system and
is often a significant determinant of the practical utility of
the computer system in real-world applications. As with any
significant component of an application, technology, or
system, researchers, designers, developers, manufacturers,
and vendors continuously seek more efficient and faster
3D-data-set-registration methods and systems, and seck
improved efficiencies in many other, related applications and
problem domains that carry out 3D-data searches.

SUMMARY

[0008] The current document is directed to systems and
methods that incorporate a dimensional transform that maps
a 3D space to a one-dimensional space with an implicit
recursive hierarchical structure that preserves 3D neighbor-
hoods. A regional or neighborhood search for points in a 3D
subspace is reduced, by the dimensional transform, to one or
more searches in the transformed 1D space. The search is
performed by either recursive decomposition of the 3D
space indexed by the transform into subspaces, exploiting
the transformed space structure, or by direct indexing into
the region of interest. Performance of the control systems
and methods is further enhanced by incorporating one or
more black-white arrays, which support-searches over one-
dimensional spaces as well as dynamic 3D spaces. Dimen-
sional-transform-based methods also provide for point-
cloud voxelization and voxel map operations.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 provides a general architectural diagram for
various types of computers.

[0010] FIG. 2 illustrates the DST Transform H which
maps 3D points to corresponding DST keys in a 1D space.

[0011] FIG. 3 illustrates the inverse DST Transform H™*
using the same illustration conventions previously used in
FIG. 1.

[0012] FIG. 4 illustrates the DST mapping of 64 points in
a 3D space to 3D coordinates and corresponding keys in a
1D DST key space.

US 2023/0351547 Al

[0013] FIG. 5 illustrates seven different partitions of a
region according to a pattern calculated by the method Pat,
which leads to optimal decomposition of the region,
[0014] FIG. 6 shows a spherical neighborhood R with
radius r circumscribed within a cube with edge length 2r.
[0015] FIG. 7 illustrates the difference and relationship
between two approaches to solving the 3D-space search
problem.

[0016] FIG. 8 illustrates the layout and structure of a
BWA, including BWA segments and segment ranks.
[0017] FIG. 9 illustrates an insert operation that inserts a
value into a BWA.

[0018] FIG. 10 illustrates a delete operation that removes
a value from a BWA.

[0019] FIG. 11 illustrates the 26 neighborhoods of a voxel
in a voxel map.
[0020] FIG. 12 shows a raw point cloud, the constructed

voxel map from the raw point cloud, and the result of
point-cloud segmentation using DST-based voxelization
operations.

DETAILED DESCRIPTION

Computer Systems

[0021] FIG. 1 provides a general architectural diagram for
various types of computers, including certain of the com-
puter systems on which point-cloud-registration systems are
implemented. The computer system contains one or multiple
central processing units (“CPUs”) 102-105, one or more
electronic memories 108 interconnected with the CPUs by a
CPU/memory-subsystem bus 110 or multiple buses, a first
bridge 112 that interconnects the CPU/memory-subsystem
bus 110 with additional buses 114 and 116, or other types of
high-speed interconnection media. including multiple, high-
speed serial interconnects. These buses or serial intercon-
nections, in turn, connect the CPUs and memory with
specialized processors, such as a graphics processor 118, and
with one or more additional bridges 120, which are inter-
connected with high-speed serial links or with multiple
controllers 122-127, such as controller 127, that provide
access to various different types of mass-storage devices
128, electronic displays, input devices, and other such
components, subcomponents, and computational resources.
Computer systems, and higher-level systems implemented
using them, are physical electro-mechanical systems that
consume energy and transform the physical states of many
subcomponents and external systems to which they are
connected. Computer systems are controlled by computer
instructions stored in physical data-storage devices. The
computer instructions are themselves physical entities. Oth-
erwise, they could not be stored and retrieved from data-
storage devices. Furthermore, mass-storage devices store
data for subsequent retrieval and therefore do not encompass
electromagnetic waves and other data-transmission media
which are not devices and which do not store data for
subsequent retrieval.

Notational Conventions and Primitive Objects and
Operations
[0022] A point p in a discrete 3D space (D) can be

represented by a tuple of three coordinates (z, y, X), where
7, y, X are nonnegative integers and are each referred to as
a coordinate of point p along a corresponding coordinate

Nov. 2, 2023

axis, Z, Y, or X. of the 3D space. A point in a 1D space is
represented by a single nonnegative coordinate k along a
single axis of the 1D space. The Euclidean metric for
distance is assumed for the space unless otherwise specified,
although certain of the following discussions may be valid
for additional distance metrics, such as the Manhattan dis-
tance metric.

[0023] Letp,=(z,,y;,X;) and p,=(Z,, ¥, X,) be two points
in D?. These two points define a regular region, denoted by
<p,, P> with a cubic shape:

<prpo>={p=(zy¥)Imin(z;,z;)sz=max(z,,75);
min(y;,y;)sysmax(y,,ys);

minr;,x,)sxsmax(x;,x,)}.

[0024] Note that when one, two, or three of the conditions
7,#7,, Y1 2Y,, and X, #X, are not met, the region R degener-
ates to a plane, a line, or a point, respectively. A regular
region r' is a sub-region of a region r if and only if,
considering r' and r as sets:

r'ern
[0025] The following are operations over binary numbers
and integers:
[0026] B(x): returns the binary form b=[b,, ;», . . . by]

of integer X,

[0027] B~'(b): returns x if and only if B(x)=b,
[0028] Get(x, j): returns the jth bit of B(x),
[0029] Set(x, j, ¢): sets the jth bit of B(x) to the binary

bit ¢ and returns the corresponding integer.
[0030] The notations: || and && denote the logical OR and
AND of predicates respectively, |, &, and "~ are used to
denote, respectively, the bitwise OR, AND, and Exclusi-
veOR operations of two unsigned integers, while ~ denotes
the bitwise complement of an unsigned integer. The nota-
tions <<m and >>m denote, respectively, the left and right
shift-by-m-bit-positions operations on an unsigned integer.

The DST Transform

[0031] The Dimensional Shuffle Transform (“DST™) is a
mapping from three-dimensional space D* to one-dimen-
sional space D, as defined below:

def H (z, y, X, W)
k=0
ptr=1
fori=10to w-1
dx = x & ptr
X=x>>1
dy = (v & ptr) << 1
y=y>>1
dz = (z & ptr) << 2
z=z>>1
ktemp =dz | dy | dx
ktemp = ktemp << (i * 3)
k =k | ktemp
end
return k
end.

where w is the width, in bits, of a 3D coordinate along a 3D
dimension. Given a point p in D?, the DST Transform of the
point k=H(p) is referred to as the “DST key” of the point p
or more concisely as the “key.”

US 2023/0351547 Al

[0032] FIG. 2 illustrates the DST Transform of a 3D space
of size 4096. As shown in FIG. 2, the 3D coordinates for a
point p in this space are each encoded in a 4-bit nibble within
a 12-bit array of bits 202. The bits that represent each
coordinate are arranged in right-to-left order of significance,
with the most significant bit of a coordinate representation
located at the right-hand end of the nibble. For example, the
bit 204 is the least-significant bit of the nibble 206 repre-
senting the x coordinate. The DST Transform splays out the
bits of the 3D coordinates across a 12-bit representation 208,
and forms a linear DST key k, as indicated by arrows, such
as arrow 210, in FIG. 2. The 12-bit representation 208 of the
linear DST key k can be thought of as a sequence of four
three-bit blocks, each three-bit block containing an ordered
triple of bits of a particular significance extracted from the
corresponding 3D coordinates. In the example shown in
FIG. 2, each nibble can represent 16 different values, and
thus the 3D space contains 16°=4096 points. The cardinality
of the one-dimensional transformed DST key space is equal
to that of the original space. In the example shown in FIG.
2, 12 bits can represent 2'2=4096 points.

[0033] The DST Transform H is clearly a bijection, and, as
such, the inverse DST transform H™! exists, as follows:

def H! (k, w)
ptr=1
pt2 =1
x=y=z=0
fori=0to (w-1)
if (k & ptr) x =x | ptr2
ptr=ptr <<'1
if (k & ptr) y =y | ptr2
ptr=ptr <<'1
if (k & ptr) z=1z | ptr2
ptr=ptr <<'1
ptr2 = ptr2 << 1
end
return (z, y, X)
end

The result returned is a tuple of the 3D coordinates in the
form of (z, y, x).

[0034] FIG. 3 illustrates the Inverse DST Transform H™*
using the same illustration conventions previously used in
FIG. 2. As shown in FIG. 3, bits of the 3D coordinates
distributed across the 12-bit representation 302 of the DST
key k are collected back into the three corresponding 4-bit-
nibble representations of the 3D coordinates 304. Clearly,
the inverse DST Transform H™! performs a transformation
opposite from that performed by the forward DST Trans-
form H, since the only difference between the illustrations
shown in FIGS. 2 and 3 is the directions of the arrows
representing the corresponding locations of the bits in the
linear DST key k and the bits in the 3D coordinates.
[0035] The DST Transform has the property of preserving
neighborhoods in that points close to one another in the 3D
space tend to be close to one another in the transformed
space. Another way of looking at the DST Transform is that
the DST Transform imposes an implicit hierarchical recur-
sive structure over the 3D space, where the original space,
which can be considered to be a root cube with edges of
length 2a, is conceptually divided into eight sub-cubes with
edges of length a. The division can be recursively performed
until the resulting sub-cubes degenerate to a point. The
assertion that DST is a neighborhood preserving transform
can then be formally justified by the fact that the DST keys

Nov. 2, 2023

of the points in a cube or sub-cube in this hierarchical
structure form a linear region of keys with monotonically
increasing consecutive values [s, t]={kIszk=t} for two keys
s and t, which will be referred to as the lower front and upper
back corner of the cube or sub-cube, respectively.

[0036] FIG. 4 illustrates a DST mapping between 64
points in a 3D space and corresponding DST keys generated
by the DST transform. Each point, such as point 402, is
labeled with the point’s 3D (z, y, x) coordinates and with the
point’s corresponding DST key k, shown in FIG. 4 as (z, v,
x)/k. The 3D space 404 shown in FIG. 4 includes the points
with 3D coordinates that can each be represented using two
bits. The entire space is contained within the cube having
lower, left-hand corner point 406 with 3D coordinates (0, O,
0), referred to as the “lower front” point, and having top,
right-hand corner point 408 with 3D coordinates (3, 3, 3),
referred to as the “upper back™ point. There are other,
smaller cubes for which the DST keys of the points form a
monotonically increasing subset of the set of DST keys, such
as the lower, left-hand corner cube 410 having corner points
with the 3D coordinates (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1,
D, 1,0 0, 10 1), 1, 1, 0), (1, 1, 1) and with
corresponding DST keys 0, 1, 2, 3, 4, 5, 6, and 7. Were the
space to include all the points with 3D coordinates that can
each be represented using three bits, the volume representing
the space would include 512 points and were the space to
include all the points with 3D coordinates that can each be
represented using four bits, the volume representing the
space would include 4096 points.

Regions and their Properties

[0037] The key space of DST has a hierarchical structure,
which DST-based space search and voxelization exploits to
deliver high performance. To achieve this, the following
notions are now introduced.

[0038] Given two keys k, and k,, the regular region
defined by the two keys, denoted by <k,, k,>, is given by
{(z, y, X)Imin(x,, x,)=x=max(x,, X,), min(y;, y,)<y=max
(31. ¥2): min(z,, z,)smax(z,, 2,)}, where (z,, y,, x,)-H""
(k,), (s, Y2, %5)=H'(k;). A pair of keys k,=H(z,, y,, x,),
and k=H(z,, y,, X,) is said to be canonical if x,=X,, y,<y,,
and z,=z, hold at the same time. With canonical pairs of
keys, the definition of a regular region can be simplified as
<k,, k>={(z, ¥y, X)IX,<X=X,, ¥, SysY,, 7,57<7,}. It is
apparent that any pair of keys can be easily converted into
a canonical pair of keys which defines exactly the same
regular region. Hence, without loss of generality, only
canonical pairs of keys will be used to define a region in the
rest of this embodiment.

[0039] Alinear region defined by the two keys, denoted by
[k;, k5], is given by {(z, v, x)Ik,<H(z, y, x)=k,}. It can be
easily shown that <k,, k,C>[k,, k,] always holds. Hence, a
linear region [k,, k,| always has a recall of 100%, where
recall is defined as the ratio between the number of points
that should be there and the number of points that are
actually there, when used to approximate a regular region
<k,, k,>, since every point in a regular region is necessarily
contained in the corresponding linear region.

[0040] The precision of a region specified by two keys (k,,
k,) is defined as

Prec(k, k)= 1<k, ko> Ik ko1

where |*|denotes the cardinality of a set. It follows that the
precision of a region is always less than or equal to one. A
region with precision one is a perfect region and a region

US 2023/0351547 Al

with precision one and with the lengths of the edges along
all dimensions equal to one another is referred to as a perfect
cube.

[0041] The DST level is a fundamental characteristic of a
region, which among other applications, is used in deter-
mining the dividing planes during region decomposition.
The level of region defined by two keys k,, k, is calculated
by the method “Lvl,” as follows:

def Lvl (k;, ko, w)
k=k "k
level=w -1
window =7 << (3 * (w-1))
while ((window & k) == 0 && level >=0)
window >> 3
level = level — 1
end
return level
end

[0042] The level of a region (k,, k,) is thus computed by
first taking the XOR of the two keys to get k, then from the
left to write, examine each 3-bit section of k, until found a
section that is not all zero bits. At the start, the level is set
to w-1, where w is the number of bits in the binary
representation of the coordinates. It is being decreased each
time an all-zero 3-bit section is found, until a section with
non-zero bit(s) is found. The value of level at that time is
returned as the level of the region (k,, k,).

[0043] A non-perfect region with a higher level volume
can always be decomposed into lower level regions with
higher precisions. The decomposition is done in a way that
maximizes the precision. The following method Pat is an
auxiliary method used in the determination of an optimal
decomposition:

def Pat(k;, ky, L)
k=k "k
pat=7
pat = pat << 3*L
pat =pat & k
return pat >> 3*L
end

[0044] Giventwo keys k,; and k, and a pre-calculated level
of (k;, k,), Pat(k,, k,) calculates the pattern of the defined
region, subsequently used in the decomposition of the
region. The pattern is necessarily an integer with an integer
value in the range 1, . . . , 7. The pattern, in its binary form
(bs, b,, b)), indicates the dividing axes in a decomposition.
When there is only one non-zero bit in the pattern, the region
is decomposed by dividing the region by a plane perpen-
dicular to the axis corresponding to the position of the bit in
the pattern. When there are two non-zero bits, the region is
decomposed by two planes perpendicular to the correspond-
ing axes indicated by the pattern. When there are three
non-zero bits, the region is decomposed by dividing the
region by three mutually perpendicular planes.

[0045] FIG. 5 illustrates seven different region decompo-
sitions according to the different patterns calculated by the
method Pat. The pattern 001 (501) indicates division by a
plane perpendicular to the X axis, or alternatively, we say
that the division is along the X axis. Similarly, a pattern 010
(502) calls for a division by Y axis, and the pattern 100 (503)
indicates a division along the Z axis. On the other hand, the

Nov. 2, 2023

pattern 011 (504) indicates a division along both the X and
Y axes. The pattern 101 (505) indicates division along X and
Z axes and the pattern 110 (506) indicates division along Y
and 7 axes. The pattern 111 (507) indicates division by three
mutually perpendicular planes, and hence dividing the
region along each of the three axes. Of the seven decom-
positions, three are binary, three are quaternary, and one is
octonary.

Region Decomposition

[0046] Two auxiliary methods are used to identify the
corners of the perfect region of a given level in which a
given point resides. Given the key of a point and a level, the
following method LowerFt calculates the lower front corner
of the perfect cube at the given level to which the point
belongs. The method LowerFt sets each of the least signifi-
cant 3*L bits of the key to the bit value 0.

def LowerFt(k, L)
ptr=1 << 3*L
rightOnes = ptr - 1
rightZeros = ~ rightOnes
return (k & rightZeros)
end

[0047] Given the key of a point and a level, the method
UpperBk calculates the upper back corner of the perfect
cube at the given level to which the point belongs. The
calculation of UpperBk sets each of the least significant 3*L.
bits of k to the value of bit value of one.

def UpperBk(k, L)
ptr =1 << 3*L
rightOnes = ptr - 1
return (k | rightOnes)
end

[0048] Given three keys k;, k,, and k;, the following
utility method C returns the concatenated 3D coordinates of
a point that has the same x coordinate as the 3D point
corresponding to k,, the same y coordinate as the 3D point
corresponding to k,, and the same z coordinate as the 3D
point corresponding to kj,using predefined bit masks
XMask=(001001 . . . 001), YMask=(010010 . . . 010), and
7ZMask=(100100 . . . 100):

def Cky,ky.k3)
x = XMask & k,
y = YMask & k,
z = ZMask & k3
k=xlylz)
return k

end

[0049] An m-ary decomposition for a given pattern P is
written as I17(k,, k,)=((k,°, k"), . . ., &,.,° k., ")). The
m subregions are each specified by a pair of canonical keys.
It follows that besides k; and k,, 2m-2 keys need to be
calculated. It turns out that the 2m-2 keys can be efficiently
derived from k,, k,, v=upperBk(k,.L.), and v=lowerBk(k,,
L), where L=Lvl(k,, k,, w).

[0050] For example, the three methods, with names IT',
IT%, and II*, where the superscript 1 represents the binary

US 2023/0351547 Al

pattern 001, the superscript 2 represents the binary pattern
010, and the superscript 4 represents the binary pattern 100,
carry out a binary decomposition of a region <k,, k,> of
given level L. The method IT' is next provided:

def i(k,, ky, L)
k, = UpperBk (k;, L - 1)
k, = LowerFt (k,, L - 1)
ks = C(ky, ks, k)
ky = Clk,, ky, ky)
return ((k;, k), (ka, ko))
end

[0051] The above method performs a binary decomposi-
tion of a region along the X axis. Similarly constructed
methods IT* and IT* perform binary decompositions along
the Y and Z axes, respectively.

[0052] The method IT? carries out a quaternary decompo-
sition of a region <k,, k,> in accordance with pattern 011
(504 in FIG. 5) along both the X and Y axes. This method
is performed as follows:

def TP (k,, ko, L)
k, = UpperBk (k;, L - 1)
k, = LowerFt (k,, L - 1)
ki = Ck,,, ks ko)
kyy = Ck,, ki, Ky)
ka» = Ck,, ki, ko)
ksy = Clky, Kk, ky)
ks = Ck,,, Ko, ko)
kg = Ck,, k, k)
d return ((k;, ;o) (kap, koo)s (kay, Kao), (kay, ko))
en

[0053] Methods IT° and II° are two additional quaternary
decompositions for patterns that have two bits with the value
of one. They are constructed similarly to method II3. In
contrast Method II” performs an octonary decomposition
along the three axes for the pattern is 111 (507 in FIG. 5):

def TT7(k,, k,, L)

k, =UpperBk (k;, L - 1)
k,=LowerFt (k,, L - 1)
kyy = Ck,, ks ky)

kar = Cky, Kk k)

k) = Clk, ky, ky)

ks = Ck,, ko, k)

kg = Ck,, k,, ky)

kyp = Cks, ko, k,)

ks, = Clky, ky, k)

ksy = C(k,, k, ko)

ke = Ck,, ki, k)

ke = Cko, Ky, ko)

ks = Clky, ky, k)
k7> = Clk,, ko, ko)
return

((ky, k), (K1, Kp2), (3, Kao), (Ray, Kao)s
. &s1, Ks), (ks1s keo)s (k715 Koo, (K, 1))
=it

[0054] Given a region R that is a non-perfect region
defined by two keys k, and k,, with an m-ary pattern, let the
m sub-regions (k,;, k;,), . . ., &,.1, k,,.,) be produced by
decomposition of the region according to the pattern be (k,;,
kin), -, (K, K,,0) and let

s=ky—k+1

§2=32 " (kp—k; 1 +1),

Nov. 2, 2023

then it is easy to show that s, is always less than s, . It follows
that the precision of a non-perfect region is improved after
a DST decomposition. Moreover, DST decompositions have
the following properties: (1) any largest perfect region
contained in the region is contained in a sub-region in the
result as a whole and will never be partitioned; and (2) there
are no other decompositions of the same arity (m) with an
overall linear size smaller than s,. In this sense, the DST
decompositions according to the corresponding patterns are
optimal.

[0055] The above showed that once a search over a region
is reduced to two or more searches over its sub-regions by
a DST decomposition, the precision of the search can be
much improved. This allows one to approximate the search
over a 3D region to be replaced by a number of searches over
the linear regions in one dimensional space with any desired
precision, including the special case where precision is one.
In the following, the regional search methods are provided.

Regional Search

[0056] The DST based search methods are based on
decompositions, which are first provided below. The decom-
position of a region (k;, k,) is performed by the following
method, which first identifies the pattern of the region and
then calls the corresponding decomposition method:

def Ik, ko)
L = Lvik;, ky)
P = Ptn(k,, ko)
case P of
1:d =Tk, k,, L)

2:d = IP(k,, ks, L)
3:d =Pk, ky, L)
4:d = Tk, ky, L)
5:d = 1Pk, ky, L)
6: d = I°(k,, k, L)
7:d = IT'(k;, ky, L)
end
return d
end

[0057] Let <s, t>be a non-perfect region, and p, a number
between 0 and 1, the desired precision. The following
method recursively decomposes the region into sub-regions
unless its precision is equal to, or higher than, p:

def TI% (s, t, p)

Task =0
Results = 0
Decs =0

push (Task, (s, t))
while (NotEmpty(Task))
(ky» ko) = pop (Task)
if (Precision (k,, k,) = p)
push (Result, (k;,k,))
else
Decs = II(ky, k»)
while (NotEmpty (Decs))
push (Task, pop(Decs))
end
end
end
return Result
end

US 2023/0351547 Al

[0058] The search of a region in 3D space is therefore a
recursive process. A sub-region is further decomposed if and
only if its precision has not reached the specified precision
p. The result of the above search is a list of linear regions
with precisions equal to, or higher than, the specified pre-
cision p.

[0059] There are other ways to control the recursion. One
of them depends on the notion of geometric level. Given a
regular region <s, t> and its longest edge along dimensions
1, the regular region has a geometric level of [log,(1)]. It is
easy to verify that the geometric and DST levels are equal
for a perfect cube at any level, and the former is smaller than,
or equal to, the latter, for any region. The difference between
the geometric and DST levels of a region is thus an indicator
to how close the region is to a perfect cube. A specified value
for the difference between the geometric and DST levels of
a region can therefore be used instead of a specified preci-
sion to control recursion in IT%(s, t, p).

[0060] No matter how the value of precision or level
difference is chosen, method II¥ always yields a result with
100% recall. The freedom of setting different stopping
thresholds for the recursive divide-and-conquer process
allows a trade-off between the precision and computing
speed, which can be easily exploited for performance opti-
mization. Moreover, setting up a lower precision and then
filtering out some or all of the remaining points might lead
to an overall faster solution than specifying a higher preci-
sion at the start.

[0061] The result of the above decomposition by IT* is a
list of disjoint linear subregions with certain desired preci-
sion. The search over a 3D region can thus be reduced to
searches over several 1D intervals of the linearly ordered
DST key spaces.

[0062] Since the linear regions by the decomposition with
method IT® are disjoint, the searches over these regions are
independent of each other and can therefore be done in
parallel. Moreover, the recursive decomposition process can
be done in parallel with the search over any so far discovered
regions to afford another level of parallelism provided that
sufficient computing resources are available.

Data Repository

[0063] In general, to support operations over a 3D space,
some form of data structure is first built. Examples of such
data structures include k-d trees, octrees, and R-trees. These
tree-based structures are repeatedly traversed by following
pointers in the tree structures to complete operations over
the structure. By contrast, DST based approaches, as shown
below, uses a data structure, referred to as the data repository
(Repo), without pointers. A Repo serves as a container for
the points in the space and is utilized to support efficient
search operations with DST decomposition.

[0064] The following method builds the Repo, using DST.
for a space S, which is represented by an array of points with
three-dimensional coordinates.

def Build(S)
Repo = []
N = size(S)
fori=0;1i<N;i++)
(z, v, x) = S[i]
k=H(z vy, %)
Repo[i] =k

Nov. 2, 2023
-continued
end
Repo = Repo.sort0
return Repo
end

[0065] Note that the resulting Repo is an array containing
DST transformed keys sorted in ascending order. The Find
(Repo, s, t) operation finds keys in a Repo with values
greater than, or equal to, s and smaller than, or equal to, t:

def Find(Repo, s, t)
i = firstEqGreater(Repo, s)
j = lastEqSmaller(Repo, t)
return Repol[i : j]

end

Space Search Operations

[0066] There are three search operations frequently used
in 3D space and point-cloud analysis: Cubical Search,
Radius Search, and K Nearest Neighbor (KNN) Search.
[0067] A cubical search finds the points encompassed by
a 3D cube, which can be given in the form of a regular region
<s, t>. Let ps=(Xs, ys, 7s), pt=(xt, yt, zt) be two points in the
space with the property that xs xt, ys yt, zs zt, s=H (zs, ys,
xs) and t=H(xt, yt, zt), a cubical search Cubical(s, t) finds the
set P of points

P={p=(x.y.2)lussx=xt, yssysyr, 7}

[0068] The two DST keys for the points ps and pt therefore
define the two diagonal corners of a cube. Cubical Search
finds the points encompassed by the cube. Note that there is
no requirement for the edges of the cube to have equal
lengths.

[0069] It has been shown, above, how the method IT(s, t,
p) decomposes a cubical region <s, t> into a number of
sub-regions with precision no less than O<p=1. The search of
the 3D sub-regions can be approximated by a search over the
linear sections in the Repo with precision of p, including the
case p=1. To perform the search of linear sections within the
Repo, the Find operation can be utilized. The code for the
cubical search operation is listed below:

def CubicalSearch(Repo, s, t, p)
linearRegions = IT® (s,t,p)
m = NumberOf (linearRegions)
result = []
for (i =0;i<m;i++)
(s, t) = PopFront(linearRegions)
ps = Find(Repo, s, t)
result = result.append(ps)
end
return result
end

[0070] A radius search, also known as spherical search,
over a space S takes a point in the space and a radius as
arguments and returns the points in the space which are
within the specified distance away from the specified point.
[0071] Note that a point and a radius define a 3D sphere in
the space, hence the radius search can be viewed as a search
over the defined 3D sphere. Radius search can be accom-
plished by first constructing a cube that circumscribes the

US 2023/0351547 Al

sphere and then performing a cubical search over the cir-
cumscribing cube. The result of this cubical search contains
the points inside the sphere and thus has a recall of 100%.
However, all the points in the results do not necessarily fall
inside the sphere. The points in the result can then be filtered
to retain only those points that are indeed within the 3D
sphere.

[0072] FIG. 6 illustrates a sphere defined by a point q and
a radius r and a cube that circumscribes the sphere. The
following Radius Search method takes a DST key q that
represents a center point and a radius r as arguments, and
returns the points within the distance r from q, where w is
the number of bits to encode each coordinate:

def RadiusSearch(Repo, q, 1, W, p)
.y, x)=H"(qw)
XS = X-I, ¥§ = y-I, Z§ = Z-I
Xt = X+1, yt = y+1, 2t = Z+1
s = H (zs, ys, xs, W)
t=H (zs, yt, xt, W)
cubialResult= CubicalSearch(s, t, p)
result = []
m = sizeOf(cubialResult)
for (i = 0; i<m; i++)
pointKey = cubialResult[i]
(z2,y2,x2)= H! (pointKey)
if (2% +(y2-y)P + (22 - 2P = 12
result.push(pointKey)
end
return result
end

[0073] Note that RadiusSearch uses CubicalSearch to per-
form the main work. The result of the above RadiusSearch
is guaranteed to have 100% recall and 100% precision. The
precision parameter p for the method does not impact the
final precision. However, the value of p does allow a
trade-off between the time spent by CubicalSearch and the
time spent by the for loop that filters out outliers in the result.
[0074] K nearest neighbor (KNN) is another frequently
used search in sensing and control systems. Given a point in
the 3D space, KNN returns K points that are closer to a
specified point than any other points in the space. The
method to perform KNN search is given below, where repo
is the data repository for the 3D space, k is the DST
transform of a point p in the space, w is the number of bits
used to encode each coordinate, and r is an initial guess of
the radius of a sphere that may contain K or more points:

def KNN(Repo, k, 1, w)
points = RadiusSearch(Repo, k, 1, w, 0.5)
if size (points) < k
r=2%r
KNN(Repo,k,w,r)
else
sort(points)
end
result = points [0:k-1]
return result
end

[0075] As shown above, the KNN method calls Radius-
Search with a specified radius that may be estimated based
on experience or calculated from the density of the point
cloud. When the result returned by RadiusSearch contains
less than k points, RadiusSearch recursively calls itself with
a doubled radius. On the other hand, when the result contains

Nov. 2, 2023

k or more points, the result is then sorted and the first k
points are returned as the result.

[0076] FIG. 7 illustrates the difference between the con-
ventional and DST-based space search approaches. Conven-
tionally, 3D Space search has been mostly performed
directly over the 3D space, using methods, denoted 1, that
are often based on a tree structure, such as k-d trees. The
current method differs from the conventional approaches in
that it uses a DST transform, denoted H, to reduce the 3D
problem to a 1D problem in the domain of a one-dimen-
sional space with special properties. The search is then
performed in the one-dimensional space using an efficient
method denoted II The results are then transformed back to
the 3D domain using H™!, the inverse transform with respect
to H. In functional notation, the methods can be concisely
summarized as Y=H~'-II-H. FIG. 7 provides an illustration
of the current H-and-H™*-transform based approach (702)
and the direct methods denoted by y(701). Both theoretical
analysis and empirical tests have shown that DST-based
space search methods are much faster than direct methods
such as those with k-d trees, and asymptotically of a lower
complexity class than other search methods.

[0077] Finally, a very fast search method for the nearest
neighbor or neighbors of a point by searching the perfect
cube of a certain level in which point p resides is provided
below:

def Nbr,,.(p, L)
k =DST (p)
s = LowerFront (k, L_c)
t = UpperBack(k, L_c)
neighbors = Get (Repo, s, t)
end

Point-Cloud Downsampling

[0078] The purpose of point-cloud downsampling is to
reduce the size of the point-cloud data set while retaining the
overall geometric structure. This procedure is generally
applied to every new frame of a frame sequence in order to
reduce the cost of further computation. Existing methods
include: (1) removing every k-th point from the input with
respect to some ordering of the data points; and (2) using an
octree to filter out all but one point in each octree cell with
a certain resolution.

[0079] With the implicit hierarchical structure that results
from the DST transform, a point cloud can be downsampled
efficiently with a Repo built from the point cloud. The
following method carries out this downsampling, or com-
pression, to ensure that exactly one point is kept inside each
non-empty perfect cube of a chosen level L in the derived
point cloud:

def DownSamp (Repo, p, L)

RepoNew = []

1 = size (Repo)

i=0

while i <n
k = Repoli]
s = LowerFront(k, L)
t = UpperFront(k, L)
j = Repo.indexOf(t)
i=j+1
RepoNew.push(k)

US 2023/0351547 Al

-continued
End
End
[0080] The sub-region defined by the two keys s and t in

the DownSamp operation is a perfect cube; therefore, this
operation needs no further region decomposition. The func-
tionality of this method is equivalent to downsampling by
octree. The difference is that the above method uses neither
the explicit construction of an octree nor any tree traversals.
[0081] The point-cloud search and downsampling meth-
ods, discussed above, provide order(s) of magnitude
improvements in the computational efficiency of point-
cloud-registration procedures in sensing and control sys-
tems, such as denoising and clustering, because searching
generally takes up 75% or more of the total computational
time in those procedures. As discussed above, this represents
an enormous improvement in these types of sensing and
control systems, both from the standpoint of energy con-
sumption, memory-resource consumption, and real-time
performance, moving point-cloud registration and other
modules of sensing and control systems such as autonomous
vehicle from the prototype and research realms into the
realm of practical, commercially feasible systems. The DTS
transform, along with the decomposition and searching
methods discussed above, can be usefully applied in many
problem domains, just as Fourier transforms are used
throughout science and technology, from image and signal
processing to quantum mechanics and molecular-structure
determination.

Space with Negative and/or Decimal Coordinates

[0082] DST transform is defined over unsigned integers.
When the space includes negative and/or decimal coordi-
nates, the coordinates can be shifted and scaled so that
coordinates are changed into non-negative integers. The
results can then be shifted and/or scaled to recover the
coordinates in the original form.

Black-White Array

[0083] In this implementation, the values in a data reposi-
tory (“Repo”) are assumed to be drawn from an ordered set.
Note that DST keys are nonnegative integers in a 1D space
even though they are derived from the coordinates of the
points in a 3D space. The data repository Repo is static when
the Repo does not support insertion and deletion of data
points. The repositories used in the previous sections are
therefore static. The Black-White Array (BWA) is intro-
duced here to support the construction and searching of
dynamic data sets from which data points can be added and
removed. The operations supported by the Black-White
Array include (1) Insert (v), which inserts a value v into the
Repo; (2) Search (v), which finds the location inside Repo
where the value equal to v, if v exists in the Repo, and
otherwise returns nil; (3) Find? (u, v), which finds the values
in the Repo that fall in the closed interval [u, v]; and (4)
Delete (v), which removes the value v from the data set. The
Find operation is motivated by applications such as DST
transform, which reduces a 3D regional search to a number
of 1D interval searchers. The BWA provides support for
DST-based searches that work with dynamic 3D spaces.

[0084] Dynamic data structures with operations similar to
that of the BWA have long been studied. Examples include
linked lists, binary search trees, and quite a number of

Nov. 2, 2023

well-known tree-based data structures. A salient example
among them is the Red-Black Tree.

[0085] Black-White Array supports the above-specified
operations. The BWA differs from the Repo introduced in
the previous sections by providing insert and delete opera-
tions, needed for implementing a dynamic set. Dynamic sets
are important for many functional modules in sensing and
control systems, including dynamic voxel maps that main-
tain a dynamic point-cloud structure that changes with time.
Unlike tree-based solutions, BWA is completely array-
based, and, as such, avoids the need for pointer referencing,
pointer dereferencing, and tree rebalancing, and thus avoids
the associated space and time costs related to pointer opera-
tions and tree rebalancing.

BWA Structure

[0086] A BWA with a capacity of N=2* consists of a pair
of arrays, the Black Array (“B”) and the White Array (“W”),
of sizes N/2 and N, respectively. The entries in the B array
are indexed by indices ranging from 1 to (N/2)-1 while the
indices in the W array range from 1 to N-1. Both the B and
W arrays are conceptually divided into segments of different
ranks, where segment i contains entries with indices in the
interval of [27, 2°*'-1]. It follows that, for a BWA of capacity
of N=2%, the W and B arrays have a total of k and k-1
segments respectively. A segment of rank r holds exactly 2"
entries.

[0087] In the following discussion, Segw(i) and Seg’(i)
denote the segments of rank i in the White and Black arrays,
respectively. A segment is said to be occupied or active when
it is filled with valid inserted value(s). By definition, the
highest index in Seg(i), written S(i), is given by 2¢+1—
1=1<<(i+1)-1, where “<<” is the left-shift operation on the
binary representation of an integer. The lowest index in
Seg(i), denoted T(i), is given by 2°=1<<i. The highest and
lowest indices of a segment are referred to, respectively, as
the starting (s) and terminating (t) positions of the segment.
[0088] FIG. 8 provides an illustration of the layout of the
BWA structure with a capacity of 16. Note that both the
indices of array entries and the ranks of the segments are
arranged in the ascending order from right to left. There are
four white segments in the BWA, of which the leftmost has
the highest rank of 3 (801). This segment has a starting
position of 8 (803), a terminating position of 15 (802), and
a length of 8.

Black-White Array Operations

[0089] The insert operation is performed by the following
recursive rules: (1) a new value is inserted into Seg™(0)
when Seg™(0) is not occupied and, otherwise, the new value
is inserted into Seg”(0); (2) for any rank i, whenever Seg*(i)
Seg?(i) are both occupied, they are merged as one sorted
sequence and the result is put into Seg™(i+1), when Seg"
(i+1) is not occupied and, otherwise, put into Seg?(i+1), with
a merge of two segments with rank i+1 invoked recursively.
[0090] Note that the above-mentioned “merge” assumes
two sorted sequences of the same length and merges them
into one sequence of doubled length. The merge has the
same function as the well-known merge sort.

[0091] To adhere to the above rules, the occupancy of the
white segment of a given rank needs to be determined. This
can be done by tracking the total number of values inserted
into the white segment. Let t be that total number, which is

US 2023/0351547 Al

set to zero for a new BWA, and, whenever a new value is
inserted, t is set to t+1. It can then be easily verified that,
given the rules stated above, Seg™(i) is occupied if and only
if the ith least significant bit of t is one. More formally, the
Insert method that puts a new value v into the BWA is given
below:

def Insert (v)

ptr=1;

if (t&ptr == 0)
W] =v

else
B[0]=v
merge (0)

end

t=t+1

end

where t is the total number of value(s) stored in the BWA.
The function merge is called to merge black and white
segments of a given rank with possible recursion, as defined
by:

def merge (i)
ptr=1 << (i+1)
if (t&ptr == 0)
Seg™(i+1) = merge (Seg™(i), Seg”(1))
else
Seg?(i+1) = merge (Seg”(i), Seg®(i))

merge (i+1)
end
end
[0092] FIG. 9 illustrates an insert operation carried out by

the above-described recursive merging process. In the
example shown in FIG. 9, the BWA has a capacity N=16.
When the new value 52 is inserted, the total t is equal to 7
(0111), indicating the three lowest ranked white segments
are occupied. The new value is first put in Seg”(0) (901).
This leads to a merge of Seg*(0) and Seg®(0), and the result
is put in Seg”(1) (902). A merge between Seg”(1) and
Seg®(t) (903) followed by a merge between Seg*(2) and
Seg”(2) then takes place successively until the final result is
put in Seg”(3) (904).

[0093] It follows from the rules of BWA insertion that,
whenever the number of inserted values is a power of two,
t=2", the values appear in the BWA’s white segment of rank
m as a sorted sequence. It can also be proven that this
sorting-by-insertion-with-BWA procedure involves the
same number of comparisons as the well-known merge sort
when the BWA is used to incrementally sort a sequence of
numbers.

[0094] Observe that the values left in the lower-ranked
segments after a merge does not affect the correctness of
further BWA operations, and, therefore, there is no need to
spend the time to remove them. For example, after the
insertion-and-merge process illustrated in FIG. 9, the total
twill be increased from 7 (0111) to 8 (1000), which indicates
that values in the three lowest ranked segments are now
treated as void.

[0095] The search operation over a BWA depends on the
segSearch method which searches for the value v in a
segment with rank i:

Nov. 2, 2023

segSearch(v, i)
s = S(i)
t=T()
r = binarySearch (W, v, s, t)
return r
end

where the binarySearch of the segment of rank i in the white
array is delineated by the points s and t. The returned index
is thus a global index into the White array, which is achieved
with a binary search.

[0096] The Search operation then utilizes the segSearch
method to search through the BWA one segment at a time,
from highest rank k down to rank 0, until either the search
value is found, and the index returned, or the value is not
found, and Nil is returned.

Search(v)
r=Nil
for (i=k-1; i=0;1--)
if (active?(i))
r = segSearch(v, 1)

end
if (¢ 1= Nil)
break
end
end
return r
end
[0097] Note that the active? function is used to determine

if the Segment with rank i is occupied, which, as pointed out
previously, is done by checking if the ith least significant bit
of t, which is the total number of values in the BWA.
[0098] The method Find(Repo, s, t), discussed above in
the section Data Repository, is used in DST-based space
searching with a static data set. To support the space search
over dynamic data sets into which points can be inserted and
from which points can be deleted, the BWA is used as a
dynamic data repository. The method corresponding to Find
(Repo,s,t) for a static data repository is now denoted by
Find¥(BWA, s, t), which returns the values k that meet the
condition of s<kst. By replacing Find(Repo, s, t) by Find?
(BWA, s, t), the methods for space search over static
repositories work for dynamic data sets.

[0099] In a BWA repository, the values are stored in a
number of segments, and the values in each segment are
sorted. By viewing each segment as a small repo, the
Find“(BWA,s,t) can be implemented by a number of Find
(repo, s, t) operations, where the lowercased repo represents
a segment of the BWA. A method for Find(BWAs,t) that for
the points within each voxel follows this approach is given
below:

def Find?(BWA, s, t)
r = highestRankOfBWA
result = {}
for i=11=0;i--)
if (active? (1))
segResult = Find(Seg, s, t)
result = result.append(segResult)
end
end
end

US 2023/0351547 Al

[0100] The BWA provides for implementation of a fully
dynamic data repository that not only supports the insert
operation discussed above, but that also supports the delete
operation which removes a specified value from the dynamic
data repository, when the specified value is contained in the
dynamic data repository. The method Delete is implemented
as below:

def Delete(v)
r = Search(v)
if (r == Nil) return Nil
else
W[r] = VOID
i = seg(r)
VI[i] = V[i] -1
if (V[i] = (size(i) / 2))
j=1i1
demote(j)
if (active(j))
merge (j)
total = total - size (j)
Vil = VIij] + VIi-1]
else
total = total - size (j)

V(i) = VIi
end
end
end
[0101] As shown above, the Delete operation uses a search

to first decide whether the specified value resides in the
repository and returns Nil when the value is not found. When
the value is found with a global index r, the value is set to
Void in the white array (W). The number of non-Void values
in the corresponding segment is then decreased by one.
When this number is equal to, or smaller than, half of the
segment size, a demotion process is activated to move the
elements at the current level to a segment of lower rank. The
rest of the code implements bookkeeping of the total values
and the number of non-Void values in the segments. This, of
course, means that the numbers of void elements in each
segment are kept as metadata in an array V, where V[i] is the
number of void elements in Segment i.

[0102] The demotion process used in the delete method is
provided below:

def demote(i)
s = S(i)
t="T(®)
arr = (active(i-1)? B:W)
J =831
for (j=s;j <=t] ++)
v = WIi]
if (v 1= VOID)
arrf[j]=v
end
j=j+1
end
end

[0103] Thus, the demote method receives the rank of a
segment i as an argument. The method demote first finds the
starting and ending indices of the segment. Depending on
whether or not the segment with a rank lower by one is
active or not, the method demote copies the non-VOID
elements of the given segment to the lower-ranked segment
of the white or black array. Note that if the copying is done

Nov. 2, 2023

over the black array, a merge process follows, as shown in
the above code for the Delete method,

[0104] FIG. 10 illustrates the delete process. A deletion of
the value 59 takes place in segment of rank 3 (a); the number
of non-VOID values in the segment after the deletion is
decreased to half of for the points within each voxel the
segment’s length and a demotion is then invoked (b); since
segment of rank 2 is active, the result of the operation
demotion is put in black segment (c); a merge at rank 2 takes
place, after which the values from the white and black
segments of rank 2 reside in segment of rank 3 (d). Note that
the value of VOID is denoted by ¢ in the example shown in
FIG. 10.

Dynamic Data Repository Construction

[0105] In previous sections, a static data repository for a
3D space is built using the method Build(S) presented above
in the section Data Repository. For applications using a
dynamic data set, BWA is used so that points can be inserted
and deleted dynamically from the data set. Given a point
cloud 8, the following method Build? constructs a BWA as
a dynamic data repository:

Buid? (S)
n = size(S)
BWA = InitializeBWA(n)
for (i=0;i<n,i++)
(z, v, x) = S[i]
k = H(z,y,x,w)
BWA.insert(k)
end
return BWA
end

[0106] Unlike k-d tree, octree and other tree-based
approaches, regional and neighborhood space searches in a
3D-space based on the DST transform avoid construction,
traversal, and balancing of tree structures. The recursive
decomposition works directly on the region with a time
independent of the cardinality of the entire space. The
precision of the DST-based search generally reaches a high
level even with a shallow depth of recursive space decom-
position and with a guaranteed recall of 100 percent. Testing
of DST-based methods against other state-of-art methods
with public 3D data sets and point clouds has demonstrated
an order-of-magnitude improvement in speed over other
current methods. The BWA data repository subsumes, in
functionality, both static sorting methods, including merge-
sort, and dynamic 1D search structures, including the red-
black tree. The BWA data repository has the flexibility of
building the repository incrementally, unlike merge sort, and
avoids the cost of construction, maintenance and balancing
of tree structures, unlike the red-black tree. The joint use of
DST and BWA renders real-time processing of dynamic data
sets in time-critical functional modules in sensing and
control systems, including point cloud analysis, point-cloud
registration, and object tracking for autonomous driving,
achievable with reasonable computational resources.

Voxel Map

[0107] This section demonstrates how Dimensional
Shuffle Transform (DST) is utilized to build a voxel map for
a 3D space and support operations over the voxel map,
which is a critical structure for point-cloud analysis found in

US 2023/0351547 Al

many sensing and control system, such as autonomous
vehicles and autonomous robots.

[0108] A voxel represents a unit volume in a given 3D
space. FIG. 11 illustrates a voxel within a neighborhood of
voxels. In FIG. 11, a central voxel is shown within a volume
1102 containing 26 additional voxels that represent a neigh-
borhood of the central voxel. A voxel map is a 3D grid
structure that encompasses the voxels in a space. Voxeliza-
tion of a 3D space refers to a process of building a map for
the space and assigning each point in the space to a corre-
sponding voxel. A map is mutually exclusive if the inter-
section of any two voxels in the map results in the empty set.
It is considered complete if every point in the 3D space is
mapped to one and only one voxel. The map is considered
regular when the edges of the voxels have equal lengths for
any given level and each edge is parallel to one of the three
axes. In currently disclosed implementations, the above-
mentioned properties for the voxel maps are assumed
throughout.

[0109] A complete voxel map is considered trimmed when
it contains no empty voxels. This trimming ensures space
efficiency, making the voxel map particularly suitable for
LiDAR-generated point clouds that are often quite sparse.
Additionally, a voxel map is termed recursive when each
voxel can be further subdivided into eight smaller voxels
with edge lengths half of the edge lengths of the subdivided
voxel. In a recursive voxel map, each voxel is associated
with a level that is one level lower than that of its parent
voxel. The voxel map based on the Dimensional Shuffle
Transform (DST) is both trimmed and naturally recursive.
[0110] Support for voxel mapping with the Dimensional
Shuffle Transform (DST) is rooted in the inherent property
of the DST transformed space, which is composed of a
collection of perfect cubes as defined in the section Regions
and Their Properties. It follows that a voxel of a given level
can be uniquely identified by the LowerFt (lower front) and
UpperBk(upper back) of the perfect cube corresponding to
the voxel.

Voxel Map Operations

[0111] Voxel mapping finds application in a wide range of
fields, including point-cloud analysis, tracking, simultane-
ous localization and mapping (SLAM), 3D rendering, and
3D modeling, often known under different names such as
volumetric occupancy grid and OctoMap. While specific
usage of voxel maps varies across applications, voxel maps
support a common set of operations from a data-structure
perspective. These shared operations include:

[0112] 1. Build(S), which constructs a data repo of a
voxel map for the space S.

[0113] 2. Voxel (p, 1), which locates the voxel of a
specified level 1 that a given point p falls into by
returning the lowerFt s and upperBk t of the voxel at
level 1.

[0114] 3. VoxelSearch(s, t), which finds the points
within a voxel identified by its two corners s and t.

[0115] 4. Enumerate(Repo, 1), which enumerates the
non-empty voxels of level t in the data repository Repo
for the voxel map.

[0116] 5. 26 Neighborhood(s, t), which, given a voxel
defined by two corners s and t, finds the regular region
<u, v> consisting of the 26 neighboring voxels in the
3x3x3 voxel neighborhood with the given voxel posi-
tioned at the center (FIG. 11).

Nov. 2, 2023

[0117] 6. 26 NeighborVoxels(s,t), which, given a voxel
defined by its two corners s and t finds the 26 neigh-
boring voxels of the given voxel that surrounds the
given voxel in the 3x3x3 block with the given voxel at
the center.

[0118]
map.

[0119]
map.
[0120] These operations form a set of functionalities that
are commonly supported by voxel maps, facilitating various

operations and analyses for the mapped 3D space deployed
in many sensing and control systems.

[0121] Depending on the application, a voxel map may not
necessarily support all of the above-listed operations. Par-
ticularly, a voxel map without the insert and delete opera-
tions is referred to as static and is otherwise referred to as
dynamic. The data Repo for a static voxel map is built
exactly the same way as that for a static Data repository with
the method Build(S) presented above in section Data
Repository. For the dynamic voxel map, a black-white array
(BWA) is used. The method to build the dynamic data
repository with BWA under the name of Buid? (S) is pro-
vided in the section Dynamic Data Repository.

[0122] The operation Voxel(p,l) takes a point in the form
of its DST key and a voxel level as arguments and returns
the lowerFront and upperBk of the voxel of the specified
level that contains the specified point. A voxel map built
with DST implements the operation Voxel(p,l) as follows:

7. Insert, which inserts a point (p) into the voxel

8. Delete, which removes a point from the voxel

def Voxel(k, 1)
s = LowerFt(k, L)
t = UpperBk(k, L)

return (s.t)
end
[0123] The LowerFt and UpperBk are those defined in the

section Region Decomposition.

[0124] The operation VoxelSearch(s,t) finds the points
within a voxel defined by two corners s and t, which are the
lowerFt and upperBk of the voxel:

def VoxelSearch(s,t)
if (static map)
result = Find(Repo, s,t)
else
result = Find“(BWA,s,t)

end
return result
end
[0125] Depending on whether the map is dynamic or not,

the Find operation is performed over a static Repo or a
dynamic BWA, which are defined in the section Data
Repository and the section Black-White Array Operations,
respectively.

[0126] An enumeration of the voxels of a given level in a
DST-based voxel map is provided by the operation Enumer-
ate. In the case of a static voxel map, the data repo of the
map is a sorted array and an enumeration of the voxels of
level L is achieved by the following method:

US 2023/0351547 Al

def Enumerate(repo, L)
voxels = {}
1 = size(repo)
=0
while i <n
k = repo [i]
s = lowerFT(k,L)
t = upperBk(k,L)
voxels.push(<s,t>)
while k <=t
i++
end
end
return voxels
end

The result is a list of the voxels of level L in the voxel map.
Each voxel is identified by two corners, which define a
perfect cube of level L.

[0127] Implementation of a method that enumerates the
voxels of a specified level of a dynamic voxel map can
incorporate the above code for static voxels. The data
repository for the dynamic voxel map is a BWA array, which
consists of a group of segments. Since the DST keys in each
segment are sorted, each segment can be viewed as a static
voxel map. The above Enumerate method can therefore be
used to enumerate the voxels of a segment at a given level.
The results from the multiple enumerations, one for each
segment at one level, can then be merged with a dedupli-
cation procedure because a voxel might be found in more
than one segment.

[0128] For a given voxel identified by two corners s and t,
the voxel’s 26 neighbors are the 26 voxels surrounding the
voxel in a 3x3x3 voxel volume with the given voxel at the
center (FIG. 11). The following method is to find the 3D
regular region consisting of the given voxel together with
the voxel’s 26 neighbors:

def 26Neighborhood(s,t)
L = level(s,t)
(e Yo 2) = H'(s)
(%0 ¥ 2) = (D)
k1 = H (zs-1, ys-1, xs-1, w)
k2 = H (zs+1,ys+1, xs+1)
u = LowerFt(kl, L)
v = UpperBk(k2, L)

return (U.v)
end
[0129] The result of this operation defines a regular region

corresponding to the 26 neighborhood (See section Regions
and Their Properties). Certain applications search for points
in a 26 neighborhood. This can be achieved by using the
cubical search. with the result returned by the above method
as arguments, defined in the section Space Search Opera-
tions.

[0130] In some algorithms for point-cloud processing, the
26 neighboring voxels need to be each identified. The
following method takes a voxel identified by two corners,
and returns a collection of voxels that includes a specified
voxel together with the voxel’s 26 neighboring voxels:

def 26NeighborVoxels(s,t)
(u,v) = 26Neighborhood(s,t)
miniRepo = CubicalSearch(u,v,p)

12

Nov. 2, 2023

-continued

L = LvI(u,v,w)
VoxelsInNeighborhood = Enumerate(miniRepo,L)
return VoxelsInNeighborhood

[0131] This method can use the Enumerate method to find
the voxels of a specified level since the Enumerate method
works for any sequence of DST keys provided that the DST
keys are sorted and contained in a continuous section of a
repository. The result returned by CubicalSearch indeed
meets this condition.

[0132] Finally, a dynamic voxel map uses insert and delete
operations. Since a black-white array is used for the data
repo for a dynamic voxel map, the insert and delete opera-
tions of a dynamic voxel map reduce to no more than the
Insert and Delete operations of the black-white array
described in the section Black-White Array Operations.

Voxel Map for Real Application

[0133] An example of a DST-based voxel map that is used
in solving real-world problems found in many autonomous
sensing and control systems is provided in this section. In
recent years, voxel-based algorithms for point-cloud analy-
sis have been shown to be effective and more efficient than
point-based approaches. The problems in point-cloud analy-
sis for which a voxel-based approach is applicable include
ground segmentation, down-sampling, denoising, simulta-
neous localization and mapping (SLAM), segmentation,
target tracking with 3D occupancy grid, and many others.

[0134] The currently described example problem is point-
cloud segmentation. Given a point cloud, a voxel-based
segmentation identifies, for each object in the point cloud
captured from the surrounding environment of a sensor, a
unique set of voxels that encompass the points detected by
Lidar from the object. The result of segmentation separates
objects in a scene and defines object boundaries. This result
not only facilitates identification of objects on a road, but
also provides a basis for further point-cloud-analysis proce-
dures including semantic segmentation, tracking of moving
objects, feature extraction for machine learning, and others.
[0135] A method that performs a point-cloud segmenta-
tion using a DST-based voxel map is provided below:

def Segmentation (S, L)
repo = Build(S)
voxels = enumerate(repo, L)
m = NumberOf(voxels)
labels =[]
Dict = [] # dictionary of (voxel, label) pairs
label = 1
i=0
while i <m
Labeled = False
LabelUsed = «
(s,t) = vozxels [i]
Neighbors = 26NeighborVoxels(s, t)
for (j = 0;1<27; i++)
nbr = Neighbors(j)
nbrLabel = Dict(nbr)
if (nbrLabel != Nil)
if (Labeled = False)
Dict.add(voxels[i], neighborLabel)
If (Labeled = True)
bl = Min(Dict(nbr), Dict(voxels[i])
Dict.add(voxel[i], 1bl)

US 2023/0351547 Al

-continued

1bl2 = Max(Dict(nbr, Dict
List = Dict.byValue(lbI2)
for (each voxel in List)
Dict.update(voxel) = Ibl
end
end
end
if (Labeled = False)
label = label+1
Dict.add (voxels[i], label)
end
end
i=i+l
end
return Dictionary
end

[0136] This segmentation method takes a point cloud S
and a level for voxelization as arguments. This segmentation
method first builds a data repository for the voxel map using
a DST transform and then enumerates the voxels of a
specified level L. Initially, none of the voxels are labeled.
Then, each voxel in the list returned from voxel enumeration
is examined by checking its 26 neighboring voxels. When a
neighboring voxel is labeled before a voxel is labeled, the
unlabeled voxel receives the label of the neighboring voxel
and is marked as labeled. When both a voxel and a neigh-
boring voxel in the 26-voxel neighborhood are labeled, both
the voxel and the voxel’s neighbor receive the label of lower
value of the two labels. The voxels with the higher label
between the two labels also receive the label of the lower
value. Here, a dictionary of the ((s,t), label) pairs is used to
facilitate the retrieval of the voxels with a given label. The
result returned by this Segmentation method is a final
dictionary which associates each voxel in the Voxel Map
with a label at a unique object which contains the voxel.
[0137] The result of the segmentation method therefore
includes information about each object, including the
object’s constituent voxels and the object’s boundaries as
defined collectively by the object’s constituent voxels. Seg-
mentation serves the purpose, in object detection, of gener-
ating bounding boxes, target tracking, obstacle avoidance,
motion planning, and voxel feature extraction for the pur-
pose of training of neural networks.

[0138] FIG. 12 illustrates a segmentation process that uses
a DST-based voxel map. A plot of raw point cloud 1202 to
be segmented is first shown. A second plot of a voxelization
of the point cloud 1204 is next shown in FIG. 12. Finally, a
result of the segmentation process is shown in plot 1206.
Segmentation resolves the undifferentiated set of point-
containing voxels shown in plot 1204 into two clusters of
voxels 1206, colored in white and black respectively, that
correspond to two different objects.

[0139] The above discussed spatial transformations,
decomposition methods, searching methods, and voxel-
based operations are used in many different systems and
devices that sense environments and that control objects,
devices, systems, or other entities identified within the
environments, including vehicles equipped for autonomous
driving, robots, medical instrumentation, and many other
types of systems and devices. Control may involve posi-
tioning a system or device in the environment relative to the
determined location of an identified object, applying a force
to an identified object, and directing an electromagnetic
signal to an identified object. The data points discussed in

13

Nov. 2, 2023

the current document, often referred to as “points,” may
include, in addition to spatial coordinates or keys, additional
values for additional attributes. The present invention has
been described in terms of particular embodiments, it is not
intended that the invention be limited to these embodiments.
Modifications within the spirit of the invention will be
apparent to those skilled in the art. For example, any of
many different implementations of the currently disclosed
methods and systems can be obtained by varying various
design and implementation parameters, including modular
organization, control structures, data structures, hardware,
operating system, and virtualization layers, automated
orchestration systems, virtualization-aggregation systems,
and other such design and implementation parameters.

1. A control system comprising:
one or more computer systems, each including one or
more processors and one or more memory subsystems;
and
processor instructions, stored in one or more of the one or
more memories, that, when executed by one or more of
the one or more processors, control the control system
to
receive three-dimensional data collected from an exter-
nal environmental volume comprising three-dimen-
sional data points with environmental locations, the
environmental location of a three-dimensional data
point represented by an ordered tuple of three three-
dimensional-coordinate values,
apply a three-dimensional-space-to-one-dimensional-
space transform to the three-dimensional data to
generate corresponding one-dimensional data com-
prising one-dimensional data points, each one-di-
mensional data point represented by a key compris-
ing an ordered set of fields,
identify a set of one-dimensional data points by search-
ing for data points in the one-dimensional data.
apply a one-dimensional-space-to-three-dimensional-
space reverse transform to the identified set of one-
dimensional data points to generate a corresponding
set of three-dimensional data points.
determine, from the set of three-dimensional data
points, the location of an object in the external
environmental volume, and
control the external environment by one or more of
positioning a system or device in the external envi-
ronment relative to the determined location of the
object,
applying a force to the object, and
directing an electromagnetic signal to the object.
2. The control system of claim 1
wherein the received three-dimensional data defines a
three-dimensional space; S; wherein an ordered set
containing the corresponding one-dimensional data
points, each represented by a key, defines a one-
dimensional space L containing one-dimensional data
points;
wherein the one-dimensional space L is hierarchically
structured;
wherein local spatial three-dimensional neighborhoods of
three-dimensional data points in the received three-
dimensional data correspond to local one-dimensional
neighborhoods of one-dimensional data points in the
one-dimensional space L; and

US 2023/0351547 Al
14

wherein the three-dimensional space S corresponds to a
voxelated three-dimensional space S containing one or
more levels of voxels, each voxel in each of the one or
more levels corresponding to a sequence of adjacent
three-dimensional data points in the one-dimensional
space L.

3. The control system of claim 2 wherein searching for
data points in the one-dimensional data further comprises
searching for data points in the one-dimensional data that
meet one of:

a specified criterion; and

a specified set of criteria.

4. The control system of claim 2 wherein searching for
data points in the three-dimensional data further comprises
three different types of searching:

cubical searching, which finds the three-dimensional data
points contained in a specified unit volume of the
three-dimensional space S;

radius searching, which finds the three-dimensional data
points contained in a spherical volume of the three-
dimensional space S specified by a radius and a central
point; and

k-nearest-neighbor searching, which finds the three-di-
mensional data points closest in three-dimensional
space to a specified three-dimensional data point.

5. The control system of claim 2

wherein each of the three-dimensional-coordinates values
that together represent the environmental location of a
data point in the three-dimensional data is represented
by an unsigned integer with a binary encoding com-
prising a number it of ordered bits; and

wherein the key to which the three-dimensional-coordi-
nates values that together represent an environmental
location of a data point is transformed contains i fields,
each field containing three bits. with the w fields
ordered from a lowest field position 0, corresponding to
the least significant bit in the number it of ordered bits,
to a highest field position w-1 corresponding to the
most significant bit in the number w of ordered bits.

6. The control system of claim 5 wherein the three-
dimensional-space-to-one-dimensional-space transform
transforms a three-dimensional data point p to a key k by:

for each coordinate value v of the three coordinate values
in the ordered tuple of three three-dimensional-coordi-
nate values that represent three-dimensional data point
p,
for each bit with position t within the w ordered bits of

the three-dimensional-coordinate value v,

setting the value of a bit in a position corresponding
to three-dimensional-coordinate value v in a field
of the key k corresponding to bit position t to the
value of the bit with position t within the w
ordered bits of the three-dimensional-coordinate

value v.
7. The control system of claim 5 wherein the one-
dimensional-space-to-three-dimensional-space reverse

transform reverse transforms a key k to a three-dimensional
data point p by:
for each field f in the key k,
for each bit b in field f,
selecting a three-dimensional-coordinate value v in
three-dimensional data point p corresponding to
bit b;

Nov. 2, 2023

selecting a bit in the selected three-dimensional-
coordinate value v corresponding to the field f;
and

setting the selected bit to the value of the bit b.

8. The control system of claim 4 wherein two three-
dimensional data points p, and p, selected from the three-
dimensional space S define a regular region in the three-
dimensional space S and the two one-dimensional data
points k; and k, corresponding to data points p, and p, define
a corresponding linear region in one-dimensional space L.

9. The control system of claim 8

wherein the precision of a region is equal to the number

of data points in the corresponding regular region
divided by the number of data points in the correspond-
ing linear region;

wherein the maximum precision of a region is the preci-

sion of the corresponding regular region containing the
same number of data points as contained in the corre-
sponding linear region;

wherein the precision of a regular region is less than or

equal to the maximum precision;

wherein a regular region with a precision equal to the

maximum precision is a perfect region;

wherein a regular region that is not a perfect region is a

non-perfect region; and

wherein, when a perfect region has edges of equal lengths

in three dimensions, the perfect region is a prefect unit
region.

10. The control system of claim 9

wherein each regular region and corresponding linear

region is associated with a level; and
wherein the level of a regular region and corresponding
linear region, defined by two different keys k, and k,,
corresponds to the highest field position, within keys k,
and k,, at which two corresponding fields in keys k,
and k, differ, with the level ranging from 0 to w-1.

11. The control system of claim 10 further comprising:

a non-recursive decomposer that decomposes a non-
perfect region with a first volume, first precision, and
first level into two or more regular regions with smaller
volumes than the first volume. with precisions greater
than or equal to the first precision, and with associated
levels less than the first level; and

a recursive decomposer that recursively decomposes a

non-perfect region with a first volume, first precision,
and first level into two or more regular regions with
smaller volumes than the first volume, with precisions
greater than or equal to a specified precision, and levels
less than the first level.

12. The control system of claim 10 wherein the three-
dimensional space S is recursively voxelated into voxel
levels corresponding to the possible voxel levels 0 through
w-1 associated with perfect regions.

13. The control system of claim 12 further including a
containing-region identifier that identifies a voxel at a speci-
fied level 1vl containing a data point p in S having a
corresponding key kin L, the identified voxel represented by
a pair of keys k, and k,, by:

setting fields having positions in k less than 1vl to contain

all O bits to generate k,; and

setting fields having positions in k greater than or equal to

Ivl to contain all O bits to generate k,.

US 2023/0351547 Al

14. The control system of claim 12 further including a
data-point enumerator that finds the data points in S within
a voxel represented by a pair of keys k; and k, by:

retrieving the keys from L greater than or equal to k, and

less than or equal to k,; and

employing the one-dimensional-space-to-three-dimen-

sional-space reverse transform to reverse transform the
retrieved keys to three-dimensional data points.
15. The control system of claim 12 further including a
voxel enumerator that finds voxels at a specified level 1vl
containing data points in S by invoking, for each data point
in S, the containing-region identifier with specified level 1v1.
16. The control system of claim 12 further including a
voxel-neighborhood finder that finds the voxel neighbor-
hood of a voxel specified by a pair of keys k; and k,, with
key k, less than key k,, by:
determining the level associated with the specified voxel;
employing the one-dimensional-space-to-three-dimen-
sional-space reverse transform to reverse transform
keys k; and k, to corresponding three-dimensional data
points p, and p, that define a first volume in S;

generating three-dimensional data point p, with three-
dimensional coordinate values one less than the three-
dimensional coordinate values of three-dimensional
data point p;

generating three-dimensional data point p, with three-
dimensional coordinate values one greater than the
three-dimensional coordinate values of three-dimen-
sional data point p,; and

applying the one-dimensional-space-to-three-dimen-

sional-space transform to transform data points p; and
p,4 to keys k; and k,;

setting fields having positions in k; less than 1v1 to contain

all 0 bits to generate ks;

setting fields having positions in k, greater than or equal

to Ivl to contain all O bits to generate k¢; and
returning ks and kg as the definition of a neighborhood
that includes the specified voxel.

17. The control system of claim 1 wherein the control
system represents one or more sets of one-dimensional data
points by one of:

a data structure storing an ordered sequence of keys; and

a black-white-array data structure that stores an ordered

sequence of keys.

18. A method that identifies an object in a three-dimen-
sional environment using three-dimensional data collected
from the three-dimensional environment, the method com-
prising:

receiving three-dimensional data comprising three-di-

mensional data points with environmental locations,
the environmental location of a three-dimensional data
point represented by an ordered tuple of three three-
dimensional-coordinate values,

applying a three-dimensional-space-to-one-dimensional-

space transform to the three-dimensional data to gen-
erate corresponding one-dimensional data comprising
one-dimensional data points, each one-dimensional
data point represented by a key comprising an ordered
set of fields,

identifying a set of one-dimensional data points by

searching for data points in the one-dimensional data,
applying a one-dimensional-space-to-three-dimensional-
space reverse transform to the identified set of one-

Nov. 2, 2023

dimensional data points to generate a corresponding set
of three-dimensional data points,

determining, from the set of three-dimensional data
points, the location of an object in the external envi-
ronmental volume.

19. The method of claim 18

wherein the received three-dimensional data defines a
three-dimensional space S; wherein an ordered set
containing the corresponding one-dimensional data
points, each represented by a key, defines a one-
dimensional space L containing one-dimensional data
points;

wherein the one-dimensional space L is hierarchically
structured,

wherein local spatial three-dimensional neighborhoods of
three-dimensional data points in the received three-
dimensional data correspond to local one-dimensional
neighborhoods of one-dimensional data points in the
one-dimensional space L; and

wherein the three-dimensional space S corresponds to a
voxelated three-dimensional space S containing one or
more levels of voxels, each voxel in each of the one or
more levels corresponding to a sequence of adjacent
three-dimensional data points in the one-dimensional
space L.

20. The method of claim 2 wherein searching for data
points in the one-dimensional data further comprises search-
ing for data points in the one-dimensional data that meet one
of:

a specified criterion; and

a specified set of criteria.

21. The method of claim 19 wherein searching for data
points in the three-dimensional data further comprises three
different types of searching:

cubical searching, which finds the three-dimensional data
points contained in a specified unit volume of the
three-dimensional space S;

radius searching, which finds the three-dimensional data
points contained in a spherical volume of the three-
dimensional space S specified by a radius and a central
point; and

k-nearest-neighbor searching, which finds the three-di-
mensional data points closest in three-dimensional
space to a specified three-dimensional data point.

22. The method of claim 19

wherein each of the three-dimensional-coordinates values
that together represent the environmental location of a
data point in the three-dimensional data is represented
by an integer with a binary encoding comprising a
number w of ordered bits; and
wherein the key to which the three-dimensional-coordi-
nates values that together represent an environmental
location of a data point is transformed contains w fields,
each field containing three bits, with the w fields
ordered from a lowest field position 0, corresponding to
the least significant bit in the number w of ordered bits,
to a highest field position w-1 corresponding to the
most significant bit in the number w of ordered bits.
23. The method of claim 22 wherein the three-dimen-
sional-space-to-one-dimensional-space transform trans-
forms a three-dimensional data point p to a key k by:

US 2023/0351547 Al

for each coordinate value v of the three coordinate values
in the ordered tuple of three three-dimensional-coordi-
nate values that represent three-dimensional data point
p,
for each bit with position t within the w ordered bits of
the three-dimensional-coordinate value v,
setting the value of a bit in a position corresponding
to three-dimensional-coordinate value v in a field
of the key k corresponding to bit position t to the
value of the bit with position t within the w
ordered bits of the three-dimensional-coordinate
value v.

24. The method of claim 22 wherein the one-dimensional-
space-to-three-dimensional-space reverse transform reverse
transforms a key k to a three-dimensional data point p by:

for each field fin the key k,

for each bit b in field f,

selecting a three-dimensional-coordinate value v in
three-dimensional data point p corresponding to
bit b;

selecting a bit in the selected three-dimensional-
coordinate value v corresponding to the field f;
and

setting the selected bit to the value of the bit b.

25. The method of claim 22 wherein two three-dimen-
sional data points p, and p, selected from the three-dimen-
sional space S define a regular region in the three-dimen-
sional space S and the two one-dimensional data points k,
and k, corresponding to data points p, and p, define a
corresponding linear region in one-dimensional space L.

26. The method of claim 25

wherein the precision of a region is equal to the number

of data points in the corresponding regular region
divided by the number of data points in the correspond-
ing linear region;

wherein the maximum precision of a region is the preci-

sion of the corresponding regular region containing the
same number of data points as contained in the corre-
sponding linear region;

wherein the precision of a regular region is less than or

equal to the maximum precision;

wherein a regular region with a precision equal to the

maximum precision is a perfect region;

wherein a regular region that is not a perfect region is a

non-perfect region; and

wherein, when a perfect region has edges of equal lengths

in three dimensions, the perfect region is a prefect unit
region.

27. The method of claim 26

wherein each regular region and corresponding linear

region is associated with a level; and

wherein the level of a regular region and corresponding

linear region, defined by two different keys k, and k,,
corresponds to the highest field position, within keys k,
and k,, at which two corresponding fields in keys k,
and k, differ, with the level ranging from 0 to w-1.

28. The method of claim 27 further comprising:

decomposing a non-perfect region with a first volume,

first precision, and first level into two or more regular
regions with smaller volumes than the first volume,
with precisions greater than or equal to the first preci-
sion, and with associated levels less than the first level;
and

Nov. 2, 2023

recursively decomposing a non-perfect region with a first
volume, first precision, and first level into two or more
regular regions with smaller volumes than the first
volume, with precisions greater than or equal to a
specified precision, and levels less than the first level.

29. The method of claim 28 wherein the three-dimen-
sional space S is recursively voxelated into voxel levels
corresponding to the possible voxel levels 0 through w-1
associated with perfect regions.

30. The method of claim 29 further including a contain-
ing-region identifier that identifies a voxel at a specified
level 1vl containing a data point p in S having a correspond-
ing key k in L, the identified voxel represented by a pair of
keys k; and k,, by:

setting fields having positions in k less than 1vl to contain

all O bits to generate k,; and

setting fields having positions in k greater than or equal to

Ivl to contain all O bits to generate k,.

31. The method of claim 29 further including finding the
data points in S within a voxel represented by a pair of keys
k, and k, by:

retrieving the keys from L greater than or equal to k; and

less than or equal to k,; and

employing the one-dimensional-space-to-three-dimen-

sional-space reverse transform to reverse transform the
retrieved keys to three-dimensional data points.

32. The method of claim 29 further including a finding
voxels at a specified level Ivl containing data points in S by
invoking, for each data point in S, the containing-region
identifier with specified level 1vl.

33. The control system of claim 29 further including
finding the voxel neighborhood of a voxel specified by a pair
of keys k; and k,, with key k, less than key k,, by:

determining the level associated with the specified voxel;

employing the one-dimensional-space-to-three-dimen-
sional-space reverse transform to reverse transform
keys k, and k, to corresponding three-dimensional data
points p, and p, that define a first volume in S;

generating three-dimensional data point p; with three-
dimensional coordinate values one less than the three-
dimensional coordinate values of three-dimensional
data point p,;

generating three-dimensional data point p, with three-
dimensional coordinate values one greater than the
three-dimensional coordinate values of three-dimen-
sional data point p,; and

applying the one-dimensional-space-to-three-dimen-

sional-space transform to transform data points p; and
P4 to keys k; and k,;

setting fields having positions in k; less than 1vl to contain

all 0 bits to generate ks,

setting fields having positions in k; greater than or equal

to 1vl to contain all O bits to generate kg; and
returning ks and kg as the definition of a neighborhood
that includes the specified voxel.

34. The method of claim 1 wherein one or more sets of
one-dimensional data points are represented by one of:

a data structure storing an ordered sequence of keys; and

a black-white-array data structure that stores an ordered

sequence of keys.

#* #* #* #* #*

