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Preface 

The need for ever faster computers has not ceased since the beginning of the computer 
era. Every new application seems to push existing computers to their limit. So far, 
computer manufacturers have kept up with the demand admirably well. In 1948, the 
electronic components used to build computers could switch from one state to 
another about 10,000 times every second. The switching time of this year's compo- 
nents is approximately 1/10,000,000,000th of a second. These figures mean that the 
number of operations a computer can do in one second has doubled, roughly every 
two years, over the past forty years. This is very impressive, but how long can it last? It 
is generally believed that the trend will remain until the end of this century. It may 
even be possible to maintain it a little longer by using optically based or even 
biologically based components. What happens after that? 

If the current and contemplated applications of computers are any indication, 
our requirements in terms of computing speed will continue, at least at the same rate 
as in the past, well beyond the year 2000. Already, computers faster than any available 
today are needed to perform the enormous number of calculations involved in 
developing cures to mysterious diseases. They are essential to applications where the 
human ability to recognize complex visual and auditory patterns is to be simulated in 
real time. And they are indispensable if we are to realize many of humanity's dreams, 
ranging from reliable long-term weather forecasting to interplanetary travel and outer 
space exploration. It appears now that parallel processing is the way to achieve these 
desired computing speeds. 

The overwhelming majority of computers in existence today, from the simplest 
to the most powerful, are conceptually very similar to one another. Their architecture 
and mode of operation follow, more or less, the same basic design principles 
formulated in the late 1940s and attributed to John von Neumann. The ingenious 
scenario is very simple and essentially goes as follows: A control unit fetches an 
instruction and its operands from a memory unit and sends them to a processing unit; 
there the instruction is executed and the result sent back to memory. This sequence of 
events is repeated for each instruction. There is only one unit of each kind, and only 
one instruction can be executed at a time. 



xii Preface 

With parallel processing the situation is entirely different. A parallel computer is 
one that consists of a collection of processing units, or processors, that cooperate to 
solve a problem by working simultaneously on different parts of that problem. The 
number of processors used can range from a few tens to several millions. As a result, 
the time required to solve the problem by a traditional uniprocessor computer is 
significantly reduced. This approach is attractive for a number of reasons. First, for 
many computational problems, the natural solution is a parallel one. Second, the cost 
and size of computer components have declined so sharply in recent years that 
parallel computers with a large number of processors have become feasible. And, 
third, it is possible in parallel processing to select the parallel architecture that is best 
suited to solve the problem or class of problems under consideration. Indeed, 
architects of parallel computers have the freedom to decide how many processors are 
to be used, how powerful these should be, what interconnection network links them to 
one another, whether they share a common memory, to what extent their operations 
are to be carried out synchronously, and a host of other issues. This wide range of 
choices has been reflected by the many theoretical models of parallel computation 
proposed as well as by the several parallel computers that were actually built. 

Parallelism is sure to change the way we think about and use computers. It 
promises to put within our reach solutions to problems and frontiers of knowledge 
never dreamed of before. The rich variety of architectures will lead to the discovery of 
novel and more efficient solutions to both old and new problems. It is important 
therefore to ask: How do we solve problems on a parallel computer? The primary 
ingredient in solving a computational problem on any computer is the solution 
method, or algorithm. This book is about algorithms for parallel computers. It describes 
how to go about designing algorithms that exploit both the parallelism inherent in the 
problem and that available on the computer. It also shows how to analyze these 
algorithms in order to evaluate their speed and cost. 

The computational problems studied in this book are grouped into three classes: 
(1) sorting, searching, and related problems; (2) combinatorial and numerical 
problems; and (3) problems arising in a number of application areas.These problems 
were chosen due to their fundamental nature. It is shown how a parallel algorithm is 
designed and analyzed to solve each problem. In some cases, several algorithms are 
presented that perform the same job, each on a different model of parallel com- 
putation. Examples are used as often as possible to illustrate the algorithms. Where 
necessary, a sequential algorithm is outlined for the problem at hand. Additional 
algorithms are briefly described in the Problems and Bibliographical Remarks 
sections. A list of references to other publications, where related problems and 
algorithms are treated, is provided at the end of each chapter. 

The book may serve as a text for a graduate course on parallel algorithms. It was 
used at Queen's University for that purpose during the fall term of 1987. The class met 
for four hours every week over a period of twelve weeks. One of the four hours was 
devoted to student presentations of additional material, reference to which was found 
in the Bibliographical Remarks sections. The book should also be useful to computer 
scientists, engineers, and mathematicians who would like to learn about parallel 
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models of computation and the design and analysis of parallel algorithms. It is 
assumed that the reader possesses the background normally provided by an 
undergraduate introductory course on the design and analysis of algorithms. 

The most pleasant part of writing a book is when one finally gets a chance to 
thank those who helped make the task an enjoyable one. Four people deserve special 
credit: Ms. Irene LaFleche prepared the electronic version of the manuscript with her 
natural cheerfulness and unmistakable talent. The diagrams are the result of Mr. 
Mark Attisha's expertise, enthusiasm, and skill. Dr. Bruce Chalmers offered numerous 
trenchant and insightful comments on an early draft. Advice and assistance on matters 
big and small were provided generously by Mr. Thomas Bradshaw. I also wish to 
acknowledge the several helpful suggestions made by the students in my CISC-867 
class at Queen's. The support provided by the staff of Prentice Hall at every stage is 
greatly appreciated 

Finally, I am indebted to my wife, Karolina, and to my two children, Sophia and 
Theo, who participated in this project in more ways than I can mention. Theo, in 
particular, spent the first year of his life examining, from a vantage point, each word as 
it appeared on my writing pad. 

Selim G. Akl 
Kingston, Ontario 



Introduction 

1.1 THE NEED FOR PARALLEL COMPUTERS 

A battery of satellites in outer space are collecting data at the rate of 101° bits per 
second. The data represent information on the earth's weather, pollution, agriculture, 
and natural resources. In order for this information to be used in a timely fashion, it 
needs to be processed at a speed of at least 1013 operations per second. 

Back on earth, a team of surgeons wish to view on a special display a 
reconstructed three-dimensional image of a patient's body in preparation for surgery. 
They need to be able to rotate the image at will, obtain a cross-sectional view of an 
organ, observe it in living detail, and then perform a simulated surgery while watching 
its effect, all without touching the patient. A minimum processing speed of 1015 
operations per second would make this approach worthwhile. 

The preceding two examples are representative of applications where trem- 
endously fast computers are needed to process vast amounts of data or to perform a 
large number of calculations quickly (or at least within a reasonable length of time). 
Other such applications include aircraft testing, the development of new drugs, oil 
exploration, modeling fusion reactors, economic planning, cryptanalysis, managing 
large databases, astronomy, biomedical analysis, real-time speech recognition, robo- 
tics, and the solution of large systems of partial differential equations arising from 
numerical simulations in disciplines as diverse as seismology, aerodynamics, and 
atomic, nuclear, and plasma physics. No computer exists today that can deliver the 
processing speeds required by these applications. Even the so-called supercomputers 
peak at a few billion operations per second. 

Over the past forty years dramatic increases in computing speed were achieved. 
Most of these were largely due to the use of inherently faster electronic components by 
computer manufacturers. As we went from relays to vacuum tubes to transistors and 
from smaH to medium to large and then to very large scale integration, we witnessed- 
often in amazement-the growth in size and range of the computational problems 
that we could solve. 

Unfortunately, it is evident that this trend will soon come to an end. The limiting 
factor is a simple law of physics that gives the speed of light in vacuum. This speed is 
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approximately equal to 3 x lo8 meters per second. Now, assume that an electronic 
device can perform 1012 operations per second. Then it takes longer for a signal to 
travel between two such devices one-half of a millimeter apart than it takes for either 
of them to process it. In other words, all the gains in speed obtained by building 
superfast electronic components are lost while one component is waiting to receive 
some input from another one. Why then (one is compelled to ask) not put the two 
communicating components even closer together? Again, physics tells us that the 
reduction of distance between electronic devices reaches a point beyond which they 
begin to interact, thus reducing not only their speed but also their reliability. 

It appears that the only way around this problem is to use parallelism. The idea 
here is that if several operations are performed simultaneously, then the time taken by 
a computation can be significantly reduced. This is a fairly intuitive notion, and one to 
which we are accustomed in any organized society. We know that several people of 
comparable skills can usually finish a job in a fraction of the time taken by one 
individual. From mail distribution to harvesting and from office to factory work, our 
everyday life offers numerous examples of parallelism through task sharing. 

Even in the field of computing, the idea of parallelism is not entirely new and has 
taken many forms. Since the early days of information processing, people realized that 
it is greatly advantageous to have the various components of a computer do different 
things at the same time. Typically, while the central processing unit is doing 
calculations, input can be read from a magnetic tape and output produced on a line 
printer. In more advanced machines, there are several simple processors each 
specializing in a given computational task, such as operations on floating-point 
numbers, for example. Some of today's most powerful computers contain two or more 
processing units that share among themselves the jobs submitted for processing. 

In each of the examples just mentioned, parallelism is exploited profitably, but 
nowhere near its promised power. Strictly speaking, none of the machines discussed is 
truly a parallel computer. In the modern paradigm that we are about to describe, 
however, the idea of parallel computing can realize its full potential. Here, our 
computational tool is a parallel computer, that is, a computer with many processing 
units, or processors. Given a problem to be solved, it is broken into a number of 
subproblems. All of these subproblems are now solved simultaneously, each on a 
different processor. The results are then combined to produce an answer to the 
original problem. This is a radical departure from the model of computation adopted 
for the past forty years in building computers-namely, the sequential uniprocessor 
machine. 

Only during the last ten years has parallelism become truly attractive and a 
viable approach to the attainment of very high computational speeds. The declining 
cost of computer hardware has made it possible to assemble parallel machines with 
millions of processors. Inspired by the challenge, computer scientists began to study 
parallel computers both in theory and in practice. Empirical evidence provided by 
homegrown prototypes often came to support a large body of theoretical studies. And 
very recently, a number of commercial parallel computers have made their ap- 
pearance on the market. 
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With the availability of the hardware, the most pressing question in parallel 
computing today is: How to program parallel computers to solve problems efficiently 
and in a practical and economically feasible way? As is the case in the sequential 
world, parallel computing requires algorithms, programming languages and com- 
pilers, as well as operating systems in order to actually perform a computation on the 
parallel hardware. All these ingredients of parallel computing are currently receiving a 
good deal of well-deserved attention from researchers. 

This book is about one (and perhaps the most fundamental) aspect of 
parallelism, namely, parallel algorithms. A parallel algorithm is a solution method for 
a given problem destined to be performed on a parallel computer. In order to properly 
design such algorithms, one needs to have a clear understanding of the model of 
computation underlying the parallel computer. 

1.2 MODELS OF COMPUTATION 

Any computer, whether sequential or parallel, operates by executing instructions on 
data. A stream of instructions (the algorithm) tells the computer what to do at each 
step. A stream of data (the input to the algorithm) is affected by these instructions. 
Depending on whether there is one or several of these streams, we can distinguish 
among four classes of computers: 

1. Single Instruction stream, Single Data stream (SISD) 
2. Multiple Instruction stream, Single Data stream (MISD) 
3. Single Instruction stream, Multiple Data stream (SIMD) 
4. Multiple Instruction stream, Multiple Data stream (MIMD). 

We now examine each of these classes in some detail. In the discussion that follows we 
shall not be concerned with input, output, or peripheral units that are available on 
every computer. 

1.2.1 SISD Computers 

A computer in this class consists of a single processing unit receiving a single stream of 
instructions that operate on a single stream of data, as shown in Fig. 1.1. At each step 
during the computation the control unit emits one instruction that operates on a 
datum obtained from the memory unit. Such an instruction may tell the processor, for 

Figure 1.1 SISD computer. 

MEMORY 

- 
DATA 

STREAM 
PROCESSOR, CONTROL -, 

STREAM 
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example, to perform some arithmetic or logic operation on the datum and then put it 
back in memory. 

The overwhelming majority of computers today adhere to this model invented 
by John von Neumann and his collaborators in the late 1940s. An algorithm for a 
computer in this class is said to be sequential (or serial). 

Example 1.1 

In order to compute the sum of n numbers, the processor needs to gain access to the 
memory n consecutive times and each time receive one number. There are also n - 1 
additions involved that are executed in sequence. Therefore, this computation requires on 
the order of n operations in total. 

This example shows that algorithms for SISD computers do not contain any 
parallelism. The reason is obvious, there is only one processor! In order to obtain 
from a computer the kind of parallel operation defined earlier, it will need to have 
several processors. This is provided by the next three classes of computers, the classes 
of interest in this book. In each of these classes, a computer possesses N processors, 
where N > 1. 

1.2.2 MISD Computers 

Here, N processors each with its own control unit share a common memory unit 
where data reside, as shown in Fig. 1.2. There are N streams of instructions and one 
stream of data. At each step, one datum received from memory is operated upon by all 
the processors simultaneously, each according to the instruction it receives from its 
control. Thus, parallelism is achieved by letting the processors do different things at 
the same time on the same datum. This class of computers lends itself naturally to 
those computations requiring an input to be subjected to several operations, each 
receiving the input in its original form. Two such computations are now illustrated. 

Figure 1.2 MISD computer. 
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Example 1.2 

It is required to determine whether a given positive integer z has no divisors except 1 and 
itself. The obvious solution to this problem is to try all possible divisors of z: If none of 
these succeeds in dividing z, then z is said to be prime; otherwise z is said to be composite. 

We can implement this solution as a parallel algorithm on an MISD computer. 
The idea is to split the job of testing potential divisors among processors. Assume that 
there are as many processors on the parallel computer as there are potential divisors of z. 
All processors take z as input, then each tries to divide it by its associated potential 
divisor and issues an appropriate output based on the result. Thus it is possible to 
determine in one step whether z is prime. More realistically, if there are fewer processors 
than potential divisors, then each processor can be given the job of testing a different 
subset of these divisors. In either case, a substantial speedup is obtained over a purely 
sequential implementation. 

Although more efficient solutions to the problem of primality testing exist, we have 
chosen the simple one as it illustrates the point without the need for much mathematical 
sophistication. 

Example 1.3 

In many applications, we often need to determine to which of a number of classes does a 
given object belong. The object may be a mathematical one, where it is required to 
associate a number with one of several sets, each with its own properties. Or it may be a 
physical one: A robot scanning the deep-sea bed "sees" different objects that it has to 
recognize in order to distinguish among fish, rocks, algae, and so on. Typically, 
membership of the object is determined by subjecting it to a number of different tests. 

The classification process can be done very quickly on an MISD computer with as 
many processors as there are classes. Each processor is associated with a class and can 
recognize members of that class through a computational test. Given an object to be 
classified, it is sent simultaneously to all processors where it is tested in parallel. The 
object belongs to the class associated with that processor that reports the success of its 
test. (Of course, it may be that the object does not belong to any of the classes tested for, 
in which case all processors report failure.) As in example 1.2, when fewer processors than 
classes are available, several tests are performed by each processor; here, however, in 
reporting success, a processor must also provide the class to which the object 
belongs. 

The preceding examples show that the class of MISD computers could be 
extremely useful in many applications. I t  is also apparent that the kind of com- 
putations that can be carried out efficiently on  these computers are of a rather 
specialized nature. For most applications, MISD computers would be rather 
awkward to  use. Parallel computers that are more flexible, and hence suitable for a 
wide range of problems, are described in the next two sections. 

1.2.3 SlM D Computers 

In  this class, a parallel computer consists of N identical processors, as shown in Fig. 
1.3. 

Each of the N processors possesses its own local memory where it can store both 
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Figure 1.3 SIMD computer. 

programs and data. All processors operate under the control of a single instruction 
stream issued by a central control unit. Equivalently, the N processors may be 
assumed to hold identical copies of a single program, each processor's copy being 
stored in its local memory. There are N data streams, one per processor. 

The processors operate synchronously: At each step, all processors execute the 
same instruction, each on a different datum. The instruction could be a simple one 
(such as adding or comparing two numbers) or a complex one (such as merging two 
lists of numbers). Similarly, the datum may be simple (one number) or complex (several 
numbers). Sometimes, it may be necessary to have only a subset of the processors 
execute an instruction. This information can be encoded in the instruction itself, 
thereby telling a processor whether it should be active (and execute the instruction) or 
inactive (and wait for the next instruction). There is a mechanism, such as a global 
clock, that ensures lock-step operation. Thus processors that are inactive during an 
instruction or those that complete execution of the instruction before others may stay 
idle until the next instruction is issued. The time interval between two instructions 
may be fixed or may depend on the instruction being executed. 

In most interesting problems that we wish to solve on an SIMD computer, it is 
desirable for the processors to be able to communicate among themselves during the 
computation in order to exchange data or intermediate results. This can be achieved 
in two ways, giving rise to two subclasses: SIMD computers where communication is 
through a shared memory and those where it is done via an interconnection network. 
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1.2.3.1 Shared -Memory (SM) SIMD Computers. This class is also 
known in the literature as the Parallel Random-Access Machine (PRAM) model. 
Here, the N processors share a common memory that they use in the same way a 
group of people may use a bulletin board. When two processors wish to communicate, 
they do so through the shared memory. Say processor i wishes to pass a number to 
processor j. This is done in two steps. First, processor i writes the number in the 
shared memory at a given location known to processor j. Then, processor j reads the 
number from that location. 

During the execution of a parallel algorithm, the N processors gain access to the 
shared memory for reading input data, for reading or writing intermediate results, and 
for writing final results. The basic model allows all processors to gain access to the 
shared memory simultaneously if the memory locations they are trying to read from 
or write into are different. However, the class of shared-memory SIMD computers can 
be further divided into four subclasses, according to whether two or more processors 
can gain access to the same memory location simultaneously: 

(i) Exclusive-Read, Exclusive-Write (EREW) SM SIMD Computers. Access 
to memory locations is exclusive. In other words, no two processors are allowed 
simultaneously to read from or write into the same memory location. 

(ii) Concurrent-Read, Exclusive-Write (CREW) SM SIMD Computers. 
Multiple processors are allowed to read from the same memory location but the right 
to write is still exclusive: No two processors are allowed to write into the same 
location simultaneously. 

(iii) Exclusive-Read, Concurrent-Write (ERCW) SM SIMD Computers. 
Multiple processors are allowed to write into the same memory location but read 
accesses remain exclusive. 

(iv) Concurrent-Read, Concurrent-Write (CRCW) SM SIMD Computers. 
Both multiple-read and multiple-write privileges are granted. 

Allowing multiple-read accesses to the same address in memory should in 
principle pose no problems (except perhaps some technological ones to be discussed 
later). Conceptually, each of the several processors reading from that location makes a 
copy of the location's contents and stores it in its own local memory. 

With multiple-write accesses, however, difficulties arise. If several processors are 
attempting simultaneously to store (potentially different) data at a given address, 
which of them should succeed? In other words, there should be a deterministic way of 
specifying the contents of that address after the write operation. Several policies have 
been proposed to resolve such write conflicts, thus further subdividing classes (iii) and 
(iv). Some of these policies are 

(a) the smallest-numbered processor is allowed to write, and access is denied to all 
other processors; 

(b) all processors are allowed to write provided that the quantities they are 
attempting to store are equal, otherwise access is denied to all processors; and 

(c) the sum of all quantities that the processors are attempting to write is stored. 
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A typical representative of the class of problems that  can be solved o n  parallel 
computers of the  SM SIMD family is given in the following example. 

Example 1.4 

Consider a very large computer file consisting of n distinct entries. We shall assume for 
simplicity that the file is not sorted in any order. (In fact, it may be the case that keeping 
the file sorted at  all times is impossible or simply inefficient.) Now suppose that it is 
required to determine whether a given item x is present in the file in order to perform a 
standard database operation, such as read, update, or delete. On a conventional (i.e., 
SISD) computer, retrieving x requires n steps in the worst case where each step is a 
comparison between x and a file entry. The worst case clearly occurs when x is either 
equal to the last entry or not equal to any entry. On the average, of course, we expect to 
do  a little better: If the file entries are distributed uniformly over a given range, then half 
as many steps are required to retrieve x. 

The job can be done a lot faster on an EREW SM SIMD computer with N 
processors, where N < n. Let us denote the processors by P I ,  P,, . . . , P,.' T o  begin with, 
we need to let all the processors know the value of x. This can be done using an operation 
known as broadcasting: 

1. P ,  reads x and communicates it to P,. 

2. Simultaneously, P ,  and P ,  communicate x to P, and P,, respectively. 
3. Simultaneously, P I ,  P,, P,, and P,  communicate x to P,, P,, P,, and P,, 

respectively, 
and so on. 

The process continues until all processors obtain x. As the number of processors that 
receive x doubles at each stage, broadcasting x to all N processors requires log N steps2 
A formal statement of the broadcasting process is given in section 2.5.1. 

Now the file to be searched for x is subdivided into subfiles that are searched 
simultaneously by the processors: P ,  searches the first n/N elements, P,  searches the 
second n/N elements, and so on. Since all subfiles are of the same size, n/N steps are 
needed in the worst case to answer the query about x. In total, therefore, this parallel 
algorithm requires log N + n/N steps in the worst case. On the average, we can do  better 
than that (as was done with the SISD computer): A location F holding a Boolean value 
can be set aside in the shared memory to signal that one of the processors has found the 
item searched for and, consequently, that all other processors should terminate their 
search. Initially, F is set to false. When a processor finds x in its subfile, it sets F to true. 
At every step of the search all processors check F to see if it is true and stop if this is the 
case. Unfortunately, this modification of the algorithm does not come for free: log N steps 
are needed to broadcast the value of F each time the processors need it. This leads to a 
total of log N + (n/N)log N steps in the worst case. It is possible to improve this behavior 
by having the processors either check the value of F at every (log N)th step, or broadcast 
it (once true) concurrently with the search process. 

'Note that the indexing schemes used for processors in this chapter are for illustration only. Thus, 
for example, in subsequent chapters a set of N processors may be numbered 1 to N, or 0 to N - 1, 
whichever is more convenient. 

2All logarithms in this book are to the base 2, unless otherwise indicated. If N is not a power of 2, 
then log N is always rounded to the next higher integer. Similarly, and unless otherwise stated, we shall 
assume that all real quantities-such as those arising from computing square roots and ratios-are 
rounded appropriately. 
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In order to truly exploit this early termination trick without increasing the worst- 
case running time, we need to use a more powerful model, namely, a CREW SM SIMD 
computer. Since concurrent-read operations are allowed, it takes one step for all 
processors to obtain x initially and one step for them to read F each time it is needed. 
This leads to a worst case of n/N steps. 

Finally we note that an even more powerful model is needed if we remove the 
assumption made at the outset of this example that all entries in the file are distinct. 
Typically, the file may represent a textual database with hundreds of thousands of 
articles, each containing several thousand words; It may be necessary to search such a file 
for a given word x. In this case, more than one entry may be equal to x, and hence more 
than one processor may need to report success at the same time. This means that two or 
more processors will attempt to write into location F simultaneously, a situation that can 
only be handled by a CRCW SM SIMD computer. 

Simulating Multiple Accesses on an EREW Computer. The EREW 
SM SIMD model of a parallel computer is unquestionably the weakest of the four 
subclasses of the shared-memory approach, as it restricts its access to a given address 
to one processor at a time. An algorithm for such a computer must be specifically 
designed to exclude any attempt by more than one processor to read from or write 
into the same location simultaneously. The model is sufficiently flexible, however, to 
allow the simulation of multiple accesses at the cost of either increasing the space 
and/or the time requirements of an algorithm. 

Such a simulation may be desirable for one of two reasons: 

1. The parallel computer available belongs to the EREW class and thus the only 
way to execute a CREW, ERCW, or CRCW algorithm is through simulation or 

2. parallel computers of the CREW, ERCW, and CRCW models with a very large 
number of processors are technologically impossible to build at all. Indeed, the 
number of processors that can be simultaneously connected to a memory 
location is limited 

(i) not only by the physical size of the device used for that location, 
(ii) but also by the device's physical properties (such as voltage). 

Therefore concurrent access to memory by an arbitrary number of processors may not 
be realizable in practice. Again in this case simulation is the only resort to implement 
an algorithm developed in theory to include multiple accesses. 

(i) N Multiple Accesses. Suppose that we want to run a parallel algorithm 
involving multiple accesses on an EREW SM SIMD computer with N processors 
PI, P,, . . . , P,. Suppose further that every multiple access means that all N processors 
are attempting to read from or write into the same memory location A. We can ' 

simulate multiple-read operations on an EREW computer using a broadcast pro- 
cedure as explained in example 1.4. This way, A can be distributed to all processors in 
log N steps. Similarly, a procedure symmetrical to broadcasting can be used to handle 
multiple-write operations. Assume that the N processors are allowed to write in A 
simultaneously only if they are all attempting to store the same value. Let the value 
that Pi is attempting to write be denoted by a,, 1 < i < N. The procedure to store in A 
works as follows: 
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1. For 1 < i < N/2, if a, and ai+,/, are equal, then Pi sets a secondary variable bi to 
true; otherwise b, is set to false. 

2. For 1 < i < N/4, if bi and b,+,/, are both true and a, = a,+Ni4, then Pi sets bi to 
true; otherwise bi is set to false. 

And so on. After log N steps, PI knows whether all the ai are equal. If they are, it 
proceeds to store a ,  in A; otherwise no writing is allowed to take place. This store 
procedure is the subject of problem 2.13. 

The preceding discussion indicates that multiple-read and multiple-write 
operations by all processors can be simulated on the EREW model. If every step of an 
algorithm involves multiple accesses of this sort, then in the worst case such a 
simulation increases the number of steps the algorithm requires by a factor of log N. 

(ii) m out of N Multiple Accesses. We now turn to the more general case 
where a multiple read from or a multiple write into a memory location does not 
necessarily implicate all processors. In a typical algorithm, arbitrary subsets of 
processors may be each attempting to gain access to different locations, one location 
per subset. Clearly the procedures for broadcasting and storing described in (i) no 
longer work in this case. Another approach is needed in order to simulate such an 
algorithm on the EREW model with N processors. Say that the algorithm requires a 
total of M locations of shared memory. The idea here is to associate with each of the 
M locations another 2N - 2 locations. Each of the M locations is thought of as the 
root of a binary tree with N leaves (the tree has depth log N and a total of 2N - 1 
nodes). The leaves of each tree are numbered 1 through N and each is associated with 
the processor with the same number. 

When m processors, m < N, need to gain access to location A, they can put their 
requests at the leaves of the tree rooted at A. For a multiple read from location A, the 
requests trickle (along with the processors) up the tree until one processor reaches the 
root and reads from A. The value of A is then sent down the tree to all the processors 
that need it. Similarly, for a multiple-write operation, the processors "carry" the 
requests up the tree in the manner described in (i) for the store procedure. After log N 
steps one processor reaches the root and makes a decision about writing. Going up 
and down the tree of memory locations requires 2 log N steps. The formal description 
of these simulations, known as multiple broadcasting and multiple storing, respectively, 
is the subject of section 3.4 and problem 3.33. 

Therefore, the price paid for running a parallel algorithm with arbitrary multiple 
accesses is a (2N - 2)-fold increase in memory requirements. Furthermore, the 
number of steps is augmented by a factor on the order of log N in the worst case. 

Feasibility of  the Shared -Memory Model. The SM SIMD computer 
is a fairly powerful model of computation, even in its weakest manifestation, the 
EREW subclass. Indeed, the model allows all available processors to gain access to 
the shared memory simultaneously. It is sometimes said that the model is unrealistic 
and no parallel computer based on that model can be built. The argument goes as 
follows. When one processor needs to gain access to a datum in memory, some 
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circuitry is needed to create a path from that processor to the location in memory 
holding that datum. The cost of such circuitry is usually expressed as the number of 
logical gates required to decode the address provided by the processor. If the memory 
consists of M locations, then the cost of the decoding circuitry may be expressed as 
f (M) for some cost function f: If N processors share that memory as in the SM SIMD 
model, then the cost of the decoding circuitry climbs to N x f (M). For large N and M 
this may lead to prohibitively large and expensive decoding circuitry between the 
processors and the memory. 

There are many ways to mitigate this difficulty. All approaches inevitably lead to 
models weaker than the SM SIMD computer. Of course, any algorithm for the latter 
may be simulated on a weaker model at the cost of more space and/or computational 
steps. By contrast, any algorithm for a weaker model runs on the SM SIMD machine 
at no additional cost. 

One way to reduce the cost of the decoding circuitry is to divide the shared 
memory into R blocks, say, of M/R locations each. There are N + R two-way lines 
that allow any processor to gain access to any memory block at any time. However, no 
more than one processor can read from or write into a block simultaneously. This 
arrangement is shown in Fig. 1.4 for N = 5 and R = 3. The circles at the intersections 
of horizontal and vertical lines represent small (relatively inexpensive) switches. When 

Figure 1.4 Dividing a shared memory into blocks. 
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the ith processor wishes to gain access to the jth memory block, it sends its request 
along the ith horizontal line to the jth switch, which then routes it down the jth 
vertical line to the jth memory block. Each memory block possesses one decoder 
circuit to determine which of the MIR locations is needed. Therefore, the total cost of 
decoding circuitry is R x f (MIR). To this we must add of course the cost of the N x R 
switches. Another approach to obtaining a weaker version of the SM SIMD is 
described in the next section. 

1.2.3.2 Interconnection -Network S IM D Computers. We concluded 
section 1.2.3.1 by showing how the SM SIMD model can be made more feasible by 
dividing the memory into blocks and making access to these blocks exclusive. It is 
natural to think of extending this idea to obtain a slightly more powerful model. Here 
the M locations of the shared memory are distributed among the N processors, each 
receiving MIN locations. In addition every pair of processors are connected by a two- 
way line. This arrangement is shown in Fig. 1.5 for N = 5. At any step during the 
computation, processor Pi can receive a datum from P j  and send another one to P, (or 
to Pj). Consequently, each processor must contain 

(i) a circuit of cost f (N  - 1) capable of decoding a log(N - 1)-bit address-this 
allows the processor to select one of the other N - 1 processors for communi- 
cating; and 

(ii) a circuit of cost f (M IN )  capable of decoding a log(M/N)-bit address provided 
by another processor. 

This model is therefore more powerful than the R-block shared memory, as it allows 
instantaneous communication between any pair of processors. Several pairs can thus 
communicate simultaneously (provided, of course, no more than one processor 
attempts to send data to or expects to receive data from another processor). Thus, 

I PROCESSOR 1 I 

Figure 1.5 
processors. 

Fully interconnected set of 
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potentially all processors can be busy communicating all the time, something that is 
not possible in the R-block shared memory when N > R. We now discuss a number of 
features of this model. 

(i) Price. The first question to ask is: What is the price paid to fully 
interconnect N processors? There are N - 1 lines leaving each processor for a total of 
N(N - 1)/2 lines. Clearly, such a network is too expensive, especially for large values 
of N. This is particularly true if we note that with N processors the best we can hope 
for is an N-fold reduction in the number of steps required by a sequential algorithm, as 
shown in section 1.3.1.3. 

(ii) Feasibility. Even if we could afford such a high price, the model is 
unrealistic in practice, again for large values of N. Indeed, there is a limit on the 
number of lines that can be connected to a processor, and that limit is dictated by the 
actual physical size of the processor itself. 

(iii) Relation to SM SIMD. Finally, it should be noted that the fully 
interconnected model as described is weaker than a shared-memory computer for the 
same reason as the R-block shared memory: No more than one processor can gain 
access simultaneously to the memory block associated with another processor. 
Allowing the latter would yield a cost of NZ x f (MIN), which is about the same as for 
the SM SIMD (not counting the quadratic cost of the two-way lines): This clearly 
would defeat our original purpose of getting a more feasible machine! 

Simple Networks for SZMD Computers. It is fortunate that in most appli- 
cations a small subset of all pairwise connections is usually sufficient to obtain a good 
performance. The most popular of these networks are briefly outlined in what follows. 
Keep in mind that since two processors can communicate in a constant number of 
steps on a SM SIMD computer, any algorithm for an interconnection-network SIMD 
computer can be simulated on the former model in no more steps than required to 
execute it by the latter. 

(i) Linear Array. The simplest way to interconnect N processors is in the form 
of a one-dimensional array, as shown in Fig. 1.6 for N = 6. Here, processor Pi is linked 
to its two neighbors Pi-, and Pi+, through a two-way communication line. Each of 
the end processors, namely, P, and P,, has only one neighbor. 

(ii) Two-Dimensional Array. A two-dimensional network is obtained by 
arranging the N processors into an m x m array, where m = Nli2, as shown in Fig. 1.7 
for m = 4. The processor in row j and column k is denoted by P(j, k), where 
0 < j < m - 1 and 0 < k < m - 1. A two-way communication line links P(j, k) to its 
neighbors P ( j  + 1, k), P ( j  - 1, k), P(j, k + I), and P(j, k - 1). Processors on the 

Figure 1.6 Linear array connection. 
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Figure 1.7 Two-dimensional array (or 
mesh) connection. 

boundary rows and columns have fewer than four neighbors and hence fewer 
connections. This network is also known as the mesh. 

Both the one- and two-dimensional arrays possess an interesting property: All 
the lines in the network have the same length. The importance of this feature, not 
enjoyed by other interconnections studied in this book, will become apparent when 
we analyze the time required by a network to solve a problem (see section 1.3.4.2). 

(iii) Tree Connection. In this network, the processors form a complete binary 
tree. Such a tree has d levels, numbered 0 to d - 1, and N  = 2* - 1 nodes each of 
which is a processor, as shown in Fig. 1.8 for d = 4. Each processor at level i is 
connected by a two-way line to its parent at level i + 1 and to its two children at level 
i - 1. The root processor (at level d - 1) has no parent and the leaves (all of which are 
at level 0) have no children. In this book, the terms tree connection (or tree-connected 
computer) are used to refer to such a tree of processors. 

(iv) Perfect Shuffle Connection. Let N  processors Po, PI , .  . . , P, - ,  be 
available where N is a power of 2. In the perfect shufle interconnection a one-way line 
links Pi to Pi, where 

for 0 < i < N / 2  - 1, ' = {:: + 1 - N for N/2  < i < N  - 1, 

as shown in Fig. 1.9 for N  = 8. Equivalently, the binary representation of j is obtained 
by cyclically shifting that of i one position to the left. 

In addition to these shufle links, two-way lines connecting every even-numbered 
processor to its successor are sometimes added to the network. These connections, 
called the exchange links, are shown as broken lines in Fig. 1.9. In this case, the 
network is known as the shufle-exchange connection. 
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Figure 1.9 Perfect shuffle connection. 

(v) Cube Connection. Assume that N = 2q for some q 2 1 and let N pro- 
cessors be available Po, p , , .  . . , P,- ,. A q-dimensional cube (or hypercube) is obtained 
by connecting each processor to q neighbors. The q neighbors P j  of Pi are defined as 
follows: The binary representation of j is obtained from that of i by complementing a 
single bit. This is illustrated in Fig. 1.10 for q = 3. The indices of Po, P , ,  . . . , P, are 
given in binary notation. Note that each processor has three neighbors. 

There are several other interconnection networks besides the ones just de- 
scribed. The decision regarding which of these to use largely depends on the 
application and in particular on such factors as the kinds of computations to be 
performed, the desired speed of execution, and the number of processors available. We 
conclude this section by illustrating a parallel algorithm for an SIMD computer that 
uses an interconnection network. 

Example 1.5 

Assume that the sum of n numbers x,, x,, . . . , x, needs to be computed. There are n - 1 
additions involved in this computation, and a sequential algorithm running on a 
conventional (i.e., SISD) computer will require n steps to complete it, as mentioned in 
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Figure 1.10 Cube connection. 

example 1.1. Using a tree-connected SIMD computer with log n levels and n/2  leaves, 
the job can be done in log n steps as shown in Fig. 1.1 1 for n = 8. 

The original input is reczived at  the leaves, two numbers per leaf. Each leaf adds its 
inputs and sends the result to its parent. The process is now repeated at each subsequent 
level: Each processor receives two inputs from its children, computes their sum, and sends 
it to its parent. The final result is eventually produced by the root. Since at each level ail 
the processors operate in parallel, the sum is computed in log n steps. This compares very 
favorably with the sequential computation. 

The improvement in speed is even more dramatic when m sets, each of n numbers, 
are available and the sum of each set is to be computed. A conventional machine requires 
mn steps in this case. A naive application of the parallel algorithm produces them sums in 

INPUT 
Figure 1.11 Adding eight numbers on a 
processor tree. 
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m(log n )  steps. Through a process known as pipelining, however, we can do significantly 
better. Notice that once a set has been processed by the leaves, they are free to receive the 
next one. The same observation applies to all processors at higher levels. Hence each of 
the m - 1 sets that follow the initial one can be input to the leaves one step after their 
predecessor. Once the first sum exits from the root, a new sum is produced in the next 
step. The entire process therefore takes log n + m - 1 steps. 

It should be clear from our discussion so far that SIMD computers are 
considerably more versatile than those conforming to the MISD model. Numerous 
problems covering a wide variety of applications can be solved by parallel algorithms 
on SIMD computers. Also, as shown by examples 1.4 and 1.5, algorithms for these 
computers are relatively easy to design, analyze, and implement. In one respect, 
however, this class of problems is restricted to those that can be subdivided into a set 
of identical subproblems all of which are then solved simultaneously by the same set of 
instructions. Obviously, there are many computations that do not fit this pattern. In 
some problems it may not be possible or desirable to execute all instructions 
synchronously. Typically, such problems are subdivided into subproblems that are 
not necessarily identical and cannot or should not be solved by the same set of 
instructions. To solve these problems, we turn to the class of MIMD computers. 

1.2.4 MIMD Computers 

This class of computers is the most general and most powerful in our paradigm of 
parallel computation that classifies parallel computers according to whether the 
instruction and/or the data streams are duplicated. Here we have N processors, N 
streams of instructions, and N streams of data, as shown in Fig. 1.12. The processors 
here are of the type used in MISD computers in the sense that each possesses its own 
control unit in addition to its local memory and arithmetic and logic unit. This makes 
these processors more powerful than the ones used for SIMD computers. 

Each processor operates under the control of an instruction stream issued by its 
control unit. Thus the processors are potentially all executing different programs on 
different data while solving different subproblems of a single problem. This means that 
the processors typically operate asynchronously. As with SIMD computers, commu- 
nication between processors is performed through a shared memory or an intercon- 
nection network. MIMD computers sharing a common memory are often referred to 
as multiprocessors (or tightly coupled machines) while those with an interconnection 
network are known as multicomputers (or loosely coupled machines). 

Since the processors on a multiprocessor computer share a common memory, 
the discussion in section 1.2.3.1 regarding the various modes of concurrent memory 
access applies here as well. Indeed, two or more processors executing an asynchronous 
algorithm may, by accident or by design, wish to gain access to the same memory 
location. We can therefore talk of EREW, CREW, ERCW, and CRCW SM MIMD 
computers and algorithms, and various methods should be established for resolving 
memory access conflicts in models that disallow them. 
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Figure 1.12 MIMD computer. 
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Multicomputers are sometimes referred to as distributed systems. The distinction 
is usually based on the physical distance separating the processors and is therefore 
often subjective. A rule of thumb is the following: If all the processors are in close 
proximity of one another (they are all in the same room, say), then they are a 
multicomputer; otherwise (they are in different cities, say) they are a distributed 
system. The nomenclature is relevant only when it comes to evaluating parallel 
algorithms. Because processors in a distributed system are so far apart, the number of 
data exchanges among them is significantly more important than the number of 
computational steps performed by any of them. 

The following example examines an application where the great flexibility of 
MIMD computers is exploited. 
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Computer programs that play games of strategy, such as chess, do so by generating and 
searching so-called game trees. The root of the tree is the current game configuration or 
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number of levels. Each leaf position is now assigned a value representing its "goodness" 
from the program's point of view. The program then determines the path leading to the 
best position it can reach assuming that the opponent plays a perfect game. Finally, the 
original move on this path (i.e., an edge leaving the root) is selected for the program. 

As there are typically several moves per position, game trees tend to be very large. 
In order to cut down on the search time, these trees are generated as they are searched. 
The idea is to explore the tree using the depth-first search method. From the given root 
position, paths are created and examined one by one. First, a complete path is built from 
the root to a leaf. The next path is obtained by backing up from the current leaf to a 
position all of whose descendants have not yet been explored and building a new path. 
During the generation of such a path it may happen that a position is reached that, based 
on information collected so far, definitely leads to leaves that are no better than the ones 
already examined. In this case the program interrupts its search along that path and all 
descendants of that position are ignored. A cutoff is said to have occurred. Search can 
now resume along a new path. 

So far we have described the search procedure as it would be executed sequentially. 
One way to implement it on an MIMD computer would be to distribute the subtrees of 
the root among the processors and let as many subtrees as possible be explored in 
parallel. During the search the processors may exchange various pieces of information. 
For example, one processor may obtain from another the best move found so far: This 
may lead to further cutoffs. Another datum that may be communicated is whether a 
processor has finished searching its subtree(s). If there is a subtree that is still under 
consideration, then an idle processor may be assigned the job of searching part of that 
subtree. 

This approach clearly does not lend itself to implementation on an SIMD 
computer as the sequence of operations involved in the search is not predictable in 
advance. At any given point, the instruction being executed varies from one processor to 
another: While one processor may be generating a new position, a second may be 
evaluating a leaf, a third may be executing a cutoff, a fourth may be backing up to start a 
new path, a fifth may be communicating its best move, a sixth may be signaling the end of 
its search, and so on. 

1.2.4.1 Programming MIMD Computers. As mentioned earlier, the 
MIMD model of parallel computation is the most general and powerful possible. 
Computers in this class are used to solve in parallel those problems that lack the 
regular structure required by the SIMD model. This generality does not come for free: 
Asynchronous algorithms are difficult to design, evaluate, and implement. In order to 
appreciate the complexity involved in programming MIMD computers, it is import- 
ant to distinguish between the notion of a process and that of a processor. An 
asynchronous algorithm is a collection of processes some or all of which are executed 
simultaneously on a number of available processors. Initially, all processors are free. 
The parallel algorithm starts its execution on an arbitrarily chosen processor. Shortly 
thereafter it creates a number of computational tasks, or processes, to be performed. A 
process thus corresponds to a section of the algorithm: There may be several processes 
associated with the same algorithm section, each with a different parameter. 

Once a process is created, it must be executed on a processor. If a free processor 



20 Introduction Chap. 1 

is available, the process is assigned to the processor that performs the computations 
specified by the process. Otherwise (if no free processor is available), the process is 
queued and waits for a processor to be free. 

When a processor completes execution of a process, it becomes free. If a process 
is waiting to be executed, then it can be assigned to the processor just freed. Otherwise 
(if no process is waiting), the processor is queued and waits for a process to be created. 

The order in which processes are executed by processors can obey any policy 
that assigns priorities to processes. For example, processes can be executed in a first- 
in-first-out or in a last-in-first-out order. Also, the availability of a processor is 
sometimes not sufficient for the processor to be assigned a waiting process. An 
additional condition may have to be satisfied before the process starts. Similarly, if a 
processor has already been assigned a process and an unsatisfied condition is 
encountered during execution, then the processor is freed. When the condition for 
resumption of that process is later satisfied, a processor (not necessarily the original 
one) is assigned to it. These are but a few of the scheduling problems that characterize 
the programming of multiprocessors. Finding efficient solutions to these problems is 
of paramount importance if MIMD computers are to be considered useful. Note that 
none of these scheduling problems arise on the less flexible but easier to program 
SIMD computers. 

1.2.4.2 Spec ia l-Purpose  Arch i tectures.  In theory, any parallel al- 
gorithm can be executed efficiently on the MIMD model. The latter can therefore be 
used to build parallel computers with a wide variety of applications. Such computers 
are said to have a general-purpose architecture. In practice, by contrast, it is quite 
sensible in many applications to assemble several processors in a configuration 
specifically designed for the problem at hand. The result is a parallel computer well 
suited for solving that problem very quickly but that cannot in general be used for any 
other purpose. Such a computer is said to have a special-purpose architecture. With a 
particular problem in mind, there are several ways to design a special-purpose parallel 
computer. For example, a collection of specialized or very simple processors may be 
used in one of the standard networks such as the mesh. Alternatively, one may 
interconnect a number of standard processors in a custom geometry. These two 
approaches may also be combined. 

Example 1.7 

Black-and-white pictures are stored in computers in the form of two-dimensional arrays. 
Each array entry represents a picture element, or pixel. A 0 entry represents a white pixel, 
a 1 entry a black pixel. The larger the array, the more pixels we have, and hence the higher 
the resolution, that is, the precision with which the picture is represented. Once a picture 
is stored in that way, it can be processed, for example, to remove any noise that may be 
present, increase the sharpness, fill in missing details, and determine contours of objects. 

Assume that it is desired to execute a very simple noise removal algorithm that gets 
rid of "salt" and "pepper" in pictures, that is, sparse white dots on a black background 
and sparse black dots on a white background, respectively. Such an algorithm can be 
implemented very efficiently on a set of very simple processors in a two-dimensional 
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configuration where each processor is linked to its eight closest neighbors (i.e., the mesh 
with diagonal connections in addition to horizontal and vertical ones). Each processor 
corresponds to a pixel and stores its value. All the processors can now execute the 
following step in parallel: if a pixel is 0(1) and all its neighbors are 1(0), it changes its value 
to l(0). 

One final observation is in order in concluding this section. Having studied a 
variety of approaches to building parallel computers, it is natural to ask: How is one 
to choose a parallel computer from among the available models? We already saw how 
one model can use its computational abilities to simulate an algorithm designed for 
another model. In fact, we shall show in the next section that one processor is capable 
of executing any parallel algorithm. This indicates that all the models of parallel 
computers are equivalent in terms of the problems that they can solve. What 
distinguishes one from another is the ease and speed with which it solves a particular 
problem. Therefore, the range of applications for which the computer will be used and 
the urgency with which answers to problems are needed are important factors in 
deciding what parallel computer to use. However, as with many things in life, the 
choice of a parallel computer is mostly dictated by economic considerations. 

1.3 ANALYZING ALGORITHMS 

This book is concerned with two aspects of parallel algorithms: their design and their 
analysis. A number of algorithm design techniques were illustrated in section 1.2 in 
connection with our description of the different models of parallel computation. The 
examples studied therein also dealt with the question of algorithm analysis. This refers 
to the process of determining how good an algorithm is, that is, how fast, how 
expensive to run, and how efficient it is in its use of the available resources. In this 
section we define more formally the various notions used in this book when analyzing 
parallel algorithms. 

Once a new algorithm for some problem has been designed, it is usually 
evaluated using the following criteria: running time, number of processors used, and 
cost. Besides these standard metrics, a number of other technology-related measures 
are sometimes used when it is known that the algorithm is destined to run on a 
computer based on that particular technology. 

1.3.1 Running Time 

Since speeding up computations appears to be the main reason behind our interest in 
building parallel computers, the most important measure in evaluating a parallel 
algorithm is therefore its running time. This is defined as the time taken by the 
algorithm to solve a problem on a parallel computer, that is, the time elapsed from the 
moment the algorithm starts to the moment it terminates. If the various processors do 
not all begin and end their computation simultaneously, then the running time is 
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equal to the time elapsed between the moment the first processor to begin computing 
starts and the moment the last processor to end computing terminates. 

1.3.1.1 Counting Steps. Before actually implementing an algorithm 
(whether sequential or parallel) on a computer, it is customary to conduct a 
theoretical analysis of the time it will require to solve the computational problem at 
hand. This is usually done by counting the number of basic operations, or steps, 
executed by the algorithm in the worst case. This yields an expression describing the 
number of such steps as a function of the input size. The definition of what constitutes 
a step varies of course from one theoretical model of computation to another. 
Intuitively, however, comparing, adding, or swapping two numbers are commonly 
accepted basic operations in most models. Indeed, each of these operations requires a 
constant number of time units, or cycles, on a typical (SISD) computer. The running 
time of a parallel algorithm is usually obtained by counting two kinds of steps: 
computational steps and routing steps. A computational step is an arithmetic or logic 
operation performed on a datum within a processor. In a routing step, on the other 
hand, a datum travels from one processor to another via the shared memory or 
through the communication network. For a problem of size n, the parallel worst-case 
running time of an algorithm, a function of n, will be denoted by t(n). Strictly speaking, 
the running time is also a function of the number of processors. Since the latter can 
always be expressed as a function of n, we shall write t as a function of the size of the 
input to avoid complicating our notation. 

Example 1.8 

In example 1.4 we studied a parallel algorithm that searches a file with n entries on an N- 
processor EREW SM SIMD computer. The algorithm requires log N parallel steps to 
broadcast the value to be searched for and n/N comparison steps within each processor. 
Assuming that each step (broadcast or comparison) requires one time unit, we say that 
the algorithms runs in log N + n/N time, that is, t(n) = log N + n/N. 

In general, computational steps and routing steps do not necessarily require the 
same number of time units. A routing step usually depends on the distance between 
the processors and typically takes a little longer to execute than a computational step. 

1.3.1.2 Lower and Upper Bounds. Given a computational problem for 
which a new sequential algorithm has just been designed, it is common practice 
among algorithm designers to ask the following two questions: 

(i) Is it the fastest possible algorithm for the problem? 
(ii) If not, how does it compare with other existing algorithms for the same 

problem? 

The answer to the first question is usually obtained by comparing the number of 
steps executed by the algorithm to a known lower bound on the number of steps 
required to solve the problem in the worst case. 
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Example 1.9 

Say that we want to compute the product of two n x n matrices. Since the resulting 
matrix has n2 entries, at least this many steps are needed by any matrix multiplication 
algorithm simply to produce the output. 

Lower bounds, such as the one in example 1.9, are usually known as obvious or 
trivial lower bounds, as they are obtained by counting the number of steps needed 
during input and/or output. A more sophisticated lower bound is derived in the next 
example. 

Example 1.10 

The problem of sorting is defined as follows: A set of n numbers in random order is given; 
arrange the numbers in nondecreasing order. There are n ! possible permutations of the 
input and log n !  (i.e., on the order of n log n) bits are needed to distinguish among them. 
Therefore, in the worst case, any algorithm for sorting requires on the order of n log n 
steps at least to recognize a particular output. 

If the number of steps an algorithm executes in the worst case is equal to (or of 
the same order as) the lower bound, then the algorithm is the fastest possible and is 
said to be optimal. Otherwise, a faster algorithm may have to be invented, or it may be 
possible to improve the lower bound. In any case, if the new algorithm is faster than all 
known algorithms for the problem, then we say that it has established a new upper 
bound on the number of steps required to solve that problem in the worst case. 
Question (ii) is therefore always settled by comparing the running time of the new 
algorithm with the existing upper bound for the problem (established by the fastest 
previously known algorithm). 

Example 1.11 

To date, no algorithm is known for multiplying two n x n matrices in nZ steps. The 
standard textbook algorithm requires on the order of n3 operations. However, the upper 
bound on this problem is established at the time of this writing by an algorithm requiring 
on the order of nx operations at most, where x < 2.5. 

By contrast, several sorting algorithms exist that require on the order of at most 
n log n operations and are hence optimal. i3 

In the preceding discussion, we used the phrase "on the order of" to express 
lower and upper bounds. We now introduce some notation for that purpose. Let f (n) 
and g(n) be functions from the positive integers to the positive reals: 

(i) The function g(n) is said to be of order at least f (n), denoted a( f (n)), if there are 
positive constants c and no such that g(n) 2 cf (n) for all n 2 no. 

(ii) The function g(n) is said to be of order at most f (n), denoted O( f (n)), if there are 
positive constants c and no such that g(n) < cf (n) for all n 2 no. 

This notation allows us to concentrate on the dominating term in an expression 
describing a lower or upper bound and to ignore any multiplicative constants. 
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Example 1.12 

For matrix multiplication, the lower bound is R(n2)  and the upper bound O(n2.5).  For 
sorting, the lower bound is R(n log n) and the upper bound O(n log n). 

Our treatment of lower and upper bounds in this section has so far concentrated 
on sequential algorithms. Clearly, the same general ideas also apply to parallel 
algorithms while taking two additional factors into consideration: 

(i) the model of parallel computation used and 

(ii) the number of processors involved. 

Example 1.13 

An n x n mesh-connected SIMD computer (see Fig. 1.7) is used to compute the sum of n2 

numbers. Initially, there is one number per processor. Processor P(n - 1, n - 1 )  is to 
produce the output. Since the number initially in P(0,O) has to be part of the sum, it must 
somehow find its way to P(n - 1, n - 1). This requires at least 2(n - 1 )  routing steps. 
Thus the lower bound on computing the sum is n ( n )  steps. 

These ideas are further elaborated on in the following section. 

1.3.1.3 Speedup. In evaluating a parallel algorithm for a given problem, it 
is quite natural to do it in terms of the best available sequential algorithm for that 
problem. Thus a good indication of the quality of a parallel algorithm is the speedup it 
produces. This is defined as 

Speedup = 

worst-case running time of fastest known sequential algorithm for problem 
worst-case running time of parallel algorithm 

Clearly, the larger the speedup, the better the parallel algorithm. 

Example 1.14 

In example 1.4, a file of n entries is searched by an algorithm running on a CREW SM 
SIMD computer with N processors in O(n /N)  time. Since the running time of the best 
possible sequential algorithm is O(n), the speedup is equal to O(N) .  

For most problems, the speedup achieved in this example is usually the largest 
that can be obtained with N processors. To see this, assume that the fastest sequential 
algorithm for a problem requires time TI ,  that a parallel algorithm for the same 
problem requires time T,, and that T,/T, > N. We now observe that any parallel 
algorithm can be simulated on a sequential computer. The simulation is carried out as 
follows: The (only) processor on the sequential computer executes the parallel steps 
serially by pretending that it is PI, then that it is P,,  and so on. The time taken by the 
simulation is the sum of the times taken to imitate all N processors, which is at most N 
times T,. But NT, < TI, implying that the simulation we have just performed solves 
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the problem faster than the sequential algorithm believed to be the fastest for that 
problem. This can mean one of two things: 

(i) The sequential algorithm with running time TI is not really the fastest possible 
and we have just found a faster one with running time NT,, thus improving the 
state of the art of sequential computing, or 

(ii) there is an error in our analysis! 

Suppose we know that a sequential algorithm for a given problem is indeed the 
fastest possible. Ideally, of course, one hopes to achieve the maximum speedup of N 
when solving such a problem using N processors operating in parallel. In practice, 
such a speedup cannot be achieved for every problem since 

(i) it is not always possible to decompose a problem into N tasks, each requiring 
(l/N)th of the time taken by one processor to solve the original problem, and 

(ii) in most cases the structure of the parallel computer used to solve a problem 
usually imposes restrictions that render the desired running time unattainable. 

Example 1.15 

The problem of adding n numbers discussed in example 1.5 is solved in O(1og n) time on a 
tree-connected parallel computer using n - 1 processors. Here the speedup is O(n/log n) 
since the best possible sequential algorithm requires O(n) additions. This speedup is far 
from the ideal n - 1 and is due to the fact that the n numbers were input at the leaves and 
the sum output at the root. Any algorithm for such a model necessarily requires Qlog n) 
time, that is, the time required for a single datum to propagate from input to output 
through all levels of the tree. 

1.3.2 Number of Processors 

The second most important criterion in evaluating a parallel algorithm is the number 
of processors it requires to solve a problem. It costs money to purchase, maintain, and 
run computers. When several processors are present, the problem of maintenance, in 
particular, is compounded, and the price paid to guarantee a high degree of reliability 
rises sharply. Therefore, the larger the number of processors an algorithm uses to 
solve a problem, the more expensive the solution becomes to obtain. For a problem of 
size n, the number of processors required by an algorithm, a function of n, will be 
denoted by p(n). Sometimes the number of processors is a constant independent of n. 

Example 1.16 

In example 1.5, the size of the tree depends on n, the number of terms to be added, and 
p(n) = n - 1. 

On the other hand, in example 1.4, N, the number of processors on the shared- 
memory computer, is in no way related to n, the size of the file to be searched (except for 
the fact that N < n). Nevertheless, given a value of n, it is possible to express N in terms of 
n as follows: N = nx where 0 < x < 1. Thus p(n) = nx. 
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1.3.3 Cost 

The cost of a parallel algorithm is defined as the product of the previous two measures; 
hence 

Cost = parallel running time x number of processors used. 

In other words, cost equals the number of steps executed collectively by all 
processors in solving a problem in the worst case. This definition assumes that all 
processors execute the same number of steps. If this is not the case, then cost is an 
upper bound on the total number of steps executed. For a problem of size n, the cost of 
a parallel algorithm, a function of n, will be denoted by c(n). Thus c(n) = p(n) x t(n). 

Assume that a lower bound is known on the number of sequential operations 
required in the worst case to solve a problem. If the cost of a parallel algorithm for 
that problem matches this lower bound to within a constant multiplicative factor, 
then the algorithm is said to be cost optimal. This is because any parallel algorithm can 
be simulated on a sequential computer, as described in section 1.3.1. If the total 
numbers of steps executed during the simulation is equal to the lower bound, then this 
means that, when it comes to cost, this parallel algorithm cannot be improved upon as 
it executes the minimum number of steps possible. It may be possible, of course, to 
reduce the running time of a cost-optimal parallel algorithm by using more processors. 
Similarly, we may be able to use fewer processors, while retaining cost optimality, if we 
are willing to settle for a higher running time. 

A parallel algorithm is not cost optimal if a sequential algorithm exists whose 
running time is smaller than the parallel algorithm's cost. 

Example 1.17 

In example 1.4, the algorithm for searching a file with n entries on an N-processor CREW 
SM SIMD computer has a cost of 

This cost is optimal since no randomly ordered file of size n can be searched for a 
particular value in fewer than n steps in the worst case: One step is needed to compare 
each entry with the given value. 

In example 1.5, the cost of adding n numbers on an (n - 1)-processor tree is 
(n - 1) x O(1ogn). This cost is not optimal since we know how to add n numbers 
optimally using O(n) sequential additions. 

We note in passing that the preceding discussion leads to a method for obtaining 
model-independent lower bounds on parallel algorithms. Let Q(T(n)) be a lower 
bound on the number of sequential steps required to solve a problem of size n. Then 
O(T(n) /N)  is a lower bound on the running time of any parallel algorithm that uses N 
processors to solve that problem. 

Example 1.18 

Since Qnlogn) steps is a lower bound on any sequential sorting algorithm, the 
equivalent lower bound on any parallel algorithm using n processors is n(log n). 
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When no optimal sequential algorithm is known for solving a problem, the 
eflciency of a parallel algorithm for that problem is used to evaluate its cost. This is 
defined as follows: 

Efficiency = 

worst-case running time of fastest known sequential algorithm for problem 
cost of parallel algorithm 

Usually, efficiency < 1; otherwise a faster sequential algorithm can be obtained from 
the parallel one! 

Example 1.19 

Let the worst-case running time of the fastest sequential algorithm to multiply two n x n 
matrices be 0(n2.') time units. The efficiency of a parallel algorithm that uses n2 

processors to solve the problem in O(n) time is O(n2.')/0(n3). 

Finally, let the cost of a parallel algorithm for a given probleni match the 
running time of the fastest existing sequential algorithm for the same problem. 
Furthermore, assume that it is not known whether the sequential algorithm is 
optimal. In this case, the status of the parallel algorithm with respect to cost 
optimality is unknown. Thus in example 1.19, if the parallel algorithm had a cost of 
O(n29, then its cost optimality would be an open question. 

1.3.4 Other Measures 

A digital computer can be viewed as a large collection of interconnected logical gates. 
These gates are built using transistors, resistors, and capacitors. In today's computers, 
gates come in packages called chips. These are tiny pieces of semiconductor material 
used to fabricate logical gates and the wires connecting them. The number of gates on 
a chip determines the level of integration being used to build the circuit. One particular 
technology that appears to be linked to future successes in parallel computing is Very 
Large Scale Integration (VLSI). Here, nearly a million logical gates can be located on 
a single 1-cm2 chip. The chip is thus able to house a number of processors, and several 
such chips may be assembled to build a powerful parallel computer. When evaluating 
parallel algorithms for VLSI, the following criteria are often used: processor area, wire 
length, and period of the circuit. 

1.3.4.1 Area. If several processors are going to share the "real estate" on a 
chip, the area needed by the processors and wires connecting them as well as the 
interconnection geometry determine how many processors the chip will hold. 
Alternatively, if the number of processors per chip is fixed in advance, then the size of 
the chip itself is dictated by the total area the processors require. If two algorithms 
take the same amount of time to solve a problem, then the one occupying less area 
when implemented as a VLSI circuit is usually preferred. Note that when using the 
area as a measure of the goodness of a parallel algorithm, we are in fact using the 
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criterion in section 1.3.2, namely, the number of processors needed by the algorithm. 
This is because the area occupied by each processor is normally a constant quantity. 

1.3.4.2 Length. This refers to the length of the wires connecting the 
processors in a given architecture. If the wires have constant length, then it usually 
means that the architecture is 

(i) regular, that is, has a pattern that repeats everywhere, and 
(ii) modular, that is, can be built of one (or just a few) repeated modules. 

With these properties, extension of the design becomes easy, and the size of a 
parallel computer can be increased by simply adding more modules. The linear and 
two-dimensional arrays of section 1.2.3.2 enjoy this property. Also, fixed wire length 
means that the time taken by a signal to propagate from one processor to another is 
always constant. If, on the other hand, wire length varies from one section of the 
network to another, then propagation time becomes a function of that length. The 
tree, perfect shuffle, and cube interconnections in section 1.2.3.2 are examples of such 
networks. Again this measure is not unrelated to the criterion in section 1.3.1, namely, 
running time, since the duration of a routing step (and hence the algorithm's 
performance) depends on wire length. 

1.3.4.3 Period. Assume that several sets of inputs are available and queued 
for processing by a circuit in a pipeline fashion. Let A, ,  A,, . . . , A, be a sequence of 
such inputs such that the time to process A, is the same for all 1 Q i Q n. The period of 
the circuit is the time elapsed between the moments when processing of Ai and A,+ 
begin, which should be the same for all 1 < i Q n. 

Example 1.20 

In example 1.5 several sums were to be computed on a tree-connected SIMD computer. 
We saw that once the leaves had processed one set of numbers to be added and sent it to 
their parents for further processing, they were ready to receive the next set. The period of 
this circuit is therefore 1: One time unit (the time for one addition) separates two 
inputs. 

Evidently, a small period is a desirable property of a parallel algorithm. In 
general, the period is significantly smaller than the time required to completely 
process one input set. In example 1.20, the period is not only significantly smaller than 
the O(1og n) time units required to compute the sum of n numbers, but also happens to 
be constant. 

We conclude this section with a remark concerning the time taken by a parallel 
algorithm to receive its input and, once finished computing, to return its output. Our 
assumption throughout this book is that all the processors of a parallel computer are 
capable of reading the available input and producing the available output in parallel. 
Therefore, such simultaneous input or output operations will be regarded as requiring 
constant time. 
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1.4 EXPRESSING ALGORITHMS 

So far we have used an informal language to describe parallel algorithms. In our 
subsequent treatment we would like to make this language a bit more formal while 
keeping our statements of algorithms as intuitive as possible. As a compromise, a 
high-level description will be used that combines plain English with widely known 
programming constructs. 

A parallel algorithm will normally consist of two kinds of operations: sequential 
and parallel. In describing the former, we use statements similar to those of a typical 
structured programming language (such as Pascal, say). Examples of such statements 
include: i f . .  . then.. . else, while.. . do, for. .  .do, assignment statements, input and 
output statements, and so on. The meanings of these statements are assumed to be 
known. A left-pointing arrow denotes the assignment operator; thus a + b, means 
that the value of b is assigned to a. The logical operations and, or, xor (exclusive-or), 
and not are used in their familiar connotation. Thus, if a and b are two expressions, 
each taking one of the values true or false, then 

(i) (a and b) is true if both a and b are true; otherwise (a and b) is false; 
(ii) (a or b) is true if at least one of a and b is true; otherwise (a or b) is false; 

(iii) (a xor b) is true if exactly one of a and b is true; otherwise (a xor b) is false; and 
(iv) (not a) is true if a is false; otherwise (not a) is false. 

Parallel operations, on the other hand, are expressed by two kinds of statements: 

(i) When several steps are to be done at the same time, we write 

do steps i to j in parallel 

step i 
step i + 1 

step j. 

(ii) When several processors are to perform the same operation simultaneously, we 
write 

for i = j to k do in parallel 
{The operations to be performed by Pi are stated here} 
end for IJ 

where i takes every integer value from j to k, or 

for i = r, s, . . . , t do in parallel 
{The operations to be performed by Pi are stated here) 
end for IJ 
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where the integer values taken by i are enumerated, or 

for all i in S do in parallel 
{The operations to be performed by Pi are stated here} 
end for 

where S is a given set of integers. 

Comments in algorithms are surrounded with curly brackets { ), as shown in the 
preceding. Curly brackets are also used to denote a sequence of elements as, for 
example, in A = {a,, a,, . . . ,a,- ,) or in E = {si E S:  si = m}. Both uses are fairly 
standard and easy to recognize from the context. 

1.5 ORGANIZATION OF THE BOOK 

The remainder of this book is organized in thirteen chapters. Each chapter is devoted 
to the study of parallel algorithms for a fundamental computational problem or 
problem area. The related operations of selection, merging, sorting, and searching are 
covered in chapters 2-5, respectively. Several computations of either a combinatorial 
or numerical nature are then examined, namely, generating permutations and 
combinations (chapter 6), matrix operations (chapter 7), numerical problems (chapter 
8), and computing Fourier transforms (chapter 9). Four application areas are treated 
in chapters 10 (graph theory), 11 (computational geometry), 12 (traversing com- 
binatorial spaces), and 13 (decision and optimization). Finally, chapter 14 addresses a 
number of basic problems for which the definition of a time unit (given in section 
1.3.1.1) is interpreted as the time required to perform an operation on a pair of bits. 
Each chapter concludes with a set of problems, bibliographical remarks, and a list of 
references. 

1.6 PROBLEMS 

1.1 Show how an MISD computer can be used to handle multiple queries on a given object in 
a database. 

1.2 Three applications of MISD computers are given in examples 1.2 and 1.3 and in problem 
1.1. Can you think of other computations for which the MISD model is suitable? 

1.3 There is no mention in section 1.2.2 of the possible communication among processors. 
Indeed, in most applications for which the MISD model is practical, virtually no 
communication is needed. In some problems, however, it may be necessary for the 
processors to exchange intermediate results. In addition, there should always be a 
mechanism to allow a processor to signal the end of its computation, which may lead the 
others to terminate their own. As with the SIMD and MIMD models, the processors can 
communicate through the common memory they already share and that generates the 
data stream. Alternatively, and for practical reasons, there could be a network connecting 
the processors (in addition to the memory). In the latter case, the memory's job is to issue 
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the data stream while all communications are done through the network. Describe a 
problem that can be conveniently solved on an MISD computer where interprocessor 
communication is possible. 

1.4 In section 1.2.3.1, while discussing simulating multiple accesses on an EREW SM SIMD 
computer, we mentioned that procedure broadcast was not suitable in the following 
situation: Several multiple-read operations are attempted by several subsets of the set of 
processors each subset trying to gain access to a different memory location. Strictly 
speaking, broadcast may be used, but the resulting algorithm may be inefficient. Show how 
this can be done and analyze the worst-case running time of the simulation. 

1.5 Given a set of numbers {s,, s2, . . . , s,}, all sums of the form s, + s,, s, + s, + s,, . . . , 
s, + s2 + . . . + s, are to be computed. Design an algorithm for solving this problem using 
N processors on each of the four submodels of the SM SIMD model. 

1.6 Show that a fully connected network of N  processors is equivalent to an EREW SM 
SIMD computer with N  processors and exactly N  locations of shared memory. 

1.7 Let an EREW SM SIMD computer have N processors and M  locations of shared 
memory. Give a procedure for simulating this computer on a fully interconnected network 
of N  processors each with up to M / N  locations in its local memory. How many steps on 
the second computer are required to simulate one step on the first? 

1.8 For each of the interconnection networks in section 1.2.3.2, describe a problem that can be 
solved efficiently on that network. Give an algorithm for each problem, derive its running 
time and cost, and determine whether it is cost optimal. 

1.9 It is required to determine the largest of a set of n numbers. Describe an algorithm for 
solving this problem on each of the interconnection networks in section 1.2.3.2. Express 
the running time of each solution as a function of n. 

1.10 Show how a fully connected network of N processors can be simulated on a cube- 
connected network with the same number of processors such that each step of a 
computation on the first network requires at most O(log2N) steps on the second. 

1.11 Prove that an algorithm requiring t(n) time to solve a problem of size n on a cube- 
connected computer with N processors can be simulated on a shuffle-exchange network 
with the same number of processors in O(log N )  x t(n) time. 

1.12 The plus-minus 2' (PM2I) interconnection network for an N-processor SIMD computer is 
defined as follows: Pj  is connected to P, and P,, where r = j + 2'mod N and 
s= j -2 'modN, fo rO< i< logN.  
(i) Let A be an algorithm that requires T steps to run on a cube-connected computer. 

Prove that a PM2I-connected computer with the same number of processors can 
execute A in at most 2T steps. 

(ii) Let A be an algorithm that requires T steps to run on a PM2I-connected computer 
with N processors. Prove that a cube-connected computer also with N processors can 
execute A in at most T log N  steps. 

1.13 Branch-and-bound is the name of a well-known algorithm for solving combinatorial 
optimization problems. Let P be a problem for which we want to find a least-cost solution 
from among N feasible solutions. The number N is assumed to be so large as to preclude 
exhaustive enumeration. In branch-and-bound we think of the N feasible solutions as the 
leaves of a giant tree. Each node on a path from root to leaf represents a partial solution 
obtained by extending the partial solution represented by its parent. Starting with the 
empty solution at the root, the algorithm generates all of the root's descendants. 
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Expansion then continues from the node with least cost and the process is repeated. When 
the cost of a partial solution exceeds a certain bound, that node is no longer a candidate 
for expansion. Search continues until a leaf is reached and there are no more nodes to be 
expanded. This leaf represents a least-cost solution. Show how this algorithm can be 
made to run in parallel on an MIMD computer. 

1.14 It is sometimes computationally infeasible (even with a parallel computer) to obtain exact 
answers to some combinatorial optimization problems. Instead, a near-optimal solution is 
computed using an approximation method. One such method is known as local 
neighborhood search. Let f be a combinatorial function that is to be minimized, say. We 
begin by computing the value o f f  at a randomly chosen point. The neighbors of that 
point are then examined and the value of f computed for each new point. Each time a 
point reduces the value of the function, we move to that point. This continues until no 
further improvement can be obtained. The point reached is labeled a local minimum. The 
entire process is repeated several times, each time from a new random point. Finally, a 
global minimum is computed from all local minima thus obtained. This is the approximate 
answer. Discuss various ways for obtaining a parallel version of this method that runs on 
an MIMD computer. 

1.15 Example 1.6 and problems 1.13 and 1.14 describe three applications of MIMD computers. 
Describe other problems that can be solved naturally on an MIMD computer and for 
which neither the MISD nor SIMD models are appropriate. Propose an algorithm to 
solve each problem. 

1.16 Three general classes of parallel computers were discussed in this chapter, namely, the 
MISD, SIMD, and MIMD models. Can you think of other models of parallel com- 
putation? For every model you propose explain why it does, or does not, belong to one of 
the preceding classes. 

1.17 A satellite picture is represented as an n x n array of pixels each taking an integer value 
between 0 and 9, thus providing various gray levels. It is required to smooth the picture, 
that is, the value of pixel (i, j) is to be replaced by the average of its value and those of its 
eight neighbors (i - 1 ,  j), (i - 1 ,  j - I), (i, j - I), (i + 1, j - l), (i + 1, j), (i + 1, j + I), 
(i, j + I), and (i - 1, j + I), with appropriate rounding. Describe a special-purpose parallel 
architecture for this problem. Assume that N, the number of processors available, is less 
than n2, the number of pixels. Give two different implementations of the smoothing 
process and analyze their running times. 

1.18 Let A and B be two n x n matrices with elements aij  and bij, respectively, for i, 
j = 1,2,. . . , n. It is required to compute C = A x B where the elements cij of the product 
matrix C are obtained from 

n 

cij = a, x bkj for i, j = 1,2,. . . , n. 
k =  1 

(a) Design a parallel algorithm for computing C on the following model of computation. 
The model consists of n2 processors arranged in an n x n array (n rows and n 
columns). The processors are interconnected as follows: 
1. The processors of each column are connected to form a ring, that is, every processor 

is connected to its top and bottom neighbors, and the topmost and bottommost 
processors of the column are also connected. 
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2. The processors of each row are connected to form a binary tree, that is, if the 
processors in the row are numbered 1,2,. . . , n, then processor i is connected to 
processors 2i and 2i + 1 if they exist. 

The local memory of each processor consists of four locations at most. 
(b) Analyze your algorithm. 

1.19 Design a special-purpose architecture for solving a system of linear equations. 
1.20 Example 1.7 and problems 1.17-1.19 describe applications of special-purpose parallel 

architectures. Can you think of other problems that can be efficiently solved on such 
architectures? 

1.7 B lBL lOGRAPHlCAL  R E M A R K S  

Several recent books have been devoted entirely or in part to the subject of parallel 
architectures. These include [Baer 11, [Cosnard], [Enslow], [Feilmeier], [Fernbach], [Hillis 
11, [Hockney], [Hwang 11, [Hwang 21, [Karin], [Kuck 11, [Kuck 21, [Legendi], [Leighton], 
[Leiserson], [Lorin], [Mead], [Preston], [Reed], [Reijns], [Siege]], [Stone], [Uhr], [Ullman], 
and [Wu]. Some of the parallel computers that were built in research laboratories or have 
appeared on the market are described in [Baer 21, [Frenkel 11, [Frenkel2], [Hillis 23, [Hord], 
[Jones 11, [Jones 21, [Lipovski], [Potter], and [Wah]. Reviews of parallel languages are 
provided in [Gelernter], [Howe], and [Karp]. Issues pertaining to parallel operating systems 
are addressed in [Evans] and [Oleinick]. The design and analysis of parallel algorithms are 
covered in [Akl 31, [Cook 11, [Cook 21, [Graham], [Jamieson], [Kronsjo], [Kuhn], [Kung], 
[Quinn], [Rodrigue], [Schendel], [Snyder], and [Traub]. 

Various approaches to simulating the shared-memory model by weaker models are given 
in [Alt], [Karlin], [Mehlhorn], [Parberry], [Stockmeyer], [Ullman], [Upfal 11, [Upfal2], and 
[Vishkin]. Interconnection networks are reviewed in [Bhuyan] and [Wu]. 

The procedure described in example 1.6 for searching game trees on an MIMD computer 
is a simplified version of a parallel algorithm first proposed in [Akl I]. Similar algorithms can 
be found in [Akl 23 and [Marsland]. 

Good references for sequential algorithms are [Horowitz] and [Reingold]. Fast 
sequential matrix multiplication algorithms, such as the one mentioned in example 1.11, are 
reviewed in [Strassen]. The branch-and-bound and local neighborhood search methods 
referred to in problems 1.13 and 1.14, respectively, are detailed in [Papadimitriou]. 
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Selection 

2.1 INTRODUCTION 

Our study of parallel algorithm design and analysis begins by addressing the following 
problem: Given a sequence S of n elements and an integer k, where 1 6 k < n, it is 
required to determine the kth smallest element in S. This is known as the selection 
problem. It arises in many applications in computer science and statistics. Our purpose 
in this chapter is to present a parallel algorithm for solving this problem on the 
shared-memory SIMD model. The algorithm will be designed to meet a number of 
goals, and our analysis will then confirm that these goals have indeed been met. 

We start in section 2.2 by defining the selection problem formally and deriving a 
lower bound on the number of steps required for solving it on a sequential computer. 
This translates into a lower bound on the cost of any parallel algorithm for selection. 
In section 2.3 an optimal sequential algorithm is presented. Our design goals are 
stated in section 2.4 in the form of properties generally desirable in any parallel 
algorithm. Two procedures that will be often used in this book are described in section 
2.5. Section 2.6 contains the parallel selection algorithm and its analysis. 

2.2 THE PROBLEM AND A LOWER BOUND 

The problems studied in this and the next two chapters are intimately related and 
belong to a family of problems known as comparison problems. These problems are 
usually solved by comparing pairs of elements of an input sequence. In order to set the 
stage for our presentation we need the following definitions. 

2.2.1 Linear Order 

The elements of a set A are said to satisfy a linear order < if and only if 

(i) for any two elements a and b of A, (1 < b, a = b, or b < a, and 
(ii) for any three elements a, b, and c of A, if a < b and b < c, then a < c. 
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The symbol < is to be read "precedes." An example of a set satisfying a linear order is 
the set of all integers. Another example is the set of letters of the Latin alphabet. We 
shall say that these sets are linearly ordered. Note that when the elements of A are 
numbers, it is customary to use the symbol < to denote "less than or equal to." 

2.2.2 Rank 

For a sequence S = (s,, s,, . . . , s,) whose elements are drawn from a linearly ordered 
set, the rank of an element si of S is defined as the number of elements in S preceding si 
plus 1. Thus, in S = (8, - 3,2, - 5,6,0) the rank of 0 is 3. Note that if si = sj then si 
precedes s j  if and only if i < j. 

2.2.3 Selection 

A sequence S = {s,, s,, . . . , s,) whose elements are drawn from a linearly ordered set 
and an integer k, where 1 < k < n, are given. It is required to determine the element 
with rank equal to k. Again, in S = (8, - 3,2, - 5,6,0) the element with rank 4 is 2. 
We shall denote the element with rank k by s(,,. 

In the ensuing discussion, it is assumed without loss of generality that S is a 
sequence of integers, as in the preceding example. Selection will therefore call for 
finding the kth smallest element. We also introduce the following useful notation. For 
a real number r, Lr] denotes the largest integer smaller than or equal to r (the "floor" of 
r), while [rl denotes the smallest integer larger than or equal to r (the "ceiling" of r). 
Thus L3.91 = 3, r3.11 = 4, and L3.0~ = r3.01 = 3. 

2.2.4 Complexity 

Three particular values of k in the definition of the selection problem immediately 
come to one's mind: k = 1, k = n, and k = rn/21. In the first two cases we would be 
looking for the smallest and largest elements of S, respectively. In the third case, s(,, 
would be the median of S, that is, the element for which half of the elements of S are 
smaller than (or equal to) it and the other half larger (or equal). It seems intuitive, at 
least in the sequential mode of thinking and computing, that the first two cases are 
easier to solve than when k = rn/21 or any other value. Indeed, for k = 1 or k = n, all 
one has to do is examine the sequence element by element, keeping track of the 
smallest (or largest) element seen so far until the result is obtained. No such obvious 
solution appears to work for 1 < k < n. 

Evidently, if S were presented in sorted order, that is, S = (s(,,, so,, . . . , s(,,), then 
selection would be trivial: In one step we could obtain s(,,. Of course, we do not 
assume that this is the case. Nor do we want to sort S first and then pick the kth 
element: This appears to be (and indeed is) a computationally far more demanding 
task than we need (particularly for large values of n) since sorting would solve the 
selection problem for all values of k, not just one. 

Regardless of the value of k, one fact is certain: In order to determine the kth 
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smallest element, we must examine each element of S at least once. This establishes a 
lower bound of Q(n) on the number of (sequential) steps required to solve the problem. 
From chapter 1, we know that this immediately implies an R(n) lower bound on the 
cost of any parallel algorithm for selection. 

2.3 A SEQUENTIAL ALGORITHM 

In this section we study a sequential algorithm for the selection problem. There are 
two reasons for our interest in a sequential algorithm. First, our parallel algorithm is 
based on the sequential one and is a parallel implementation of it on an EREW SM 
SIMD computer. Second, the parallel algorithm assumes the existence of the 
sequential one and uses it as a procedure. 

The algorithm presented in what follows in the form of procedure 
SEQUENTIAL SELECT is recursive in nature. It uses the divide-and-conquer 
approach to algorithm design. The sequence S and the integer k are the procedure's 
initial input. At each stage of the recursion, a number of elements of S are discarded 
from further consideration as candidates for being the kth smallest element. This 
continues until the kth element is finally determined. We denote by IS] the size of a 
sequence S; thus initially, IS1 = n. Also, let Q be a small integer constant to be 
determined later when analyzing the running time of the algorithm. 

procedure SEQUENTIAL SELECT (S, k) 

Step 1: if IS1 <Q then sort S and return the kth element directly 

else subdivide S into ISI/Q subsequences of Q elements each (with up to Q- 1 
leftover elements) 

end if. 

Step 2: Sort each subsequence and determine its median. 

Step 3: Call SEQUENTIAL SELECT recursively to find m, the median of the ISI/Q 
medians found in step 2. 

Step 4: Create three subsequences S,, S,, and S, of elements of S smaller than, equal 
to, and larger than m, respectively. 

Step 5: if IS,(> k then (the kth element of S must be in S,) 
call SEQUENTIAL SELECT recursively to find the kth element of S, 

else if IS,I+ IS,l>k then return m 
else call SEQUENTIAL SELECT recursively to find the (k -- IS,J - IS,l)th 

element of S, 
end if 

end if. 

Note that the preceding statement of procedure SEQUENTIAL SELECT does not 
specify how the kth smallest element of S is actually returned. One way to do this 
would be to have an additional parameter, say, x, in the procedure's heading (besides 
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S and k) and return the kth smallest element in x. Another way would be to simply 
return the kth smallest as the first element of the sequence S.  

Analysis. A step-by-step analysis of t(n), the running time of SEQUENTIAL 
SELECT, is now provided. 

Step 1: Since Q is a constant, sorting S when IS1 < Q takes constant time. 
Otherwise, subdividing S requires c,n time for some constant c,. 
Step 2: Since each of the ISl/Q subsequences consists of Q elements, it can be 
sorted in constant time. Thus, c2n time is also needed for this step for some 
constant c,. 
Step 3: There are ISI/Q medians; hence the recursion takes t(n/Q) time. 
Step 4: One pass through S creates S,, S,, and S, given m; therefore this step is 
completed in c3n time for some constant c3. 
Step 5: Since m is the median of JSI/Q elements, there are ISJ/2Q elements larger 
than or equal to it, as shown in Fig. 2.1. Each of the ISI/Q elements was itself the 
median of a set of Q elements, which means that it has Q/2 elements larger than 
or equal to it. It follows that (IS1/2Q) x (Q/2) = IS114 elements of S are 
guaranteed to be larger than or equal to m. Consequently, JS,I < 31S1/4. By a 
similar reasoning, IS,[ < 31S1/4. A recursive call in this step to SEQUENTIAL 
SELECT therefore requires t(3n/4). From the preceding analysis we have 

The time has now come to specify Q. If we choose Q so that 

k- ISI!Q SUBSEQUENCES -4 

Q ELEMENTS 

PER SUBSEQUENCE 

IN SORTED 

ORDER 

SMALLEST ELEMENT 

'MEDIAN ELEMENT 

LARGEST ELEMENT 

Figure 2.1 Main idea behind procedure SEQUENTIAL SELECT. 
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then the two recursive calls in the procedure are performed on ever-decreasing 
sequences. Any value of Q 2 5 will do. Take Q = 5; thus 

t(n) = c4n + t(n/5) + t(3n/4). 

This recurrence can be solved by assuming that 

t(n) < c,n for some constant c,. 

Substituting, we get 

t(n) < c4n + c5(n/5) + c5(3n/4) 

= c4n + c5(19n/20). 

Finally, taking c, = 20c4 yields 

t(n) < c5(n/20) + c5(19n/20) 

= c5n, 

thus confirming our assumption. In other words, t(n) = O(n), which is optimal in view 
of the lower bound derived in section 2.2.4. 

2.4 DESIRABLE PROPERTIES FOR PARALLEL ALGORITHMS 

Before we embark in our study of a parallel algorithm for the selection problem, it 
may be worthwhile to set ourselves some design goals. A number of criteria were 
described in section 1.3 for evaluating parallel algorithms. In light of these criteria, five 
important properties that we desire a parallel algorithm to possess are now defined. 

2.4.1 Number of Processors 

The first two properties concern the number of processors to be used by the algorithm. 
Let n be the size of the problem to be solved: 

(i) p(n) must be smaller than n: No matter how inexpensive computers 
become, it is unrealistic when designing a parallel algorithm to assume that we have at 
our disposal more (or even as many) processors as there are items of data. This is 
particularly true when n is very large. It is therefore important that p(n) be expressible 
as a sublinear function of n, that is, p(n) = nx, 0 < x < 1. 

(ii) p(n) must be adaptive: In computing in general, and in parallel computing 
in particular, "appetite comes with eating." The availability of additional computing 
power always means that larger and more complex problems will be attacked than 
was possible before. Users of parallel computers will want to push their machines to 
their limits and beyond. Even if one could afford to have as many processors as data 
for a particular problem size, it may not be desirable to design an algorithm based on 
that assumption: A larger problem would render the algorithm totally useless. 
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Algorithms using a number of processors that is a sublinear function of n [and hence 
satisfying property (i)], such as log n or n1I2, would not be acceptable either due to 
their inflexibility. What we need are algorithms that possess the "intelligence" to adapt 
to the actual number of processors available on the computer being used. 

2.4.2 Running Time 

The next two properties concern the worst-case running time of the parallel algorithm: 

(i) t ( n )  must be small: Our primary motive for building parallel computers is 
to speed up the computation process. It is therefore important that the parallel 
algorithms we design be fast. To be useful, a parallel algorithm should be significantly 
faster than the best sequential algorithm for the problem at hand. 

(ii) t(n) must be adaptive: Ideally, one hopes to have an algorithm whose 
running time decreases as more processors are used. In practice, it is usually the case 
that a limit is eventually reached beyond which no speedup is possible regardless of 
the number of processors used. Nevertheless, it is desirable that t(n) vary inversely 
with p(n) within the bounds set for p(n). 

2.4.3 Cost 

Ultimately, we wish to have parallel algorithms for which c(n) = p(n) x t(n) always 
matches a known lower bound on the number of sequential operations required in the 
worst case to solve the problem. In other words, a parallel algorithm should be cost 
optimal. 

In subsequent chapters we shall see that meeting the preceding objectives is 
usually difficult and sometimes impossible. In particular, when a set of processors are 
linked by an interconnection network, the geometry of the network often imposes 
limits on what can be accomplished by a parallel algorithm. It is a different story when 
the algorithm is to run on a shared-memory parallel computer. Here, it is not at all 
unreasonable to insist on these properties given how powerful and flexible the model 
is. 

In section 2.6 we describe a parallel algorithm for selecting the kth smallest 
element of a sequence S = {s,, s,, . . . ,s,). The algorithm runs on an EREW SM 
SIMD computer with N processors, where N < n. The algorithm enjoys all the 
desirable properties formulated in this section: 

(i) It uses p(n) = nl-" processors, where 0 < x < 1. The value of x is obtained from 
N = nl-". Thus p(n) is sublinear and adaptive. 

(ii) It runs in t(n) = O(nx) time, where x depends on the number of processors 
available on the parallel computer. The value of x is obtained in (i). Thus t(n) is 
smaller than the running time of the optimal sequential algorithm described in 
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section 2.3. It is also adaptive: The larger is p(n), the smaller is t(n), and vice 
versa. 

(iii) It has a cost of c(n) = n1 -" x O(nx) = O(n), which is optimal in view of the lower 
bound derived in section 2.2.4. 

In closing this section we note that all real quantities of the kind just described 
(e.g., nl-" and nx) should in practice be rounded to a convenient integer, according to 
our assumption in chapter 1. When dealing with numbers of processors and running 
times, though, it is important that this rounding be done pessimistically. Thus, the real 
n l -X representing the number of processors used by an algorithm should be 

interpreted as Ln'-x]: This is to ensure that the resulting integer does not exceed the 
actual number of processors. Conversely, the real nx representing the worst-case 
running time of an algorithm should be interpreted as rnX1: This guarantees that the 
resulting integer is not smaller than the true worst-case running time. 

2.5 TWO USEFUL PROCEDURES 

In the EREW SM SIMD model no two processors can gain access to the same 
memory location simultaneously. However, two situations may arise in a typical 
parallel algorithm: 

(i) All processors need to read a datum held in a particular location of the common 
memory. 

(ii) Each processor has to compute a function of data held by other processors and 
therefore needs to receive these data. 

Clearly, a way must be found to efficiently simulate these two operations that 
cannot be performed in one step on the EREW model. In this section, we present two 
procedures for performing these simulations. The two procedures are used by the 
algorithm in this chapter as well as by other parallel algorithms to be studied 
subsequently. In what follows we assume that N processors PI ,  P,, . . . , P, are 
available on an EREW SM SIMD computer. 

2.5.1 Broadcasting a Datum 

Let D be a location in memory holding a datum that all N processors need at a 
given moment during the execution of an algorithm. As mentioned in section 1.2.3.1, 
this is a special case of the more general multiple-read situation and can be simulated 
on an EREW computer by the broadcasting process described in example 1.4. We 
now give this process formally as procedure BROADCAST. The procedure assumes 
the presence of an array A of length N in memory. The array is initially empty and is 
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used by the procedure as a working space to distribute the contents of D to the 
processors. Its ith position is denoted by A(i). 

procedure BROADCAST (D, N, A) 

Step 1: Processor PI 
(i) reads the value in D, 
(ii) stores it in its own memory, and 
(iii) writes it in A(1). 

Step 2: for i= 0 to (log N- 1) do 
for j=2 '+  1 to 2'+' do in parallel 

Processor Pj 
(i) reads the value in A(j-2 ' ) ,  
(ii) stores it in its own memory, and 
(iii) writes it in A(j). 

end for 
end for. 

The working of BROADCAST is illustrated in Fig. 2.2 for N = 8 and D = 5. 
When the procedure terminates, all processors have stored the value of D in their local 
memories for later use. Since the number of processors having read D doubles in each 
iteration, the procedure terminates in O(1og N) time. The memory requirement of 
BROADCAST is an array of length N. Strictly speaking, an array of half that length 
will do since in the last iteration of the procedure all the processors have received the 
value in D and need not write it back in A [see Fig. 2.2(d)]. BROADCAST can be 
easily modified to prevent this final write operation and hence use an array A of length 
N / 2 .  

Besides being generally useful in broadcasting data to processors during the 
execution of an algorithm, procedure BROADCAST becomes particularly important 
when starting an adaptive algorithm such as the one to be described in section 2.6. 
Initially, each of the N processors knows its own index i, 1 < i < N, and the available 
number of processors N. When a problem is to be solved, the problem size n must be 
communicated to all processors. This can be done using procedure BROADCAST 
before executing the algorithm. Each processor now computes x from N = n' -", and 
the algorithm is performed. Therefore, we shall assume henceforth that the parameter 
x is known to all processors when an adaptive algorithm starts its computation. 

2.5.2 Computing All Sums 

Assume that each processor Pi holds in its local memory a number a,, 1 < i 6 N. It is 
often useful to compute, for each Pi, the sum a, + a, + . . . + a,. In example 1.5 an 
algorithm was demonstrated for computing the sum of N numbers in O(1og N) time on 
a tree-connected computer with O(N) processors. Clearly this algorithm can be 
implemented on a shared-memory machine to compute the sum in the same amount 
of time using the same number of processors. The question here is: Can the power 
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'1 '2 '3 '4 '5 '6 '7 '8 '1 '2 '3 '4 '5 '6 '7 '8 

(a) STEP 1 (b) STEP 2 (i = 0) 

(c )  STEP 2 (i = 1) (d) STEP 2 (i = 2) 

Figure 2.2 Distributing a datum to eight processors using procedure BROADCAST. 

of the shared-memory model be exploited to compute all sums of the form 
a ,  + a, + + a,, 1 < i < N, known as the preJix sums, using N processors in 
O(1og N) time? As it turns out, this is indeed possible. The idea is to keep as many 
processors busy as long as possible and exploit the associativity of the addition 
operation. Procedure ALLSUMS given formally in the following accomplishes 
exactly that: 

procedure ALLSUMS (a,, a,, . . ., a,) 

for j=OtologN-1 do 
for i = 2' + 1 to N do in parallel 

Processor Pi 
(i) obtains a,-,,  from Pi - , ,  through shared memory and 
(ii) replaces ai with a i -  ,, + ai. 

end for 
end for. 

The working of ALLSUMS is illustrated in Fig. 2.3 for N = 8 with Aij referring to the 
sum ai + a, , ,  + . . . + aj .  When the procedure terminates, a, has been replaced by 



(a) j = 0 

P1 '2 '3 p4 P5 '6 '7 '8 

(b) j = 1 

Figure 2.3 Computing the prefix sums of eight numbers using procedure ALLSUMS 
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a, + a, + . - .  + ai in the local memory of Pi, for 1 < i < N. The procedure requires 
O(1og N) time since the number of processors that have finished their computation 
doubles at each stage. 

It is important to note that procedure ALLSUMS can be modified to solve any 
problem where the addition operation is replaced by any other associative binary 
operation. Examples of such operations on numbers are multiplication, finding the 
larger or smaller of two numbers, and so on. Other operations that apply to a pair of 
logical quantities (or a pair of bits) are and, or, and xor. Various aspects of the problem 
of computing the prefix sums in parallel are discussed in detail in chapters 13 and 14. 

2.6 AN ALGORITHM FOR PARALLEL SELECTION 

We are now ready to study an algorithm for parallel selection on an EREW SM 
SIMD computer. The algorithm presented as procedure PARALLEL SELECT 
makes the following assumptions (some of these were stated earlier): 

1. A sequence of integers S = {s,, s,, . . . , s,} and an integer k, 1 < k < n, are given, 
and it is required to determine the kth smallest element of S. This is the initial 
input to PARALLEL SELECT. 

2. The parallel computer consists of N processors PI ,  P,, . . . , P,. 
3. Each processor has received n and computed x from N = nl-", where 

O < x < l .  
4. Each of the n' -" processors is capable of storing a sequence of nx elements in its 

local memory. 
5. Each processor can execute procedures SEQUENTIAL SELECT, 

BROADCAST, and ALLSUMS. 
6. M is an array in shared memory of length N whose ith position is M(i). 

procedure PARALLEL SELECT (S, k) 

Step 1: if (S(,<4 then PI uses at most five comparisons to return the kth element 
else 

(i) S is subdivided into ISI'-X subsequences Si of length lSIX each, where 
1 <i<lS('-", and 

(ii) subsequence Si is assigned to processor Pi.  
end if. 

Step 2: for i = 1 to ISI1 - X  do in parallel 
(2.1) {Pi obtains the median mi, i.e., the r(Si(/21th element, of its associated 

subsequence) 
SEQUENTIAL SELECT (Si, rlSil/21) 

(2.2) Pi stores mi in M(i) 
end for. 
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Step 3: {The procedure is called recursively to obtain the median rn of M }  

PARALLEL SELECT ( M ,  rlM 1/21). 

Step 4: The sequence S is subdivided into three subsequences: 

Step 5: if )Ll> k then PARALLEL SELECT (L ,  k) 
else if ILI + IE l2  k then return m 

else PARALLEL SELECT (G, k - 1 LJ - IEJ) 
end if 

end if. 

Note that the precise mechanism used by procedure PARALLEL SELECT to return 
the kth smallest element of S is unspecified in the preceding statement. However, any 
of the ways suggested in section 2.3 in connection with procedure SEQUENTIAL 
SELECT can be used here. 

Analysis. We have deliberately given a high-level description of 
PARALLEL SELECT to avoid obscuring the main ideas of the algorithm. In order to 
obtain an accurate analysis of the procedure's running time, however, various 
implementation details must be specified. As usual, we denote by t(n) the time required 
by PARALLEL SELECT for an input of size n. A function describing t(n) is now 
obtained by analyzing each step of the procedure. 

Step 1: To perform this step, each processor needs the beginning address A of 
sequence Sin the shared memory, its size JSI, and the value of k. These quantities 
can be broadcast to all processors using procedure BROADCAST: This requires 
O(1og nl-") time. If IS( < 4, then P, returns the kth element in constant time. 
Otherwise, Pi computes the address of the first and last elements in Si from 
A + (i - I)nX and A + inx - 1, respectively; this can be done in constant time. 
Thus, step 1 takes cllog n time units for some constant c,. 
Step 2: SEQUENTIAL SELECT finds the median of a sequence of length n" in 
c,nx time units for some constant c,. 
Step 3: Since PARALLEL SELECT is called with a sequence of length nl-", 
this step requires t(nl -") time. 
Step 4: The sequence S can be subdivided into L, E, and G as follows: 

(i) First m is broadcast to all the processors in O(lognl-") time using 
procedure BROADCAST. 

(ii) Each processor Pi now splits Si into three subsequences L,, E,, and G,  of 
elements smaller than, equal to, and larger than m, respectively. This can 
be done in time linear in the size of Si, that is, O(nx) time. 

(iii) The subsequences L,, Ei, and Gi are now merged to form L, E, and G. We 
show how this can be done for the Li; similar procedures with the same 
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running time can be derived for merging the Ei and G,, respectively. Let 
a, = lLiJ. For each i, 1 < i < nl-", the sum 

is computed. All these sums can be obtained by nl-" processors in 
O(1og nl-") time using procedure ALLSUMS. Now let z,  = 0. All pro- 
cessors simultaneously merge their Li subsequences to form L: Processor 
Pi copies Li into L starting at position 2,-I + 1. This can be done in O(nx) 
time. 
Hence the time required by this step is c3nx for some constant c3. 

Step 5: The size of L needed in this step has already been obtained in step 4 
through the computation of z , ~ - ~ .  The same remark applies to the sizes of E and 
G. Now we must determine how much time is taken by each of the two recursive 
steps. Since m is the median of M, nl-"12 elements of S are guaranteed to be 
larger than it. Furthermore, every element of M is smaller than at least nx/2 
elements of S. Thus ILI < 3n/4. Similarly, IGI < 3n/4. Consequently, step 5 
requires at most t(3n/4) time. 

The preceding analysis yields the following recurrence for t(n): 

whose solution is t(n) = O(nX) for n > 4. Since p(n) = nl-", we have 

This cost is optimal in view of the R(n) lower bound derived in section 2.2. Note, 
however, that nx is asymptotically larger than log n for any x. (Indeed we have used 
this fact in our analysis of PARALLEL SELECT.) Since N = n' -"and n/nx c npog n, 
it follows that PARALLEL SELECT is cost optimal provided N < nllog n. 

Example 2.1 

This example illustrates the working of PARALLEL SELECT. Let S = (3, 14, 16,20, 8, 
31, 22, 12, 33, 1, 4, 9, 10, 5, 13, 7, 24, 2, 14, 26, 18, 34, 36, 25, 14, 27, 32, 35, 331, that is, 
n = 29 and let k = 21, that is, we need to determine the twenty-first element of S. Assume 
further that the EREW SM SIMD computer available consists of five processors, 
(N = 5). Hence JSJ1-" = 5, implying that 1 - x = 0.47796. The input sequence is initially 
in the shared memory as shown in Fig. 2.4(a). After step 1, each processor has been 
assigned a subsequence of S: The first four processors receive six elements each, and the 
fifth receives five, as in Fig. 2.4(b). Now each processor finds the median of its 
subsequence in step 2 and places it in a shared-memory array M; this is illustrated in Fig. 
2412). When PARALLEL SELECT is called recursively in step 3, it returns the median 
m = 14 of M. The three subsequences of S, namely, L, E, and G of elements smaller than, 
equal to, and larger than 14, respectively, are formed in step 4, as shown in Fig. 2.4(d). 
Since JLJ = 11 and IEJ = 3, JLj + JEJ < k and PARALLEL SELECT is called recursively 
in step 5 with S = G and k = 21 - (11 + 3) = 7. Since IGI = 15, we use 15'-" = 3.6485, 
that is, three, processors during this recursive step. 

Again in step 1, each processor is assigned five elements, as shown in Fig. 2.4(e). 
The sequence M of medians obtained in step 2 is shown in Fig. 2.4(f). The median m = 26 
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Figure 2.4 Selecting twenty-first element of a sequence using procedure PARALLEL SELECT. 

of M is determined in step 3. The three subsequences L, E, and G created in step 4 are 
illustrated in Fig. 2.qg). Since ILI = 6 and [El = 1, the only element of E, namely, 26, is 
returned as the twenty-first element of the input. 

We conclude this section with the following observation. In designing 
PARALLEL SELECT, we adopted the approach of taking a sequential algorithm for 
a problem and turning it into a parallel algorithm. We were quite successful in 
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obtaining an  algorithm for the EREW SM SIMD model that is fast, adaptive, and 
cost optimal while using a number of processors that is sublinear in the size of the 
input. There are problems however, for which this approach does not work that well. 
In  these cases a parallel algorithm (not based on any sequential algorithm) must be 
derived by exploiting the inherent parallelism in the problem. We shall study such 
algorithms in subsequent chapters. Taken to  the extreme, this latter approach can 
sometimes offer surprises: A parallel algorithm provides an  insight that leads to  an 
improvement over the best existing sequential algorithm. 

2.7 P R O B L E M S  

In an interconnection-network SIMD computer, one of the N processors holds a datum 
that it wishes to make known to all other processors. Show how this can be done on each 
of the networks studied in chapter 1. Which of these networks accomplish this task in the 
same order of time as required by procedure BROADCAST? 
Consider an SIMD computer where the N processors are linked together by a perfect 
shuffle interconnection network. Now assume that the line connecting two processors can 
serve as a two-way link; in other words, if Pi can send data to P j  (using a perfect shuffle 
link), then P j  can also send data back to Pi (the latter link being referred to as a perfect 
unshu$e connection). In addition, assume that for i < N - 1, each Pi is linked by a direct 
one-way link to Pi+ ,; call these the nearest-neighbor links. Each processor Pi holds an 
integer ai. It is desired that ai in Pi be replaced with a, + a, + . . . + ai for all i. Can this 
task be accomplished using the unshuffle and nearest-neighbor links in the same order of 
time as required by procedure ALLSUMS? 
A parallel selection algorithm that uses O(n/log'n) processors and runs in O(log'n) time for 
some 0 < s < 1 would be faster than PARALLEL SELECT since log'n is asymptotically 
smaller than nx for any x and s. Can you find such an algorithm? 
If PARALLEL SELECT were to be implemented on a CREW SM SIMD computer, 
would it run any faster? 
Design and analyze a parallel algorithm for solving the selection problem on a CRCW SM 
SIMD computer. 
A tree-connected computer with n leaves stores one integer of a sequence S per leaf. For a 
given k, 1 < k < n, design an algorithm that runs on this computer and selects the kth 
smallest element of S. 
Repeat problem 2.6 for a linear array of n processors with one element of S per processor. 
Repeat problem 2.6 for an nl" x n1I2 mesh of processors with one element of S per 
processor. 
Consider the following variant of the linear array interconnection network for SIMD 
computers. In addition to the usual links connecting the processors, a further communi- 
cation path known as a bus is available, as shown in Fig. 2.5. At any given time during the 
execution of an algorithm, precisely one of the processors is allowed to broadcast one of 
the input data to the other processors using the bus. All processors receive the datum 
simultaneously. The time required by the broadcast operation is assumed to be constant. 
Repeat problem 2.6 for this modified linear array. 
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BUS 

Figure 2.5 Linear array with a bus. 

2.10 Modify the mesh interconnection network for SIMD machines to include a bus and repeat 
problem 2.6 for the modified model. 

2.11 Design an algorithm for solving the selection problem for the case k = 1 (i.e., finding the 
smallest element of a sequence) on each of the following two models: (i) a mesh-connected 
SIMD computer and (ii) the machine in problem 2.10. 

2.12 A problem related to selection is that of determining the k smallest elements of a sequence 
S (in any order). On a sequential computer this can be done as follows: First determine the 
kth smallest element (using SEQUENTIAL SELECT); then one pass through S suffices to 
determine the k - 1 elements smaller than k. The running time of this algorithm is linear in 
the size of S. Design a parallel algorithm to solve this problem on your chosen submodel of 
each of the following models and analyze its running time and cost: (i) shared-memory 
SIMD, (ii) interconnection-network SIMD, and (iii) specialized architecture. 

2.13 Modify procedure BROADCAST to obtain a formal statement of procedure STORE 
described in section 1.2.3.1. Provide a different version of your procedure for each of the 
write conflict resolution policies mentioned in chapter 1. 

2.14 In steps 1 and 2 of procedure SEQUENTIAL SELECT, a simple sequential algorithm is 
required for sorting short sequences. Describe one such algorithm. 

2.8 B l B L l O G R A P H l C A L  R E M A R K S  

As mentioned in section 2.1, the problem of selection has a number of applications in computer 
science and statistics. In this book, for example, we invoke a procedure for selecting the kth 
smallest out of n elements in our development of algorithms for parallel merging (chapter 3), 
sorting (chapter 4), and convex huil computation (chapter 11). An application to image analysis 
is cited in [Chandran]. In statistics, selection is referred to as the computation of order statistics. 
In particular, computing the median element of a set of data is a standard procedure in 
statistical analysis. The idea upon which procedure SEQUENTIAL SELECT is based was first 
proposed in [Blum]. Sequential algorithms for sorting short sequences, as required by that 
procedure, can be found in [Knuth]. 

Procedures BROADCAST and ALLSUMS are adapted from [Akl2]. Another way of 
computing the prefix sums of n numbers is through a specialized network of processors. One 
such network is suggested by Fig. 2.3. It consists of logn rows of n processors each. The 
processors are connected by the lines illustrating the flow of data in Fig. 2.3. The top row of 
processors receives the n numbers as input, and all the prefix sums are produced by the bottom 
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row as output. This network has a cost of nlog2n. Networks with lower cost and their 
applications are described in [Fich], [Kogge 11, [Kogge 23, [Ladner], [Reif], and [Stone]. A 
~arallel algorithm to compute the prefix sums on an EREW SM SIMD computer for the case 
where the input numbers are presented in a linked list is proposed in [Kruskal]. 

Procedure PARALLEL SELECT was first presented in [Akl 11. Other parallel al- 
gorithms for selecting the kth smallest out of n elements on the EREW SM SIMD computer are 
described in [Cole 21 and [Vishkin]. The algorithm in [Cole 23 uses n/(log n log*n) processors 
and runs in time O(logn log*n), where log*n is the least i such that the ith iterate of the 
logarithm function (i.e., 10g(~)n) is less than or equal to 2. Note that this algorithm is cost optimal 
and faster than PARALLEL SELECT but is not adaptive. The algorithm in [Vishkin] runs in 
O(n/N) time using N < n/(log n log log n) processors. This algorithm is both adaptive and cost 
optimal; however, when compared with PARALLEL SELECT, its running time is seen to be 
larger and its range of optimality smaller. Finally, a parallel selection algorithm is obtained in 
[Akl3] that runs in O(log log n) time using O(n/log log n) processors. Examples of parallel 
algorithms that aid in the design of sequential algorithms are provided in [Megiddo]. 

A model of parallel computation is described in [Valiant], where only the time taken to 
perform comparisons among pairs of input elements is counted. Thus, the time taken in routing 
data from one processor to another, the time taken to specify what comparisons are to be 
performed, and any other computations besides comparisons are all ignored. This is approp- 
riately known as the comparison model. A lower bound of ROog log n) on the time required by n 
processors to select using this model is derived in [Valiant]. This bound is achieved by an 
algorithm described in [Ajtai]. It runs in O(log log n) time and is essentially a refinement of an 
earlier O((log log n)') algorithm appearing in [Cole 11. 

A number of algorithms exist for selection on a tree-connected SIMD computer. An 
algorithm in [Tanimoto] finds the kth smallest element on a tree machine with n leaves in 
O(k + log n) time. Note that when k = n/2, this algorithm requires O(n) time, which is no better 
than sequential selection. This is improved in [Stout 11, where an algorithm is described whose 
running time is strictly less than f f  for any a > 0. It is shown in [Aggarwal] how a further 
speedup can be achieved for the case where the elements of S are taken from a field of size 
O(nl+?) for some constant y > 0: Selection can now be performed in O(log2n) time. In chapter 
14 we shall study an algorithm for selection on the tree that was first proposed in [Cooper]. 
This algorithm takes the time to operate on two bits (rather than two entire numbers) as its unit 
of time. 

The selection problem has also been tackled on variants of basic models. An algorithm is 
proposed in [Stout 23 that runs on a mesh-connected computer with a broadcast ability. The 
model in [Chandran] is a cube-connected computer where each communication between two 
processors counts as one routing step regardless of how many elements are exchanged. 

Variations on the problem of selection itself have also been studied. Algorithms for 
finding the largest element of a sequence (a special case of selection) appear in [Bokhari], 
[Shiloach], and [Valiant]. A special-purpose architecture for selecting the k smallest out of n 
elements is described in wah] .  

Finally, all the results discussed so far were obtained by worst-case analyses. Sometimes it 
is useful to derive the time required by a parallel algorithm on the average. Here, the elements of 
the input are assumed to obey a given probability distribution, and the expected running time is 
obtained. Algorithms specifically designed to achieve a good running time on the average are 
said to be probabilistic. Examples of such probabilistic algorithms are provided in [Greenberg] 
for the tree-connected SIMD model and in [Reischuck] for the comparison model. 
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Merging 

INTRODUCTION 

We mentioned in chapter 2 that selection belongs to a class of problems known as 
comparison problems. The second such problem to be studied in this book is that of 
merging. It is defined as follows: Let A = (a,, a,, . . .,a,) and B = (b,, b,, . . . , b,) be 
two sequences of numbers sorted in nondecreasing order; it is required to merge A and 
B, that is, to form a third sequence C = (c,, c,, . . . , c,,,), also sorted in nondecreasing 
order, such that each ci  in C belongs to either A or B and each ai and each bi appears 
exactly once in C. In computer science, merging arises in a variety of contexts 
including database applications in particular and file management in general. Many 
of these applications, of course, involve the merging of nonnumeric data. 
Furthermore, it is often necessary once the merging is complete to delete duplicate 
entries from the resulting sequence. A typical example is the merging of two mailing 
lists each sorted alphabetically. These variants offer no new insights and can be 
handled quite easily once the basic problem stated above has been solved. 

Merging is very well understood in the sequential model of computation and a 
simple algorithm exists for its solution. In the worst case, when r = s := n, say, the 
algorithm runs in O(n) time. This is optimal since every element of A and B must be 
examined at least once, thus making R(n) steps necessary in order to merge. Our 
purpose in this chapter is to show how the problem can be solved on a variety of 
parallel computational models. In view of the lower bound just stated, it should be 
noted that R(n /N)  time is needed by any parallel merging algorithm that uses N 
processors. 

We begin in section 3.2 by describing a special-purpose parallel architecture for 
merging. A parallel algorithm for the CREW SM SIMD model is presented in section 
3.3 that is adaptive and cost optimal. Since the algorithm invokes a sequential 
procedure for merging, that procedure is also described in section 3.3. 11: is shown in 
section 3.4 how the concurrent-read operations can be removed from the parallel 
algorithm of section 3.3 by simulating it on an EREW computer. Finally,, an adaptive 
and optimal algorithm for the EREW SM SIMD model is presented in section 3.5 
whose running time is smaller than that of the simulation in section 3.4. The algorithm 
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is based on a sequential procedure for finding the median of two sorted sequences, 
also described in section 3.5. 

3.2 A NETWORK FOR MERGING 

In chapter 1 we saw that special-purpose parallel architectures can be obtained in any 
one of the following ways: 

(i) using specialized processors together with a conventional interconnection 
network, 

(ii) using a custom-designed interconnection network to link standard processors, 
or 

(iii) using a combination of (i) and (ii). 

In this section we shall take the third of these approaches. Merging will be 
accomplished by a collection of very simple processors communicating through a 
special-purpose network. This special-purpose parallel architecture is known as an 
(r, s)-merging network. All the processors to be used are identical and are called 
comparators. As illustrated by Fig. 3.1, a comparator receives two inputs and produces 
two outputs. The only operation a comparator is capable of performing is to compare 
the values of its two inputs and then place the smaller and larger of the two on its top 
and bottom output lines, respectively. 

Using these comparators, we proceed to build a network that takes as input the 
two sorted sequences A = {a,,a,,. . . ,a,} and B = {b,, b,, . . . , b,} and produces as 
output a single sorted sequence C = {c,, c,, . . . , c,,,}. The following presentation is 
greatly simplified by making two assumptions: 

1. the two input sequences are of the same size, that is, r = s = n >, 1, and 
2. n is a power of 2. 

We begin by considering merging networks for the first three values of n. When 
n = 1, a single comparator clearly suffices: It produces as output its two inputs in 

SMALLER OF X AND Y 

LARGER OF X AND Y 

Figure 3.1 Comparator. 
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sorted order. When n = 2, the two sequences A = {a,, a,} and B = {b,, b,} are 
correctly merged by the network in Fig. 3.2. This is easily verified. Processor P, 
compares the smallest element of A to the smallest element of B. Its top output must 
be the smallest element in C, that is, c,. Similarly, the bottom output of P ,  must be c,. 
One additional comparison is performed by P, to produce the two middle elements of 
C. When n = 4, we can use two copies of the network in Fig. 3.2 followed by three 
comparators, as shown in Fig. 3.3 for A = {3,5,7,9} and B = {2,4,6,8}. 

In general, an (n, n)-merging network is obtained by the following recursive 
construction. First, the odd-numbered elements of A and B, that is, 
{a,, a,, a,, . . . , a,- ,) and {b,, b,, b,, . . . , b,- ,), are merged using an (42, nl2)-merging 
network to produce a sequence {dl, d,, d,, . . . , d,). Simultaneously, the even- 
numbered elements of the two sequences, {a,, a,, a,, . . . , a,} and {b,, b,, b,, . . . , b,}, 
are also merged using an (n/2,n/2)-merging network to produce :a sequence 
{el, e2,e3,. . .,en}. The final sequence {c,, c,, . . . , c,,} is now obtained from 

CI = dl, c2, = en, czi = min(di + l ,  ei), and c,,+ , = max(d,+ ,, e,) 

for i =  I,;! ,..., n-  1. 

The final comparisons are accomplished by a rank of n - 1 comparators as illustrated 
in Fig. 3.4. Note that each of the (n/2, n/2)-merging networks is constructed by 
applying the same rule recursively, that is, by using two (44, n/4)-merging networks 
followed by a rank of (n/2) - 1 comparators. 

The merging network in Fig. 3.4 is based on a method known as odd-even 
merging. That this method works in general is shown as follows. First note that 
dl = min(a,, b,) and en = max(a,, b,), which means that c, and c,, are computed 
properly. Now observe that in the sequence {dl, d,, . . . , d, } ,  i elements are smaller 
than or equal to d,,,. Each of these is an odd-numbered element of either A or B. 
Therefore, 2i elements of A and B are smaller than or equal to d,, ,. In other words, 

Figure 3.2 Merging two sequences of two elements each. 
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Figure 3.3 Merging two sequences of four elements each. 

d,+ , 2 c,~. Similarly, ei 3 c,,. On the other hand, in the sequence {c , ,  c,, . . . , c,,), 2i 
elements from A and B are smaller than or equal to c,,,,. This means that c,,,, is 
larger than or equal to ( i  + 1 )  odd-numbered elements belonging to either A or B. In 
other words, c,,+ , 2 di+ ,. Similarly, c,,,, 2 e,. Since c , ~  < c,,, ,, the preceding 
inequalities imply that cZi = min(di+ ,, e,), and cZi+,  = max(d,+ ,, e,), thus establishing 
the correctness of odd-even merging. 

Analysis. Our analysis of odd-even merging will concentrate on the time, 
number of processors, and total number of operations required to merge. 

( i )  Running Time. We begin by assuming that a comparator can read its 
input, perform a comparison, and produce its output all in one time unit. Now; let 
t(2n) denote the time required by an (n, n)-merging network to merge two sequences of 
length n each. The recursive nature of such a network yields the following recurrence 
for t(2n): 

t(2) = 1 for n = 1 (see Fig. 3.1), 

t(2n) = t(n) + 1 for n > 1 (see Fig. 3A), 

whose solution is easily seen to be t(2n) = 1 + log n. This is significantly faster than 
the best, namely, O(n), running time achievable on a sequential computer. 

( i i )  Number of Processors. Here we are interested in counting the number of 
comparators required to odd-even merge. Let p(2n) denote the number of cornpara- 
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Figure 3.4 Odd-even merging. 

tors in an (n, n)-merging network. Again, we have a recurrence: 

p(2) = 1 for n = 1 (see Fig. 3.1), 

p(2n) = 2p(n) + (n - 1) for n > 1 (see Fig. 3A), 

whose solution p(2n) = 1 + n log n is also straightforward. 

(iii) Cost. Since t(2n) = 1 + log n and p(2n) = 1 + n log n, the total number 
of comparisons performed by an (n,'n)-merging network, that is, the network's cost, is 

c(2n) = p(2n) x t(2n) 

= O(n log2n). 

Our network is therefore not cost optimal as it performs more operations than the 
O(n) sufficient to merge sequentially. 
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Discussion. In this section we presented an example of a special-purpose 
architecture for merging. These merging networks, as we called them, have the 
following interesting property: The sequence of comparisons they perform is fixed in 
advance. Regardless of the input, the network will always perform the same number of 
comparisons in a predetermined order. This is why such networks are sometimes said 
to be oblivious of their input. 

Our analysis showed that the (n, n)-merging network studied is extremely fast, 
especially when compared with the best possible sequential merging algorithm. Fbr 
example, it can merge two sequences of length 2,' elements each in twenty-one steps; 
the same result would require more than two million steps on a sequential computer. 
Unfortunately, such speed is achieved by using an unreasonable number of pro- 
cessors. Again, for n = 2,', our (n, n)-merging network would consist of over twenty 
million comparators! In addition, the architecture of the network is highly irregular, 
and the wires linking the comparators have lengths that vary with n. This suggests 
that, although theoretically appealing, merging networks would be impractical for 
large values of n. 

3.3 MERGING ON THE CREW MODEL 

Our study of odd-even merging identified a problem associated with merging 
networks in general, namely, their inflexibility. A fixed number of comparators are 
assembled in a fixed configuration to merge sequences of fixed size. Although this may 
prove adequate for some applications, it is desirable in general to have a parallel 
algorithm that adapts to the number of available processors on the parallel computer 
at hand. This section describes one such algorithm. In addition to being adaptive, the 
algorithm is also cost optimal: Its running time multiplied by the number of 
processors used equals, to within a constant multiplicative factor, the lower bound on 
the number of operations required to merge. The algorithm runs on the CREW SM 
SIMD model. It assumes the existence, and makes use of, a sequential procedure for 
merging two sorted sequences. We therefore begin by presenting this procedure. 

3.3.1 Sequential Merging 

Two sequences of numbers A = {a,, a,, . . .,a,} and B = {b,, b,, . . . , b,} sorted in 
nondecreasing order are given. It is required to merge A and B to form a third 
sequence C, also sorted in nondecreasing order. The merging process is to be 
performed by a single processor. This can be done by the following algorithm. Two 
pointers are used, one for each sequence. Initially, the pointers are positioned at 
elements a, and b,, respectively. The smaller of a,  and b ,  is assigned to c,, and the 
pointer to the sequence from which c, came is advanced one position. Again, the two 
elements pointed to are compared: The smaller becomes c, and the pointer to it is 
advanced. This continues until one of the two input sequences is exhausted; the 
elements left over in the other sequence are now copied in C. The algorithm is given in 
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what follows as procedure SEQUENTIAL MERGE. Its description is greatly 
simplified by assuming the existence of two fictional elements a,, , and b,, ,, both of 
which are equal to infinity. 

procedure SEQUENTIAL MERGE (A, B, C) 

Step 1: (1.1) ie 1 
(1.2) j + 1. 

Step 2: for k = l  to r + s  do 
if a, < bj  then (i) c, +- a, 

(ii) i t  i + 1 
else (i) c, +- bj 

(ii) j t j + l  

end if 
end for. 

The procedure takes sequences A and B as input and returns sequence C as 
output. Since each comparison leads to one element of C being defined, there are 
exactly r + s such comparisons, and in the worst case, when r = s == n, say, the 
algorithm runs in O(n) time. In view of the Q(n) lower bound on merging derived in 
section 3.1, procedure SEQUENTIAL MERGE is optimal. 

3.3.2 Parallel Merging 

A CREW SM SIMD computer consists of N processors PI, P,,  . . . , P,. It is required 
to design a parallel algorithm for this computer that takes the two sequences A and B 
as input and produces the sequence C as output, as defined earlier. Without loss of 
generality, we assume that r < s. 

It is desired that the parallel algorithm satisfy the properties stated in section 2.4, 
namely, that 

(i) the number of processors used by the algorithm be sublinear and adaptive, 
(ii) the running time of the algorithm be adaptive and significantly smaller than the 

best sequential algorithm, and 
(iii) the cost be optimal. 

We now describe an algorithm that satisfies these properties. It uses N 
processors where N 6 r and in the worst case when r = s = n runs in O((n/N) + log n) 
time. The algorithm is therefore cost optimal for N < n/log n. In addition to the basic 
arithmetic and logic functions usually available, each of the N processors is assumed 
capable of performing the following two sequential procedures: 

1. Procedure SEQUENTIAL MERGE described in section 3.3.1. 

2. Procedure BINARY SEARCH described in what follows. The procedure 
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takes as input a sequence S = {s,, s,, . . . , s,) of numbers sorted in nondecreasing 
order and a number x. If x belongs to S, the procedure returns the index k of an 
element s, in S such that x = s,. Otherwise, the procedure returns a zero. Binary 
search is based on the divide-and-conquer principle. At each stage, a comparison is 
performed between x and an element of S. Either the two are equal and the procedure 
terminates or half of the elements of the sequence under consideration are discarded. 
The process continues until the number of elements left is 0 or 1, and after at most one 
additional comparison the procedure terminates. 

procedure BINARY SEARCH (S, x ,  k) 

Step 1 :  ( 1 . 1 )  i t 1  
(1.2) h+n 
(1.3) k+O. 

Step 2: while i < h do 
(2.1) m+Li(i + h)/21 
(2.2) if x=s, then (i) k e r n  

(ii) i + h + l  
else if x < s, then h t m  - 1 

else i t m +  1 
end if 

end if 
end while. 

Since the number of elements under consideration is reduced by one-half at each step, 
the procedure requires O(1og n) time in the worst case. 

We are now ready to describe our first parallel merging algorithm for a shared- 
memory computer. The algorithm is presented as procedure CREW MERGE. 

procedure CREW MERGE (A ,  B, C) 

Step 1 :  {Select N - 1 elements of A that subdivide that sequence into N subsequences of 
approximately the same size. Call the subsequence formed by these N - 1 elements 
A'. A subsequence B' of N - 1 elements of B is chosen similarly. This step is executed 
as follows:) 
for i = 1 to N - 1 do in parallel 

Processor Pi determines af and b! from 
('.I) + ~ i ~ r / N j  

b; bib/N1 

end for. 

Step 2: {Merge A' and B' into a sequence of triples V = {o,, o,, . . . , o,,-,}, where each triple 
consists of an element of A' or B' followed by its position in A' or B' followed by the 
name of its sequence of origin, that is, A or B. This is done as follows:} 
(2.1) for i = 1 to N - 1 do in parallel 

(i) Processor Pi uses BINARY SEARCH on B' to find the smallest j such 
that a! < bi 
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(ii) if j exists then q+j -  l+(a;, i, A) 
else v i+#-  l-(ai, i, A) 

end if 
end for 

(2.2) for i = 1 to N - 1 do in parallel 
(i) Processor Pi uses BINARY SEARCH on A' to find the srnallest j such 

that bi <a; 
(ii) if j exists then oi + j- t (b i ,  i, B) 

else v i+N-  l+-(bi, i, B) 
end if 

end for. 

Step 3: {Each processor merges and inserts into C the elements of two subsequences, one 
from A and one from B. The indices of the two elements (one in A and one in B) at 
which each processor is to begin merging are first computed and stored in an array 
Q of ordered pairs. This step is executed as follows:) 
(3.1) Q(l)+(l, 1) 
(3.2) for i =2 to N do in parallel 

if v2i-2 =(a;, k, A) then processor Pi 
(i) uses BINARY SEARCH on B to find the smallest j such that bj>a;, 
(4 Q(i)+(kTrlNl, i) 

else processor Pi 

(i) uses BINARY SEARCH on A to find the smallest j such that aj>b; 
(ii) Q(~)+-(I, krs1~1) 

end if 
end for 

(3.3) for i = 1 to N do in parallel 
Processor Pi uses SEQUENTIAL MERGE and Q(i) = (x, y) to merge 
two subsequences one beginning at a, and the other at by and places the 
result of the merge in array C beginning at position x + y - 1. The 
merge continues until 

(i) an element larger than or equal to the first component of oZi is 
encountered in each of A and B (when i < N - 1) 

(ii) no elements are left in either A or B (when i = N) 
end for. 

Before analyzing the running time of the algorithm, we make the following two 
observations: 

(i) In general instances, an element ai of A is compared to an element bj of B to 
determine which is smaller; if it turns out that ai = bj ,  then the algorithm decides 
arbitrarily that ai is smaller. 

(ii) Concurrent-read operations are performed whenever procedure BINARY 
SEARCH is invoked, namely, in steps 2.1, 2.2, and 3.2. Indeed, in each of these 
instances several processors are executing a binary search over the same 
sequence. 
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Analysis. A step-by-step analysis of CREW MERGE follows: 

Step 1: With all processors operating in parallel, each processor computes two 
subscripts. Therefore this step requires constant time. 
Step 2: This step consists of two applications of procedure BINARY SEARCH 
to a sequence of length N - 1, each followed by an assignment statement. This 
takes O(log N )  time. 
Step 3: Step 3.1 consists of a constant-time assignment, and step 3.2 requires at 
most O(log s) time. To analyze step 3.3, we first observe that V contains 2N - 2 
elements that divide C into 2N - 1 subsequences with maximum size equal to 
(rr/N1 + [SIN]) .  This maximum size occurs if, for example, one element a; of A' 
equals an element bi of B'; then the rr/N1 elements smaller than or equal to a; 
(and larger than or equal to a:-,) are also smaller than or equal to b;, and 
similarly, the rs/N1 elements smaller than or equal to b; (and larger than or 
equal to b;- ,) are also smaller than or equal to a;. In step 3 each processor 
creates two such subsequences of C whose total size is therefore no larger than 
2(rr/N1 + rs/N1), except P,, which creates only one subsequence of C. It 
follows that procedure SEQUENTIAL MERGE takes at most O((r + s)/N) 
time. 

In the worst case, r = s = n, and since n 2 N, the algorithm's running time 
is dominated by the time required by step 3. Thus 

t(2n) = O((n/N) + log n). 

Since p(2n) = N ,  c(2n) = p(2n) x t(2n) = O(n + N log n), and the algorithm is 
cost optimal when N < njog n. 

Example 3.1 

Assume that a CREW SM SIMD computer with N = 4 processors is available and it is 
required to merge A = (2, 3,4,6, 11, 12, 13, 15. 16,20,22,24) and B = {I, 5, 7, 8,9, 10, 14, 
17, 18, 19, 21, 231, that is, r = s = 12. 

The two subsequences A' = {4, 12, 16) and B' = (7, 10, 18) are found in step 1 and 
then merged in step 2 to obtain 

In steps 3.1 and 3.2, Q(1) = (1, I), Q(2) = (5, 3), Q(3) = (6, 7), and Q(4) = (10, 9) are 
determined. In step 3.3 processor PI begins at elements a, = 2 and b ,  = 1 and merges all 
elements of A and B smaller than 7, thus creating the subsequence {I,  2, 3,4, 5,6)  of C. 
Similarly, processor P ,  begins at a, = 11 and b,  = 7 and merges all elements smaller 
than 12, thus creating (7, 8,9, 10, 11). Processor P ,  begins at a, = 12 and b, = 14 and 
creates (12, 13, 14,15, 16, 17). Finally P, begins at a,, = 20 and b, = 18 and creates {18, 
19,20,21, 22,23,24). The resulting sequence C is therefore { I ,  2, 3, g 5, 6,2, 8 , 9 , u ,  11, 
12, 13, 14, 15, 16, 17,@, 19, 20, 21, 22, 23, 24). The elements of A' and B' are shown - 
underlined in C. 
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3.4 MERGING ON THE EREW MODEL 

As we saw in the previous section, concurrent-read operations are performed at 
several places of procedure CREW MERGE. We now show how this procedure can 
be adapted to run on an N-processor EREW SM SIMD computer that, by definition, 
disallows any attempt by more than one processor to read from a memory location. 
The idea of the adaptation is quite simple: All we have to do is find a way to simulate 
multiple-read operations. Once such a simulation is found, it can be used by the 
parallel merge algorithm (and in general by any algorithm with multiple-read 
operations) to perform every read operation from the EREW memory. Of course, we 
require the simulation to be efficient. Simply queuing all the requests to read from a 
given memory location and serving them one after the other is surely inadequate: It 
can increase the running time by a factor of N in the worst case. On the other hand, 
using procedure BROADCAST of chapter 2 is inappropriate: A multiple-read 
operation from a memory location may not necessarily involve all processors. 
Typically, several arbitrary subsets of the set of processors attempt to gain access to 
different locations, one location per subset. In chapter 1 we described a method for 
performing the simulation in this general case. This is now presented more formally as 
procedure MULTIPLE BROADCAST in what follows. 

Assume that an algorithm designed to run on a CREW SM SIMD computer 
requires a total of M locations of shared memory. In order to simulate this algorithm 
on the EREW model with N processors, where N = 2q for q 2 1, we increase the size 
of the memory from M to M(2N - 1). Thus, each of the M locations is thought of as 
the root of a binary tree with N leaves. Such a tree has q + 1 levels and a total of 
2N - 1 nodes, as shown in Fig. 3.5 for N = 16. The nodes of the tree represent 
consecutive locations in memory. Thus if location D is the root, then its left and right 
children are D + 1 and D + 2, respectively. In general, the left and right children of 
D + x are D + 2x + 1 and D + 2x + 2, respectively. 

Assume that processor Pi wishes at some point to read from some location d(i) in 
memory. It places its request at location d(i) + (N - 1) + (i - l), a leaf of the tree 
rooted at d(i). This is done by initializing two variables local to Pi: 

1. level(i), which stores the current level of the tree reached by Pi;s request, is 
initialized to 0, and 

2. loc(i), which stores the current node of the tree reached by Pis  request, is 
initialized to (N - 1) + (i - 1). Note that Pi need only store the position in the 
tree relative to d(i) that its request has reached and not the act.ual memory 
location d(i) + (N - 1) + (i - 1). 

The simulation consists of two stages: the ascent stage and the descent stage. During 
the ascent stage, the processors proceed as follows: At each level a processor Pi  
occupying a left child is first given priority to advance its request one level up the tree. 
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Figure 3.5 Memory organization for multiple broadcasting. 

It does so by marking the parent location with a special marker, say, [i]. It then 
updates its level and location. In this case, a request at the right child is immobilized 
for the remainder of the procedure. Otherwise (i.e., if there was no processor 
occupying the left child) a processor occupying the right child can now "claim" the 
parent location. This continues until at most two processors reach level (log N) - 1. 
They each in turn read the value stored in the root, and the descent stage commences. 
The value just read goes down the tree of memory locations until every request to read 
by a processor has been honored. Procedure MULTIPLE BROADCAST follows. 

procedure MULTIPLE BROADCAST (d(l), d(2), . . . , d(N)) 

Step 1: for i = 1 to N do in parallel 
{Pi initializes level(i) and loc(i)} 
(1.1) level(i)tO 
(1.2) loc(i) + N + i - 2 
(1.3) store [i] in location d(i) + loc(i) 

end for. 

Step 2: for v = 0 to (log N) - 2 do 
(2.1) for i = 1 to N do in parallel 

{Pi at a left child advances up its tree} 
(2.1.1) x t L(loc(i) - 1)/2] 
(2.1.2) if loc(i) is odd and level(i) = v 
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then (i) loc(i) t x 
(ii) store [i] in location d(i) + loc(i) 
(iii) level(i) + level(i) + 1 

end if 
end for 

(2.2) for i = 1 to N do in parallel 
{ P i  at a right child advances up its tree if possible} 

if d(i) + x does not already contain a marker [j] for some 1 < j < N 
then (i) loc(i) t x 

(ii) store [i] in location d(i) + loc(i) 
(iii) level(i) + level(i) + 1 

end if 
end for 

end for. 

Step 3: for v = (log N) - 1 down to 0 do 
(3.1) for i = 1 to N do in parallel 

{ P i  at a left child reads from its parent and then moves down the tree} 
(3.1.1) x +- L(loc(i) - 1)/2J 
(3.1.2) y + (2 x loc(i)) + 1 
(3.1.3) if loc(i) is odd and level(i) = v 

then (i) read the contents of d(i) + x 
(ii) write the contents of d(i) + x in location 

d(i) + loc(i) 
(iii) level(i) t level(i) - 1 
(iv) if location d(i) + y contains [i] 

then loc(i) + y 
else loc(i) t y + 1 
end if 

end if 
end for 

(3.2) for i = 1 to N do in parallel 
{ P i  at a right child reads from its parent and then moves down the tree} 

if loc(i) is even and level(i) = v 
then (i) read the contents of d(i) + x 

(ii) write the contents of d(i) + x in location d(i) + loc(i) 
(iii) level(i) + level(i) - 1 
(iv) if location d(i) + y contains [i] 

then loc(i) t y 
else loc(i) t y + l 
end if 

end if 
end for 

end for. 

Step 1 of the procedure consists of three constant-time operations. Each d the ascent 
and descent stages in steps 2 and 3, respectively, requires O(1og N )  time. The overall 
running time of procedure MULTIPLE BROADCAST is therefore O(1og N) .  
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Figure 3.6 Memory contents after step 2 of procedure MULTIPLE BROADCAST. 

Example 3.2 

Let N = 16 and assume that at a given moment during the execution of a CREW parallel 
algorithm processors PI, P,, P, ,  P,, P, ,  PI , ,  PI,, and PI, need to read a quantity Q 
from a location D in memory. When simulating this multiple-read operation on an 
EREW computer using MULTIPLE BROADCAST, the processors place their requests 
at the appropriate leaves of a tree of locations rooted at D during step 1, as shown in Fig. 
3.5. Figure 3.6 shows the positions of the various processors and the contents of memory 
locations at the end of step 2. The contents of the memory locations at the end of step 3 
are shown in Fig. 3.7. 

Note that: 

1. The markers [i] are chosen so that they can be easily distinguished from data 
values such as Q. 

2. If during a multiple-read step of the CREW algorithm being simulated, a 
processor Pi does not wish to read from memory, then d(i) may be chosen 
arbitrarily among the M memory locations used by the algorithm. 

3. When the procedure terminates, the value of level(i) is negative and that of loc(i) 
is out of bounds. These values are meaningless. This is of no consequence, 
however, since level(i) and loc(i) are always initialized in step 1. 

We are now ready to analyze the running time t(2n) of an adaptation of procedure 
CREW MERGE for the EREW model. Since every read operation (simple or 
multiple) is simulated using procedure MULTIPLE BROADCAST in O(1og N) time, 
the adapted procedure is at most O(1og N) times slower than procedure CREW 
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Figure 3.7 Memory contents at end of procedure MULTIPLE BROADCAST. 

MERGE, that is, 

t(2n) = O(1og N) x O(n/N + log n) 

The algorithm has a cost of 

c(2n) = O(n log n + N log2n) 

which is not optimal. Furthermore, since procedure CREW MERGE uses O(n) 
locations of shared memory, the storage requirements of its adaptation for the EREW 
model are O(Nn). In the following section an algorithm for merging on the EREW 
model is described that is cost optimal and uses only O(n) shared-memory locations. 

3.5 A BETTER ALGORITHM FOR THE EREW MODEL 

We saw in the previous section how a direct simulation of the CRE.W merging 
algorithm on the EREW model is not cost optimal. This is due to the logarithmic 
factor always introduced by procedure MULTIPLE BROADCAST. Clearly, in order 
to match the performance of procedure CREW MERGE, another approach is needed. 
In this section we describe an adaptive and cost-optimal parallel algorithm for 
merging on the EREW SM SIMD model of computation. The algorithm merges two 
sorted sequences A = (a,, a,, . . . , a,) and B = (b,, b,, . . . , b,) into a single sequence 
C = {c1,c2,. . . , c,,,). It uses N processors P I ,  P,, . . . , P,, where 1 < N < r + s and, 
in the worst case when r = s = n, runs in O((n/N) + log N log n) time. A building block 
of the algorithm is a sequential procedure for finding the median of two sorted 
sequences. This procedure is presented in section 3.5.1. The merging algorithm itself is 
the subject of section 3.5.2. 
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3.5.1 Finding the Median of Two Sorted Sequences 

In this section we study a variant of the selection problem visited in chapter 2. Given 
two sorted sequences A = {a,, a,, . . . ,a,} and B = {b,, b,, . . . , b,), where r, s 3 1, let 
A.B denote the sequence of length m = r + s resulting from merging A and B. It is 
required to find the median, that is, the [m/2lth element, of A.B. Without actually 
forming A.B, the algorithm we are about to describe returns a pair (a,, by) that satisfies 
the following properties: 

1. Either a, or by is the median of A.B, that is, either a, or by is larger than precisely 
rm/21 - 1 elements and smaller than precisely Lm/2j elements. 

2. If a, is the median, then by is either 
(i) the largest element in B smaller than or equal to a, or 

(ii) the smallest element in B larger than or equal to a,. 
Alternatively, if by is the median, then a, is either 
(i) the largest element in A smaller than or equal to by or 
(ii) the smallest element in A larger than or equal to by. 

3. If more than one pair satisfies 1 and 2, then the algorithm returns the pair for 
which x + y is smallest. 

We shall refer to (a,, by) as the median pair of A.B. Thus x and y are the indices of 
the median pair. Note that a, is the median of A.B if either 

(i) a, > by and x + y - 1 = rm/21 - 1 or 
(ii) a, < by and m - ( x  + y - 1 )  = Lm/2J. 

Otherwise by is the median of A.B. 

Example 3.3 

Let A = {2, 5, 7, 10) and B = (1, 4, 8, 9) and observe that the median of A.B is 5 and 
belongs to A. There are two median pairs satisfying properties 1 and 2: 

(i) (a,, b,) = (5,4), where 4 is the largest element in B smaller than or equal to 5; 
(ii) (a,, b3)  = (5,8), where 8 is the smallest element in B larger than or equal to 5. 

The median pair is therefore (5, 4). 

The algorithm, described in what follows as procedure TWO-SEQUENCE 
MEDIAN, proceeds in stages. At the end of each stage, some elements are removed 
from consideration from both A and B. We denote by n, and n, the number of 
elements of A and B, respectively, still under consideration at the beginning of a stage 
and by w the smaller of Ln,/2j and LnB/2j. Each stage is as follows: The medians a and 
b of the elements still under consideration in A and in B, respectively, are compared. If 
a 2 b, then the largest (smallest) w elements of A(B) are removed from consideration. 
Otherwise, that is, if a < b, then the smallest (largest) w elements of A(B) are removed 
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from consideration. This process is repeated until there is only one element left still 
under consideration in one or both of the two sequences. The median pair is then 
determined from a small set of candidate pairs. The procedure keeps track of the 
elements still under consideration by using two pointers to each sequence: low, and 
high, in A and low, and high, in B. 

procedure TWO-SEQUENCE MEDIAN (A, B, x, y) 

Step 1: (1.1) low, + 1 
(1.2) low, + 1 
(1.3) high, + r 
(1.4) high, + s 
(1.5) n, + r 
(1.6) n, + s. 

Step 2: while n, > 1 and n, > 1 do 
(2.1) u t low, + [(high, - low, - 11/21 
(2.2) v 6 low, + r(high, - low, - 1)/21 
(2.3) w + min(CnADJ, LnB/21) 
(2.4) n, + n, - w 
(2.5) nB 6 n, - w 
(2.6) if a, 2 b, 

then (i) high, t high, - w 
(ii) low, + low, + w 

else (i) low, t low, + w 
(ii) high,+high, - w 

end if 
end while. 

Step 3: Return as x and y the indices of the pair from {a,- ,, a,, a,,, ,) x {b,.- ,, b,, b,, ,} 
satisfying properties 1-3 of a median pair. 

Note that procedure TWO-SEQUENCE MEDIAN returns the indices of the median 
pair (a,, by) rather than the pair itself. 

Example 3.4 

Let A = (10, 11, 12, 13, 14, 15, 16, 17, 18) and B = (3, 4, 5, 6, 7, 8, 19, 20, 21, 22). The 
following variables are initialized during step 1 of procedure TWO-S.EQUENCE 
MEDIAN: low, = low, = 1, high, = n, = 9, and high, = n, = 10. 

In the first iteration of step 2, u = v = 5, w = min(4 5) = 4, n, = 5, and n, = 6. 
Since a, > b,, high, =low,= 5. In the second iteration, u= 3, v = 7, w = 1nin(2,3) = 2, 
n, = 3, and n, = 4. Since a, < b,, low, = 3 and high, = 8. In the third iteration, u = 4, 
v = 6, w = min(l,2) = 1, n, = 2, and n, = 3. Since a, > b,, high, = 4 and low, = 6. In 
the fourth and final iteration of step 2, u = 3, v = 7, w = min(1,l) = 1, n, = 1, and 
n, = 2. Since a, < b,, low, = 4 and high, = 7. 

In step 3, two of the nine pairs in (11, 12, 13) x {8, 19, 20) satisfy the first two 
properties of a median pair. These pairs are (a,, b,) = (13,8) and (a,, b,) = (13,19). The 
procedure thus returns (4,6) as the indices of the median pair. 
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Analysis. Steps 1 and 3 require constant time. Each iteration of step 2 
reduces the smaller of the two sequences by half. For constants c, and c, procedure 
TWO-SEQUENCE MEDIAN thus requires c, + c,log(min{r,s)) time, which is 
O(1og n) in the worst case. 

3.5.2 Fast Merging on the EREW Model 

We now make use of procedure TWO-SEQUENCE MEDIAN to construct a parallel 
merging algorithm for the EREW model. The algorithm, presented in what follows as 
procedure EREW MERGE, has the following properties: 

1. It requires a number of processors that is sublinear in the size of the input and 
adapts to the actual number of processors available on the EREW computer. 

2. Its running time is small and varies inversely with the number of processors 
used. 

3. Its cost is optimal. 

Given two sorted sequences A = {a,, a,, . . .,a,) and B = {b,, b,, . . . , b,), the 
algorithm assumes the existence of N processors P,, P,, . . . , P,, where N is a power of 
2 and 1 < N < r + s. It merges A and B into a sorted sequence C = {c,, c,, . . . , c,,,) 
in two stages as follows: 

Stage 1: Each of the two sequences A and B is partitioned into N (possibly 
empty) subsequences A,, A,, . . . ,A, and B,, B,, . . . , B, such that 

(i) [Ail + IBil = (r + s)/N for 1 < i 6 N and 
(ii) all elements in Ai.Bi are smaller than or equal to all elements in Ai+,.Bi+ 

for 1 < i < N. 

Stage 2: All pairs Ai and Bi, 1 ,( i < N, are merged simultaneously and placed 
in C. 

The first stage can be implemented efficiently with the help of procedure TWO- 
SEQUENCE MEDIAN. Stage 2 is carried out using procedure SEQUENTIAL 
MERGE. In the following procedure A[i,j] is used to denote the subsequence 
{ai, a,, ,, . . . , aj) of A if i < j; otherwise A[i, j] is empty. We define B[i, j] similarly. 

procedure EREW MERGE (A, B, C) 

Step 1: (1.1) Processor PI obtains the quadruple (1, r, 1, s) 
(1.2) for j = 1 to log N do 

for i = 1 to 2'-' do in parallel 
Processor Pi having received the quadruple (e, f, g, h)  
(1.2.1) {Finds the median pair of two sequences) 

TWO -SEQUENCE MEDIAN (A [e ,  f], B[g, h ] ,  x, y) 
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(1.2.2) {Computes four pointers p,,  p,, q , ,  and q ,  as follows:} 
if a, is the median 
then (i) p, t x  

(ii) q l  +- x + 1 
(iii) if by < a, then (a) p, t y  

(b) 92 +- Y  + 1 
else (a) p, + y - 1 

(b) 9 ,  + Y  
end if 

else (4 P, Y 
(ii) q ,  + y + 1 

(iii) if a, < by then (a) p, + x 
(b) 91 c x  + 1 

else(a) p , t x -  1 
(b) 9 1  + x  

end if 
end if 
(1.2.3) Communicates the quadruple (e, p,,  g, p,) to P,, - 
(1.2.4) Communicates the quadruple (q , ,  f, q,, h) to P2,i 

end for 
end for. 

Step 2: for i = 1 to N do in parallel 
Processor Pi having received the quadruple (a, b, c, d) 

(2.1) w + 1 + ( ( i  - 1Xr + s))/N 
(2.2) z + min{i(r + s)/N, (r + s)} 
(2.3) SEQUENTIAL MERGE (A[a, b], B[c, dl, CCw, z]) 

end for. 

It should be clear that at  any time during the execution of the procedure the 
subsequences on  which processors are working are all disjoint. Hence, no concurrent- 
read operation is ever needed. 

Example 3.5 

Let A = (10, 11, 12, 13,14, 15, 16, 17, 181, B = {3,4,5,6,7, 8, 19,20,21,22)., and N = 4. 
In step 1.1 processor PI  receives (1, 9, 1, 10). During the first iteration of step 1.2 

processor P I  determines the indices of the median pair of A and B, namely, (4,6). It keeps 
(1,4,1,6) and communicates (5,9,7,10) to P,. During the second iteration, PI computes 
the indices of the median pair of A[1,4] = {10,1l, 12,131 and B[1,6] = {3,4,5,6,7,8}, 
namely, 1 and 5. Simultaneously, P,  does the same with A[5,9] = {14,15,16,17, 18) and 
B[7,10] = {19,20,21,22) and obtains 9 and 7. Processor P I  keeps (1,0,1,5) and 
communicates (1,4,6,6) to P,. Similarly, P,  communicates (5,9,7,6) to P,  and 
(10,9,7,10) to P,. 

In step 2, processors P,  to P,  simultaneously create C[1,19] as follows. Having 
last received (1,0,1,5), PI  computes w = 1 and z = 5 and copies B[1,5] = {3,4,5,6,7} 
into C[1,5]. Similarly, P,, having last received (1,4,6,6), computes w = 6 and z = 10 and 
merges A[1, 41 and B[6, 63 to obtain C[6, 101 = (8, 10, 11, 12, 13). Processor P3,  
having last received (5, 9, 7, 6), computes w = 11 and z = 15 and copies 
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A[5,9] = {14,15,16,17,18) into C[11,15]. Finally P,, having last received (10,9,7, lo), 
computes w = 16 and z = 19 and copies B[7,10] = {19,20,21,22) into C[16,19]. 

Analysis. I n  order t o  analyze the time requirements of procedure EREW 
MERGE, note that in step 1.1 processor PI reads from memory in constant time. 
During the j th  iteration of step 1.2, each processor involved has to find the indices of 
the median pair of (r + s)/2j-' elements. This is done using procedure TWO- 
SEQUENCE MEDIAN in O(log[(r + s)/2j-']) time, which is O(log(r + S)). The two 
other operations in step 1.2 take constant time as they involve communications 
among processors through the shared memory. Since there are log N iterations of step 
1.2, step 1 is completed in O(1og N x log(r + s)) time. 

In step 2 each processor merges a t  most (r + s)/N elements. This is done using 
procedure SEQUENTIAL MERGE in O((r + s)/N) time. Together, steps 1 and 2 take 
O((r + s)/N + log N x log(r + s)) time. In the worst case, when r = s = n, the time 
required by procedure EREW MERGE can be expressed as 

yielding a cost of c(2n) = O(n + N log2n). In view of the R(n) lower bound on the 
number of operations required to  merge, this cost is optimal when N < nllog2n. 

3.6 P R O B L E M S  

3.1 The odd-even merging network described in section 3.2 is just one example from a wide 
class of merging networks. Show that, in general, any (r,s)-merging network built of 
comparators must require n(log(r + s)) time in order to completely merge two sorted 
sequences of length r and s, respectively. 

3.2 Show that, in general, any (r, s)-merging network must require R(s log r) comparators 
when r < s. 

3.3 Use the results in problems 3.1 and 3.2 to draw conclusions about the running time and 
number of comparators needed by the (n, n) odd-even merging network of section 3.2. 

3.4 The odd-even merging network described in section 3.2 requires the two input sequences 
to be of equal length n. Modify that network so it becomes an (r,s)-merging network, 
where r is not necessarily equal to s. 

3.5 The sequence of comparisons in the odd-even merging network can be viewed as a 
parallel algorithm. Describe an implementation of that algorithm on an SIMD computer 
where the processors are connected to form a linear array. The two input sequences to be 
merged initially occupy processors P,  to P, and P,,, to P,, respectively. When the 
algorithm terminates, Pi should contain the ith smallest element of the output sequence. 

3.6 Repeat problem 3.5 for an m x m mesh-connected SIMD computer. Here the two 
sequences to be merged are initially horizontally adjacent, that is, one sequence occupies 
the upper part of the mesh and the second the lower part, as shown in Fig. 3.8(a). The 
output should be returned, as in Fig. 3.8(b), that is, in row-major order: The ith element 
resides in row j and column k, where i = jm + k + 1. Note that for simplicity, only the 
processors and their contents are shown in the figure, whereas the communications links 
have been omitted. 
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SEQUENCE 1 r 
SEQUENCE 2 r 

F i p e  3.8 Merging two horizontal sequences on mesh-connected SIMD computer. 

3.7 Repeat problem 3.6 for the case where the two input sequences are initially vertically 
adjacent, that is, one sequence occupies the left part of the mesh and the second the right 
part, as shown in Fig. 3.9. The result of the merge should appear as in Fig. 3.8(b). 

3.8 A sequence {a,, a,, . . . ,a,,} is said to be bitonic if either 
(i) there is an integer 1 < j < 2n such that 

(ii) the sequence does not initially satisfy condition (i) but can be shifted cyclically until 
condition (i) is satisfied. 
For example, {2,5,8,7,6,4,3,1} is a bitonic sequence as it satisfies condition (i). Similarly, 
the sequence (2, 1, 3, 5, 6, 7, 8,4}, which does not satisfy condition (i), is also bitonic as it 
can be shifted cyclically to obtain (1, 3, 5, 6, 7, 8, 4, 2). Let {a,,a,,. . . ,a,,} be a bitonic 
sequence and let d, = min{a,,a,+,} and ei = max{ai, a,,,} for 1 < i < n. Show that 
(a) {dl, d,, . . . , d,) and {el, e,, . . .,en) are each bitonic and 
(b) max{dl, d,, . . . , d,} < min{e,, e,,. . . ,en}. 

3.9 Two sequences A = {a,, a,,. . .,a,} and B = (a,,,, a,,,, . ..,a,,} are given that when 
concatenated form a bitonic sequence {a,, a,, . . . , a,,}. Use the two properties of bitonic 
sequences derived in problem 3.8 to design an (n, n)-merging network for merging A and B. 

Figure 3.9 Merging two vertical se- 
quences on mesh-connected SIMD 

SEQUENCE 1 SEQUENCE 2 Computer. 
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Analyze the running time and number of comparators required. How does your network 
compare with odd-even merging in those respects? 

3.10 Is it necessary for the bitonic merging network in problem 3.9 that the two input sequences 
be of equal length? 

3.11 The sequence of comparisons in the bitonic merging network can be viewed as a parallel 
algorithm. Repeat problem 3.5 for this algorithm. 

3.12 Repeat problem 3.6 for the bitonic merging algorithm. 
3.13 Repeat problem 3.7 for the bitonic merging algorithm. 
3.14 Design an algorithm for merging on a tree-connected SIMD computer. The two input 

sequences to be merged, of length r and s, respectively, are initially distributed among the 
leaves of the tree. Consider the two following situations: 
(i) The tree has at  least r + s leaves; initially leaves 1,. . . , r store the first sequence and 

leaves r + I , .  . . , r + s store the second sequence, one element per leaf. 
(ii) The tree has fewer than r + s leaves; initially, each leaf stores a subsequence of the 

input. 
Analyze the running time and cost of your algorithm. 

3.15 The running time analysis in problem 3.14 probably indicates that merging on the tree is 
no faster than procedure SEQUENTIAL MERGE. Show how merging on the tree can be 
more appealing than sequential merging when several pairs of sequences are queued for 
merging. 

3.16 Consider the following variant of a tree-connected SIMD computer. In addition to the 
edges of the tree, two-way links connect processors at the same level (into a linear array), 
as shown in Fig. 3.10 for a four-leaf tree computer. Assume that such a parallel computer, 
known as a pyramid, has n processors at  the base storing two sorted sequences of total 
length n, one element per processor. Show that R(n/log n) is a lower bound on the time 
required for merging on the pyramid. 

3.17 Develop a parallel algorithm for merging two sequences of total length n on a pyramid 
with n base processors. Analyze the running time of your algorithm. 

APEX 

BASE 

Figure 3.10 Processor pyramid. 
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3:18 Procedure CREW MERGE assumes that N, the number of processors available to merge 
two sequences of length r and s, respectively, is smaller than or equal to r when r < s. 
Modify the procedure so it can handle the case when r < N < s. 

3.19 Modify procedure CREW MERGE to use N > s 3 r processors. Analyze the running 
time and cost of the modified procedure. 

3.20 Show that procedure CREW MERGE can be simulated on an EREW computer in 
O((n/N) + log2n) time if a way can be found to distinguish between simple reat1 operations 
(each processor needs to gain access to a different memory location) and multiple-read 
operations. 

3.21 Establish the correctness of procedure TWO-SEQUENCE MEDIAN. 
3.22 Modify procedure TWO-SEQUENCE MEDIAN so that given two sequences A and B of 

length r and s, respectively, and an integer 1 < k < r + s, it returns the kth smallest 
element of A.B. Show that the running time of the new procedure is the same as that of 
procedure TWO-SEQUENCE MEDIAN. 

3.23 Establish the correctness of procedure EREW MERGE. 
3.24 Procedure EREW MERGE assumes that N, the number of processors available, is a 

power of 2. Can you modify the procedure for the case where N is not a power of 2? 
3.25 Can the range of cost optimality of procedure EREW MERGE, namely, N <I n/log2n, be 

expanded to, say, N < n/log n? 
3.26 Can procedure EREW MERGE be modified (or a totally new algorithm for the EREW 

model be developed) to match the O((n/N) + logn) running time of procedure CREW 
MERGE? 

3.27 Using the results in problems 1.6 and 1.10, show that an algorithm for an N-processor 
EREW SM SIMD computer requiring O(N) locations of shared memory and time T can 
be simulated on a cube-connected network with the same number of processors in time 
T x O(log2~). 

3.28 Analyze the memory requirements of procedure EREW MERGE. Then, assuming that 
N = r + s, use the result in problem 3.27 to determine whether the procedure can be 
simulated on a cube with N processors in O(log4N) time. 

3.29 Assume that r + s processors are available for merging two sequences A and B of length r 
and s, respectively, into a sequence C. Now consider the following simpler variant of 
procedure CREW MERGE. 

for i = 1 t o  r + s do in parallel 
P,finds the i th smallest element of A.B (using the procedure in problem 3.22) and places it 
in the i th position of C 

end for. 

Analyze the running time and cost of this procedure. 
330 Adapt the procedure in problem 3.29 for the case where N processors are available, where 

N < r + s. Compare the running time and cost of the resulting procedure to those of 
procedure CREW MERGE. 

3.31 Develop a parallel merging algorithm for the CRCW model. 
3.32 Show how each of the parallel merging algorithms studied in this chapter can lead to a 

parallel sorting algorithm. 
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3.33 Modify procedure MULTIPLE BROADCAST to obtain a formal statement of procedure 
MULTIPLE STORE described in section 1.2.3.1. Provide a different version of your 
procedure for each of the write conflict resolution policies mentioned in chapter 1. 

3.7 B lBL lOGRAPHlCAL  R E M A R K S  

Merging networks are discussed in [Akl 11, [Batcher], [Hong], [Knuth], [Per]], [Tseng], and 
[Yao]. The odd-even and bitonic merging networks were first proposed in [Batcher]. These 
two networks are shown to be asymptotically the best possible merging networks with respect 
to their running time (in [Hong]) and number of comparators needed (in [Yao]). Various 
implementations of the odd-even and bitonic merging algorithms on one- and two-dimensional 
arrays of processors are described in [Kumar], [Nassimi], and [Thompson]. 

Procedure CREW MERGE is based on ideas presented in [Shiloach]. A second parallel 
merging procedure for the CREW model when N 2 s 2 r is described in [Shiloach] whose 
running time is O((logr)/log(N/s)). Ideas similar to those in [Shiloach] are presented in 
[Barlow]. These results are improved in [Borodin] and [Kruskal]. It is shown in [Borodin] 
how r + s processors can merge two sequences of length r and s, respectively, where r 6 s in 
O(log log r) time. An adaptive algorithm is described in [Kruskal] that uses N < r + s 
procissdrs and runs in time O((r + s)/N + log[(r + s)/N] + log log N). When r = s = n and 
N = n/log log n, this last algorithm runs in O(log log n) time and is therefore cost optimal. 

The concept of multiple broadcasting is attributed to [Eckstein]. Let A be an algorithm 
designed to run in time t and spaces on an N-processor CREW SM SIMD computer. As shown 
in section 3.4, procedure MULTIPLE BROADCAST allows A to be simulated on an N- 
processor EREW SM SIMD computer in time O(t x log N) and space O(s x p). In [Vishkin] 
ind [Wah] variants of this procedure are given that perform the simulation using only O(s + p) 
space. Procedures TWO-SEQUENCE MEDIAN and EREW MERGE first appeared in 
[Akl 21. Algorithms for merging on a tree and a pyramid are given in [Akl 11 and [Stout], 
respectively. 

Three parallel merging algorithms are described in [Valiant] to run on the comparison 
model of computation where only comparisons among input elements are counted in analyzing 
the running time of an algorithm. The first merges two lists of length rand s, respectively, where 
r < s, using ( r ~ ) ' ' ~  processors in O(log1ogr) time. The second uses ~ ( r s ) ' ' ~  processors, where 
c >, 2, and runs in O(log log r - log log c) time. The third uses N processors, where N < r, and 
runs in O((r + s)/N + log[(rslog N)/N]). A fourth algorithm for the comparison model is 
described in [Gavril] that uses N 6 r processors and runs in O(log r + r/N + (r/N)log s/r) time. 
An R(log log n) lower bound on the time required to merge two sequences of length n each on 
the comparison model is derived in [Borodin]. Essentially the same lower bound is obtained in 
[Haggkvist]. It is interesting to note that this lower bound is matched by the CREW algorithm 
in [Kruskal] mentioned earlier where all operations (not just comparisons) are counted. 
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Sorting 

4.1 INTRODUCTION 

In the previous two chapters we described parallel algorithms for two comparison 
problems: selection and merging. We now turn our attention to a third such problem: 
sorting. Among all computational tasks studied by computer scientists over the past 
forty years, sorting appears to have received the most attention. Entire books have 
been devoted to the subject. And although the problem and its many solutions seem to 
be quite well understood, hardly a month goes by without a new article appearing in a 
technical journal that describes yet another facet of sorting. There are two reasons for 
this interest. The problem is important to practitioners, as sorting data is at the heart 
of many computations. It also has a rich theory: The design and analysis of' algorithms 
is an important area of computer science today thanks mainly to the early work on 
sorting. 

The problem is defined as follows. We are given a sequence S = (s,, s,, . . . , s,) of 
n items on which a linear order < is defined. The elements of S are initially in random 
order. The purpose of sorting is to arrange the elements of S into a new sequence 
S' = is;, s;, . . . , sb) such that s: < s:,, for i = 1,2,. . . , n - 1. We saw in chapter 1 
(example 1.10) that any algorithm for sorting must require fl(n log n) operations in the 
worst case. As we did in the previous two chapters, we shall assume henceforth, 
without loss of generality, that the elements of S are numbers (of arbitrary size) to be 
arranged in nondecreasing order. 

Numerous algorithms exist for sorting on a sequential computational model. 
One such algorithm is given in what follows as the recursive procedure 
QUICKSORT. The notation a o b means that the variables a and b exchange their 
values. 

procedure QUICKSORT (S) 

if IS1 = 2 and s, < s, 
then s, ++ s2 
else if IS1 > 2 then 

(1) {Determine rn, the median element of S )  
SEQUENTIAL SELECT (s, rls1121) 
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( 2 )  {Split S into two subsequences S ,  and S,} 
(2.1) S ,  + {s,: s, G m} and IS,[ = rlS1/21 
(2.2) S ,  + {si: si 2 m} and IS,I = LIS1/2J 

( 3 )  Q U I C K S O R T ( S , )  
( 4 )  Q U I C K S O R T ( S , )  

end if 
end if. 

At each level of the recursion, procedure QUICKSORT finds the median of a 
sequence S and then splits S into two subsequences S, and S, of elements smaller than 
or equal to and larger than or equal to the median, respectively. The algorithm is now 
applied recursively to each of S, and S,. This continues until S consists of either one 
or two elements, in which case recursion is no longer needed. We also insist that 
(S,I = rlS1/21 and IS,I = LlS1/2_( to ensure that the recursive calls to procedure 
QUICKSORT are on sequences smaller than S so that the procedure is guaranteed to 
terminate when all elements of S are equal. This is done by placing all elements of S 
smaller than m in S,; if IS, I < rJS1/21, then elements equal to m are added to S,  until 
IS,I = rlS1/21. From chapter 2 we know that procedure SEQUENTIAL SELECT 
runs in time linear in the size of the input. Similarly, creating S, and S, requires one 
pass through S, which is also linear. 

For some constant c, we can express the running time of procedure 
QUICKSORT as 

= O(n log n), 

which is optimal. 

Example 4.1 

Let S = (6, 5 , 9 , 2 , 4 , 3 ,  5,  1, 7,5, 8 ) .  The first call to procedure Q U I C K S O R T  produces 5 
as the median element of S ,  and hence S ,  = { 2 , 4 , 3 , 1 , 5 , 5 )  and S ,  = { 6 , 9 , 7 , 8 , 5 ) .  Note 
that S ,  = = 6 and S ,  = L ~ J  = 5.  A recursive call to Q U I C K S O R T  with S ,  as input 
produces the two subsequences { 2 , 1 , 3 }  and { 4 , 5 , 5 } .  The second call with S,  as input 
produces {6,5,7} and { 9 , 8 } .  Further recursive calls complete the sorting of these 
sequences. 

Because of the importance of sorting, it was natural for researchers to also 
develop several algorithms for sorting on parallel computers. In this chapter we study 
a number of such algorithms for various computational models. Note that, in view of 
the R(n log n) operations required in the worst case to sort sequentially, no parallel 
sorting algorithm can have a cost inferior to O(n log n). When its cost is O(n log n), a 
parallel sorting algorithm is of course cost optimal. Similarly, a lower bound on the 
time required to sort using N processors operating in parallel is R((n log n) /N)  for 
N < n log n. 

We begin in section 4.2 by describing a special-purpose parallel architecture for 
sorting. The architecture is a sorting network based on the odd-even merging 
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algorithm studied in chapter 3. In section 4.3 a parallel sorting algorithm is presented 
for an SIMD computer where the processors are connected to form a linear array. 
Sections 4.4-4.6 are devoted to the shared-memory SIMD model. 

4.2 A NETWORK FOR SORTING 

Recall how an (r, s)-merging network was constructed in section 3.2 for merging two 
sorted sequences. It is rather straightforward to use a collection of merging networks 
to build a sorting network for the sequence S = {s,, s,, . . . , s,), where n is a power of 2. 
The idea is the following. In a first stage, a rank of n/2 comparators is used to create 
n/2 sorted sequences each of length 2. In a second stage, pairs of these are now merged 
into sorted sequences of length 4 using a rank of (2,2)-merging networks. Again, in a 
third stage, pairs of sequences of length 4 are merged using (4,4)-merging networks 
into sequences of length 8. The process continues until two sequences of length n/2 
each are merged by an (42, n/2)-merging network to produce a single sorted sequence 
of length n. The resulting architecture is known as an odd-even sorting network and is 
illustrated in Fig. 4.1 for S = {8,4,7,2, 1,5,6,3). Note that, as in the case of merging, 
the odd-even sorting network is oblivious of its input. 

Analysis. As we did for the merging network, we shall analyze the running 
time, number of comparators, and cost of the odd-even sorting network. Since the size 
of the merged sequences doubles after every stage, there are log n stages in all. 

( i )  Running Time. Denote by 42') the time required in the ith stage to merge 
two sorted sequences of 2'-' elements each. From section 3.2 we have the recurrence 

s(2) = 1 for i = 1, 

~(2')  = s(2' - ') + 1 for i > 1, 

whose solution is s(2') = i. Therefore, the time required by an odd-even sorting 
network to sort a sequence of length n is 

logn 

t(n) = C s(2') = O(log2n). 
i =  1 

Note that this is significantly faster than the (optimal) sequential running time of 
O(n log n) achieved by procedure QUICKSORT. 

(ii) Number of Processors. Denote by q(2') the number of comparators 
required in the ith stage to merge two sorted sequences of 2'-' elements each. From 
section 3.2 we have the recurrence 

q(2) = 1 for i = 1, 

q(2i)= 2q(2i-1)+ 2'-I - 1 for i > 1, 

whose solution is g(2') = (i - 1)2'-l + 1. Therefore, the number of comparators 
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needed by an odd-even sorting network to sort a sequence of length n is 

logn 

p(n) = C 2 (low) - iq(2i) 
i =  1 

(iii) Cost. Since t(n) = O(log2n) and p(n) = O(n log2n), the total number of 
comparisons performed by an odd-even sorting network, that is, the network's cost, is 

Our sorting network is therefore not cost optimal as it performs more operations than 
the O(n log n) sufficient to sort sequentially. 

Since the odd-even sorting network is based on the odd-even merging one, the 
remarks made in section 3.2 apply here as well. In particular: 

(i) The network is extremely fast. It can sort a sequence of length 220 within, on the 
order of, (20)2 time units. This is to be contrasted with the time required by 
procedure QUICKSORT, which would be in excess of 20 million time units. 

(ii) The number of comparators is too high. Again for n = 220, the network would 
need on the order of 400 million comparators. 

(iii) The architecture is highly irregular and the wires linking the comparators have 
lengths that vary with n. 

We therefore reach the same conclusion as for the merging network of section 3.2: The 
odd-even sorting network is impractical for large input sequences. 

4.3 SORTING O N  A LINEAR ARRAY 

In this section we describe a parallel sorting algorithm for an SIMD computer where 
the processors are connected to form a linear array as depicted in Fig. 1.6. The 
algorithm uses n processors P,, P,, . . . , Pn to sort the sequences S = {s,, s2, . . . , s,). At 
any time during the execution of the algorithm, processor Pi holds one element of the 
input sequence; we denote this element by xi for all 1 < i f n. Initially xi = si. It is 
required that, upon termination, xi be the ith element of the sorted sequence. The 
algorithm consists of two steps that are performed repeatedly. In the first step, all odd- 
numbered processors Pi obtain xi+, from Pi + ,. If xi > xi+ ,, then P,, and Pi+ , 
exchange the elements they held at the beginning of this step. In the second step, all 
even-numbered processors perform the same operations as did the odd-numbered 
ones in the first step. After rn/21 repetitions of these two steps in this order, no further 
exchanges of elements can take place. Hence the algorithm terminates with xi < xi+ 
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for all 1 < i < n - 1. The algorithm is given in what follows as procedure ODD- 
EVEN TRANSPOSITION. 

procedure ODD-EVEN TRANSPOSITION (S) 
for j = 1 to [n/21 do 

( 1 )  for i = 1,  3, .  . . ,2Ln/2_1 - 1 do in parallel 
if xi > x i + ,  
then x i - x i + ,  
end if 

end for 
(2) for i = 2,4,.  . . ,2L(n - 11/21 do in parallel 

if x i  > x i + ,  
then x i - x i + ,  
end if 

end for 
end for. 

Example 4.2 

Let S = (6, 5,9,2,4, 3, 5, 1, 7, 5,8). The contents of the linear array for this input during 
the execution of procedure ODD-EVEN TRANSPOSITION are illustrated in Fig. 4.2. 
Note that although a sorted sequence is produced after four iterations of steps 1 and 2, 
two more (redundant) iterations are performed, that is, a total of ryl as required by the 
procedure's statement. /J 

Analysis. Each of steps 1 and 2 consists of one comparison and two routing 
operations and hence requires constant time. These two steps are executed rn/21 
times. The running time of procedure ODD-EVEN TRANSPOSITION is therefore 
t(n) = O(n). Since p(n) = n, the procedure's cost is given by c(n) = p(n) x t(n) = O(n2), 
which is not optimal. 

From this analysis, procedure ODD-EVEN TRANSPOSITION does not 
appear to be too attractive. Indeed, 

(i) with respect to procedure QUICKSORT, it achieves a speedup of O(1og n) only, 
(ii) it uses a number of processors equal to the size of the input, which is 

unreasonable, and 
(iii) it is not cost optimal. 

The only redeeming feature of procedure ODD-EVEN TRANSPOSITION 
seems to be its extreme simplicity. We are therefore tempted to salvage its basic idea in 
order to obtain a new algorithm with optimal cost. There are two obvious ways for 
doing this: either (1) reduce the running time or (2) reduce the number of processors 
used. The first approach is hopeless: The running time of procedure ODD-EVEN 
TRANSPOSITION is the smallest possible achievable on a linear array with n 
processors. To see this, assume that the largest element in S is initially in P ,  and must 
therefore move n - 1 steps across the linear array before settling in its final position in 
P,. This requires O(n) time. 
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'1 '2 '6 '7 '8 '9 '10 '11 

INITIALLY y m  
AFTER STEP 

(1) 

Figure 4.2 Sorting sequence of eleven elements using procedure ODD-EVEN 
TRANSPOSITION. 

Now consider the second approach. If N processors, where N < n, are available, 
then they can simulate the algorithm in n x t (n) /N time. The cost remains n x t(n), 
which as we know is not optimal. A more subtle simulation, however, allows us to 
achieve cost optimality. Assume that each of the N processors in the linear array holds 
a subsequence of S of length n /N .  (It may be necessary to add some dummy elements 
to S if n is not a multiple of N.)  In the new algorithm, the comparison-exchange 
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operations of procedure ODD-EVEN TRANSPOSITION are now replaced with 
merge-split operations on subsequences. Let Si  denote the subsequence held by 
processor Pi. Initially, the Si are random subsequences of S.  In step 1,  each Pi sorts Si  
using procedure QUICKSORT. In step 2.1 each odd-numbered processor Pi merges 
the two subsequences Si  and Si+ ,  into a sorted sequence S,! = {s ; ,  s;, . . . , It 
retains the first half of S! and assigns to its neighbor P i + ,  the second half. Step 2.2 is 
identical to 2.1 except that it is performed by all even-numbered processors. Steps 2.1 
and 2.2 are repeated alternately. After rN/21 iterations no further exchange of 
elements can take place between two processors. The algorithm is given in what 
follows as procedure MERGE SPLIT. When it terminates, the sequence S = S , ,  
S,, . . . , S N  is sorted. 

procedure MERGE SPLIT ( S )  

Step 1: for i = 1 to N do in parallel 
QUICKSORT (S i )  

end for. 

Step 2: for j = 1 to rN/21 do 
(2.1) for i = 1, 3,. . . ,2LN/2J - 1 do in parallel 

( i) SEQUENTIAL MERGE (Si ,  Si+ St!) 
(ii) Si + {s;, s; ,  . . . , 

(iii) Si + i +- { s & / N )  + 1, s(.,N) + 2 ,  . . . r s; . ,N)  

end for 
(2.2) for i = 2, 4,.  . . ,2L(N - 1)/2] do in parallel 

(i) SEQUENTIAL MERGE (Si ,  Si+ ,, Sl) 
(ii) Si + {s;, s; ,  . . . , s:,,) 
(iii) Si + 1 {s ; , , /N)  + 1, ~ l . 1 ~ )  + 2 . . . , s; " ,N)  

end for 
end for. 

Example 4.3 

Let S = {8, 2, 5, 10, 1, 7,  3, 12, 6, 1 1 ,  4, 9 )  and N = 4. The contents of the various 
processors during the execution of procedure MERGE SPLIT for this input is illustrated 
in Fig. 4.3. 

Analysis. Step 1 requires O((n/N)log(n/N)) steps. Transferring S i + l  to Pi,  
merging by SEQUENTIAL MERGE, and returning S i + ,  to P i + ,  all require O(n/N)  
time. The total running time of procedure MERGE SPLIT is therefore 

= O((n log n ) /N )  + O(n), 

and its cost is 

c(n) = O(n log n) + O(nN), 

which is optimal when N < log n. 
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Figure 4.3 Sorting sequence of twelve elements using procedure MERGE SPILIT. 

{11,4,9) 

AFTER STEP 

4.4 SORTING ON THE CRCW MODEL 

INITIALLY 

It is time to turn our attention to the shared-memory SIMD model. In the present and 
the next two sections we describe parallel algorithms for sorting on the various 
incarnations of this model. We begin with the most powerful submodel, the CRCW 
SM SIMD computer. We then proceed to the weaker CREW model (section 4.9, and 
finally we study algorithms for the weakest shared-memory computer, namely, the 
EREW model (section 4.6). 

Whenever an algorithm is to be designed for the CRCW model of computation, 
one must specify how write conflicts, that is, multiple attempts to write into the same 
memory location, can be resolved. For the purposes of the sorting algorithm to be 
described, we shall assume that write conflicts are created whenever several processors 

1 

{8,2,5) (1017)  

- 

{3,12,6) - - 

I2, 5, 81 

- 

(3, 6, 121 {I. 7, 10) 
- 

{4, 9, 1 1 1  I 
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attempt to write potentially different integers into the same address. The conflict is 
resolved by storing the sum of these integers in that address. 

Assume that n2 processors are available on such a CRCW computer to sort the 
sequence S = { s , ,  s2,  . . . , s,). The sorting algorithm to be used is based on the idea of 
sorting by enumeration: The position of each element si of S in the sorted sequence is 
determined by computing c i ,  the number of elements smaller than it. If two elements si 
and sj are equal, then si is taken to be the larger of the two if i > j; otherwise s j  is the 
larger. Once all the ci have been computed, si is placed in position 1 + ci of the sorted 
sequence. To help visualize the algorithm, we assume that the processors are arranged 
into n rows of n elements each and are numbered as shown in Fig. 4.4. The shared 
memory contains two arrays: The input sequence is stored in array S, while the counts 
c i  are stored in array C. The sorted sequence is returned in array S. The ith row of 
processors is "in charge" of element s i :  Processors P(i, I), P(i, 2), . . . , P(i, n) compute ci 
and store si in position 1 + ci of S.  The algorithm is given as procedure CRCW SORT: 

procedure CRCW SORT (S )  

Step 1: .for i  = 1 to n do in parallel 
for j = 1 to n do in parallel 

if (si > sj)  or (si = sj  and i > j )  
then P(i, j )  writes 1 in ci 
else P(i, j )  writes 0 in ci 
end if 

end for --- 
end for. 

Step 2: for i = 1 to n do in parallel 
P(i, 1 )  stores si in position 1 + ci of S 

end for. 
Example 4.4 

Let S = {5,2,4, 5). The two elements of S that each of the 16 processors compares and 
the contents of arrays S and C after each step of procedure CRCW SORT are shown in 
Fig. 4.5. 

Analysis. Each of steps 1 and 2 consists of an operation requiring constant 
time. Therefore t(n) = O(1). Since p(n) = n2, the cost of procedure CRCW SORT is 

which is not optimal. 
We have managed to sort in constant time on an extremely powerful model that 

1. allows concurrent-read operations; that is, each input element si is read 
simultaneously by all processors in row i and all processors in column i; 

2. allows concurrent-write operations; that is, 
(i) all processors in a given row are allowed to write simultaneously into the 

same memory location and 
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MEMORY 

C 

Figure 4.4 Processor and memory organization for sorting on CRCW SM SIMD model. 

(ii) the write conflict resolution process is itself very powerful-all numbers to 
be stored in a memory location are added and stored in constant time; 

and 
3. uses a very large number of processors; that is, the number of processors grows 

quadratically with the size of the input. 

For these reasons, particularly the last one, the algorithm is most likely to be of no 
great practical value. Nevertheless, procedure CRCW SORT is interesting in its own 
right: It demonstrates how sorting can be accomplished in constant time on a model 
that is not only acceptable theoretically, but has also been proposed for a number of 
contemplated and existing parallel computers. 
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INITIALLY 

(dl 

AFTER AFTER 
STEP 1 STEP 2 

Figure 4.5 Sorting sequence of four elements using procedure CRCW SORT 

4.5 SORTING O N  THE CREW MODEL 

In this section we attempt to deal with two of the objections raised with regards to 
procedure CRCW SORT: its excessive use of processors and its tolerance of write 
conflicts. Our purpose is to design an algorithm that is free of write conflicts and uses a 
reasonable number of processors. In addition, we shall require the algorithm to also 
satisfy our usual desired properties for shared-memory SIMD algorithms. Thus the 
algorithm should have 

(i) a sublinear and adaptive number of processors, 
(ii) a running time that is small and adaptive, and 

(iii) a cost that is optimal. 

In sequential computation, a very efficient approach to sorting is based on the 
idea of merging successively longer sequences of sorted elements. This approach is 
even more attractive in parallel computation, and we have already invoked it twice in 
this chapter in sections 4.2 and 4.3. Once again we shall use a merging algorithm in 
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order to sort. Procedure CREW MERGE developed in chapter 3 will serve as a basis 
for the CREW sorting algorithm of this section. The idea is quite simple. Assume that 
a CREW SM SIMD computer with N processors PI, P,, . . . , P ,  is to be used to sort 
the sequence S = {s,, s,, . . . , s,), where N < n. We begin by distributing the elements 
of S evenly among the N processors. Each processor sorts its allocated subsequence 
sequentially using procedure QUICKSORT. The N sorted subsequenc:es are now 
merged pairwise, simultaneously, using procedure CREW MERGE for each pair. The 
resulting subsequences are again merged pairwise and the process continues until one 
sorted sequence of length n is obtained. 

The algorithm is given in what follows as procedure CREW SORT. In it we 
denote the initial subsequence of S allocated to processor Pi by Si. Subsequently, SF is 
used to denote a subsequence obtained by merging two subsequences and the set of 
processors that performed the merge. 

procedure CREW SORT ( S )  

Step 1:  for i = 1 to N do in parallel 
Processor Pi 
(1.1) reads a distinct subsequence Si of S of size n /N 
(1.2) QUICKSORT (Si )  
(1.3) Sf + Si 
(1.4) P f  + { P i )  

em1 for. 

Step 2: (2.1) u t 1 
(2.2) v t N 
(2.3) while v > 1 do 

(2.3.1) for m = 1 to LvI2J do in parallel 
(i) P;'' t P i , - ,  u P;,  

(i i) The processors in the set P:+ ' perform 
CREW MERGE (S;,- ,, S;,, 5':+,+') 

end for 
(2.3.2) if v is odd then (i) P;&f t P," 

(i i) S,",;,f t S," 
end if 

(2.3.3) u + u + 1 
(2.3.4) 0 + rv/21 

end while. 

Analysis. The dominating operation in step 1 is the call to QUICKSORT, 
which requires O((n/N)log(n/N)) time. During each iteration of step 2.3, Lu/2J pairs of 
subsequences with n/Lv/2] elements per pair are to be merged simultaneously using 
N/Lv/2J processors per pair. Procedure CREW MERGE thus requires 
O([(n/Lv/2J)/(N/Lv/2])] + log(n/Lv/2J)), that is, O((n/N) + log n) time. Since step 2.3 is 
iterated Llog NJ times, the total running time of procedure CREW SOR'T is 

t(n) = O((n/N)log(n/N)) + O((n/N)log N + log n log N) 
= O((n/N)log n + log2n). 
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Since p(n) = N, the procedure's cost is given by 

c(n) = O(n log n + N log2n), 

which is optimal for N d n/log n. 

Example 4.5 

Let S = (2 ,  8, 5, 10, 15, 1, 12, 6, 14, 3, 11, 7 ,  9, 4, 13, 16) and N = 4. During step 1, 
processors P,,  P,, P,, and P, receive the subsequences S ,  = (2,  8, 5, 101, 
S ,  = (15 ,  1, 12, 61, S ,  = (14, 3, 11, 71, and S,  = (9,  4, 13, 161, respectively, which they 
sort locally. At the end of step 1, S: = {2,5,8,10}, Sk = { I ,  6,12,15), S: = {3,7,11,14), 
S: = {4,9,13,16), P: = {P,} ,  Pk = {P,), P: = {P,), and P: = {P,}. 

During the first iteration of step 2.3, the processors in P: = P: u P i  = {P , ,  P, }  
cooperate to merge the elements of Si  and Sk to produce S: = {1,2,5,6,8,10,12,15). 
Simultaneously, the processors in P$ = P: u P i  = {P,, P,) merge S: and S: into 
S : = { 3 , 4 , 7 , 9 ,  11, 13, 14, 16). 

During the second iteration of step 2.3, the processors in P: = P: u Pz = 

{P , ,  P,, P,, P,} cooperate to merge S: and Sz into Si  = (1 ,  2,. . . , 16) and the procedure 
terminates. IJ 

4.6 SORTING ON THE EREW MODEL 

Two of the criticisms expressed with regards to procedure CRCW SORT were 
addressed by procedure CREW SORT, which adapts to the number of existing 
processors and disallows multiple-write operations into the same memory location. 
Still, procedure CREW SORT tolerates multiple-read operations. Our purpose in this 
section is to deal with this third difficulty. Three parallel algorithms for sorting on the 
EREW model are described, each representing an improvement over its predecessor. 
We assume throughout this section that N processors PI, P,, . . . , P, are available on 
an EREW SM SIMD computer to sort the sequence S = is,, s2, . . . , s,), where N < n. 

4.6.1 Simulating Procedure CREW SORT 

The simplest way to remove read conflicts from procedure CREW SORT is to use 
procedure MULTIPLE BROADCAST. Each attempt to read from memory now 
takes O(1og N) time. Simulating procedure CREW SORT on the EREW model 
therefore requires 

t(n) = O((n/N)log n + log n log N) x O(1og N) 

= O([(n/N) + log Nllog n log N) 

time and has a cost of 

c(n) = O((n + N log N)log n log N), 

which is not cost optimal. 
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4.6.2 Sorting by Conflict -Free Merging 

A more subtle way to avoid concurrent-read operations from the same memory 
location in procedure CREW SORT is to remove the need for them. This can be 
accomplished by replacing the call to produce CREW MERGE in step 2.3.1 
with a call to procedure EREW MERGE. This step therefore requires 
O((n/N) + log n log N). Since there are O(1og N) iterations of this step, the overall 
running time of the modified procedure, including step 1, is 

t(n) = O((n/N)log(n/N)) + O((n/N)log N + log n log2N) 

= O([(n/N) + log2n]10g n), 

yielding a cost of 

c(n) = O((n + N log2n)log n). 

Therefore the modified procedure is cost optimal when N Q n/log2n. This range of 
optimality is therefore narrower than the one enjoyed by procedure CREW SORT. 

4.6.3 Sorting by Selection 

Our analysis so far indicates that perhaps another approach should be used if the 
performance of procedure CREW SORT is to be matched on the EREW model. We 
now study one such approach. The idea is to adapt the sequential procedure 
QUICKSORT to run on a parallel computer. We begin by noting that, since N < n, 
we can write N = nl-", where 0 < x  < 1. 

Now, let mi be defined as the ri(n/2llX)lth smallest element of S, for 
1 Q i < 211" - 1. The m,'s can be used to divide S into 2lIX subsequences of size n/2lIx 
each. These subsequences, denoted by S,, S ,,..., Sj ,  Sj+l., Sj+,,.. ., S2j, where 
j = 2('Ix)- ', satisfy the following property: Every element of Si is smaller than or equal 
to every element of Si+, for 1 Q i < 2j - 1. This is illustrated in Fig. 4.6. The 
subdivision process can now be applied recursively to each of the subsequences Si 
until the entire sequence S is sorted in nondecreasing order. 

This algorithm can be performed in parallel by first invoking procedure 
PARALLEL SELECT to determine the elements mi and then creating the sub- 
sequences Si. The algorithm is applied in parallel to the subsequences ,S1, s,, . . . , Sj 
using N/j processors per subsequence. The same is then done with the r;ubsequences 
Sj+ Sj+,, . . . , SZj. Note that the number of processors used to sort each subsequence 
of size n/2'Ix, namely, n'-x/2('1x)-', is exactly the number required for a proper 
recursive application of the algorithm, that is, (n/2'Ix)' -". 

It is important, of course, that 2"" be an integer of finite size: This ensures that a 
bound can be placed on the running time and that all the mi exist. Initially, the N 
available processors compute x  from N = nl-". If x  does not satisfy the conditions (i) -- 
r l / x l  < 10 (say) and (ii) n 2 2r'1x1, then the smallest real number larger than x an" * 
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satisfying (i) and (ii) is taken as x. Let k = 2r1'x1. The algorithm is given as procedure 
EREW SORT: 

procedure EREW SORT (S )  

if IS( < k 
then QUICKSORT (S )  
else (1) for i = 1 to k - 1 do 

PARALLEL SELECT (S,  r i (S( /k l )  {Obtain mSi) 
end for 

(2) S,  + ( s ~ S : s  < m,} 
(3) for i = 2 to k - 1 do 

S i t  { s ~ S : m , - ,  < s < mi} 
end for 

(4) S k + { s ~ S : s > ,  mk-,)  
(5) for i = 1 to k/2 do in parallel 

EREW SORT (Si)  
end for 

(6) for i = (k/2) + 1 to k do in parallel 
EREW SORT (Si) 

end for 
end if. 

Note that in steps 2-4 the sequence Si is created using the method outlined in 
chapter 2 in connection with procedure PARALLEL SELECT. Also in step 3, the 
elements of S smaller than mi and larger than or equal to mi-, are first placed in Si. If 
lSil < rlSllk1, then elements equal to mi are added to Si so that either ISi = rlSl/k] or 
no element is left to add to  Si. This is reminiscent of what we did with QUICKSORT. 
Steps 2 and 4 are executed in a similar manner. 

Example 4.6 

Let S = {5 ,9 ,  12, 16, 18,2, 10, 13, 17,4,7, 18, 18, 11, 3, 17,20,19, 14, 8, 5, 17, 1,  1 1 ,  15, 10, 
6 )  (i.e., n = 27) and let five processors P,, P,, P,, P,, P,  be available on an EREW SM 
SIMD computer (i.e., N = 5). Thus 5 = (27)'-", x - 0.5, and k = 211/"1 = 4. The working 
of procedure EREW SORT for this input is illustrated in Fig. 4.7. During step 1, m, = 6, 
m, = 11, and m, = 17 are computed. The four subsequences S,, S,, S,, and S, are created 
in steps 2-4 as shown in Fig. 4.7(b). In step 5 the procedure is applied recursively and 
simultaneously to S, and S,. Note that IS,I = IS,[ = 7, and therefore 7'-"  is rounded 
down to 2 (as suggested in chapter 2). In other words two processors are used to sort each 
of the subsequences S,  and S, (the fifth processor remaining idle). For S,: processors PI 
and P, compute m, = 2, m, = 4, and m, = 5, and the four subsequences {1,2}, {3,4}, 
{5,5),  and ( 6 )  are created each of which is already in sorted order. For S,, processors P, 
and P, compute m, = 8, m, = 10, and m, = 11, and the four subsequence:; {7,8), (9, lo} ,  
{10,11), and { I  1 )  are created each of which is already in sorted order. The sequence S at 
the end of step 5 is illustrated in Fig. 4.7(c). In step 6 the procedure is applied recursively 
and simultaneously to S, and S,. Again since IS,[ = 7 and IS,I = 6, 7 '-"  and 6'-" are 
rounded down to 2 and two processors are used to sort each of the two subsequences S ,  
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(a) INITIALLY 

1- S1 + S2 + s3  + s4 --{ 
(b) AFTER STEP (4) 

I-- S3 + S4 + 
(c) AFTER STEP (5) 

(d) AFTER STEP (6) 

Figure 4.7 Sorting sequence of twenty-seven elements using procedure EREW SORT. 

and S,. For S,, m, = 13, m, = 15, and m, = 17 are computed, and the four subsequences 
(12, 131, (14,151, (16,171, and (17) are created each of which is already sorted. For S,, 
m, = 18, m, = 18, and m, = 20 are computed, and the four subsequences {17,18), 
(18,181, (19,201, and an empty subsequence are created. The sequence S after step 5 is 
shown in Fig. 4.7(d). 

Analysis. The call to QUICKSORT takes constant time. From the analysis 
of procedure PARALLEL SELECT in chapter 2 we know that steps 1-4 require cnx 

time units for some constant c. The running time of procedure EREW SORT is 
therefore 

t(n) = cnx + %t(n/k) 

= O(nx log n). 

Since p(n) = n ' - X ,  the procedure's cost is given by 

c(n) = p(n) x t(n) = O(n log n), 

which is optimal. Note, however, that since nl-" < nllogn, cost optimality is 
restricted to the range N < nllog n. 

Procedure EREW SORT therefore matches CREW SORT in performance: 

(i) It uses a number of processors N that is sublinear in the size of the input n and 
adapts to it, 
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(ii) it has a running time that is small and varies inversely with N, and 
(iii) its cost is optimal for N < nllog n. 

Procedure EREW SORT has the added advantage, of course, of running on a weaker 
model of computation that does not allow multiple-read operations from the same 
memory location. 

It is also interesting to observe that procedure EREW SORT is a "mirror image" 
of procedure CREW SORT in the following way. Both algorithms can be modeled in 
theory by a binary tree. In procedure CREW SORT, subsequences arc: input at the 
leaves, one subsequence per leaf, and sorted locally; they are then merged pairwise by 
parent nodes until the output is produced at the root. By contrast, in procedure 
EREW SORT, the sequence to be sorted is input at the root and then split into two 
independent subsequences {S,, S,, . . . , Sj) and { S j +  Sj+,, . . . , SZj); !splitting then 
continues at each node until each leaf receives a subsequence that, once locally sorted, 
is produced as output. 

4.7 P R O B L E M S  

4.1 Use the (n, n)-merging network defined in problem 3.9 to obtain a network for sorting 
arbitrary (i.e., not necessarily bitonic) input sequences. Analyze the running time and 
number of processors used by this network and compare these with the corresponding 
quantities for the network in section 4.2. 

4.2 Consider the following parallel architecture consisting of n2 processors placed in a square 
array with n rows and n columns. The processors in each row are interconnected to form a 
binary tree. The processors in each column are interconnected similarly. The tree 
interconnections are the only links among the processors. Show that this architecture, 
known as the mesh of trees, can sort a sequence of n elements in O(1og n) time. 

4.3 The odd-even sorting network of section 4.2 uses O(n log2n) processors to sort a sequence 
L/ of length n in O(logzn) time. For some applications, this may be too slow. On the other 

hand, the architecture in problem 4.2 sorts in O(1og n) time using n2 processors. Again, 
when n is large, this number of processors is prohibitive. Can you design i i  network that 
combines the features of these two algorithms, that is, one that uses O(n log2n) processors 
and sorts in O(log n) time? 

4.4 It may be argued that the number of processors used in problem 4.3, nameby, O(n log2n), is 
still too large. Is it possible to reduce this to O(n log n) and still achieve an O(1og n) running 
time? 

4.5 Inspect the network obtained in problem 4.1. You will likely notice that it consists of m 
columns of n/2 processors each, where m is a function of n obtained from your analysis. It 
is required to exploit this regular structure to obtain a sorting network consisting of a 
single column of n/2 processors that sorts a sequence of length n in O(m) time. The idea is 
to keep the processors busy all the time as follows. The input sequence is fed to the 
processors and an output is obtained equal to that obtained from the first column of the 
bitonic sorting network. This output is permuted appropriately and fed back to the 
processors to obtain the output of the second column. This continues form iterations, until 
the sequence is fully sorted. Such a scheme is illustrated in Fig. 4.8 for n := 8. 
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PERMUTATION 
NETWORK 

Figure 4.8 Sorting using permutation network. 

4.6 The sorting network in problem 4.5 has a cost of O(nm). Is this optimal? The answer, of 
course, depends on m. If the cost is not optimal, apply the same idea used in procedure 
MERGE SPLIT to obtain an optimal algorithm. 

4.7 Can you design a sorting network that uses O(n) processors to sort a sequence of length n 
in O(log n) time? 

4.8 Establish the correctness of procedure ODD-EVEN TRANSPOSITION. 
4.9 As example 4.2 illustrates, a sequence may be completely sorted several iterations before 

procedure ODD-EVEN TRANSPOSITION actually terminates. In fact, if the sequence is 
initially sorted, the O(n) iterations performed by the procedure would be redundant. Is it 
possible, within the limitations of the linear array model, to modify the procedure so that 
an early termination is obtained if at any point the sequence becomes sorted? 

.10 Procedure ODD-EVEN TRANSPOSITION assumes that all elements of the input 3 sequence are available and reside initially in the array of processors. It is conceivable that 
in some applications, the inputs arrive sequentially and are received one at a time by the 
leftmost processor PI.  Similarly, the output is produced one element at a time from P , .  
Modify procedure ODD-EVEN TRANSPOSITION so that it runs under these con- 
ditions and completes the sort in exactly the same number of steps as before (i.e., without 
an extra time penalty for input and output). 

4.11 When several sequences are queued for sorting, the procedure in problem 4.9 has a period 
of 2n. Show that this period can be reduced to n by allowing both P ,  and P ,  to handle 
input and output. In this way, m sequences of n elements each are sorted in (m + l)n steps 
instead of 2mn. 
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4.12 In section 4.3 we showed how procedure ODD-EVEN TRANSPOSITION can be 
modified so that its cost becomes optimal. Show that it is possible to obtain a cost-optimal 
sorting algorithm on the linear array for the case of sequential input. One approach to 
consider is the following. For a sequence of length n, the linear array consists of 1 + log n 
processors. The leftmost processor receives the input, the rightmost produces the output. 
Each processor is connected to its neighbors by two lines, as shown in Fig. 4.9 for n = 8. 
This array can be made to sort in O(n) time by implementing an adapted version of the 
sequential procedure Mergesort. This procedure consists of log n stages. In stage i sorted 
subsequences of length 2' are created, i = 1,2, .  . . , log n. In the parallel adaptation, the 
steps are run overlapped on the linear akray. 

4.13 In procedure MERGE SPLIT each processor needs at least 4n/N storage locations to 
(/ merge two sequences of length n/N each. Modify the procedure to require only 1 + n/N 

locations per processor. 
4.14 A variant of the linear array that uses a bus was introduced in problem 2.9. Design an 

algorithm for sorting on this model, where P ,  receives the input sequence of size n and P,  
produces the output. 

4.15 The n elements of a sequence are input to an n'I2 x n1I2 mesh-connected SIMD computer, 
one element per processor. It is required to sort this sequence in row-major order. Derive a 
lower bound on the running time required to solve this problem. 

4.16 Use the results of problems 3.6 and 3.7 to obtain an algorithm for odd-even sorting on an 
rn x m mesh-connected SIMD computer. Analyze your algorithm. 

4.17 Is the algorithm obtained in problem 4.16 cost optimal? If not, apply the sacne idea used in 
procedure MERGE SPLIT to obtain a cost-optimal algorithm. 

4.18 Use the results of problems 3.12 and 3.13 to obtain an algorithm for bitonic sorting on an 
rn x rn mesh-connected SIMD computer. Analyze your algorithm. 

4.19 Repeat problem 4.17 for the algorithm in problem 4.18. 
4.20 The algorithm in problem 4.16 returns a sequence sorted in row-major order. Another 

indexing that may sometimes be desirable is known as snakelike row-major order: The ith 
element resides in row j and column k, where 

jm + k + 1 for j even, 
i = C  

'rn + m - k for j odd. 

This is illustrated in Fig. 4.10 for n = 16. Show that after a sequence has be:en sorted into 
row-major order, its elements may be rearranged into snakelike row-rnajor order in 
2(n1l2 - 1) routing steps. 

4.21 Another indexing for sequences sorted on two-dimensional arrays is the shujyed row-major 
order. Let element i, 1 < i < n, reside in row j and column k in a row-major ordering. If i' is 
the integer obtained by applying a perfect shuffle to the bits in the binary representation of 
i - 1, then element i' + 1 occupies position (j, k) in a shuffled row-major indexing. This is 

Figure 4.9 Cost-optimal sorting on linear array for case of sequential input. 

INPUT 

P2 P4 
OUTPUT 

b 
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Figure 4.10 Snakelike row-major order. 

illustrated in Fig. 4.11 for n = 16. Show that if n elements have already been sorted 
according to row-major order and if each processor can store n'IZ elements, then the n 
elements can be sorted into shuffled row-major order using an additional 4(n'IZ - 1) 
routing steps. 

A.22 A variant of the mesh interconnection network that uses a bus was introduced in problem 
2.10. Repeat problem 4.15 for this model. 

4.23 Design a parallel algorithm for sorting on the model of problem 2.10. 

4.24 Design an algorithm for sorting on a tree-connected SIMD computer. The input sequence 
is initially distributed among the leaves of the tree. Analyze the running time, number of 
processors used, and cost of your algorithm. 

4.25 Repeat problem 4.24 for the case where the sequence to be sorted is presented to the root. 

4.26 Derive a lower bound for sorting a sequence of length n on the pyramid machine defined in 
problem 3.16. 

4.27 Design an algorithm for sorting on the pyramid machine. 

4.28 Show that any parallel algorithm that uses a cube-connected SIMD computer with N 
processors to sort a sequence of length n, where N 2 n, requires R(log N )  time. 

4.29 Implement the idea of sorting by enumeration on a cube-connected SIMD computer and 
analyze the running time of your implementation. 

4.30 Show that any parallel algorithm that uses the perfect shuffle interconnection network 
with N processors to sort a sequence of length n, where N = 2" 2 n, requires R(log N )  
time. 

4.31 Consider a CRCW SM SIMD computer where write conflicts are resolved as follows: The 
write operation is allowed if and only if all processors writing simultaneously in the same 
memory location are attempting to store the same value. Describe an algorithm for this 

Figure 4.11 ShuMed row-major order. 
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model that can determine the minimum of n numbers {x,, x,, . . . , x,} in constant time 
using n2 processors. If more than one of the numbers qualify, the one with the smallest 
subscript should be returned. 

4.32 Show how procedure CRCW SORT can be modified to run on an EREW model and 
analyze its running time. 

4.33 Show that procedure CREW SORT can be simulated on an EREW computer in 
O([(n/N) + logZn]log n) time if a way can be found to distinguish between simple read 
operations and multiple-read operations, as in problem 3.20. 

4.34 In procedure EREW SORT, why are steps 5 and 6 not executed simultaneously? 
435 Derive an algorithm for sorting by enumeration on the EREW model. The algorithm 

should use nl+'lk processors, where k is an arbitrary integer, and run in O(k log n) time. 
436 Let the elements of the sequence S to be sorted belong to the set (0, 1, . . . , m - 1). A 

sorting algorithm known as sorting by bucketing first distributes the elements among a 
number of buckets that are then sorted individually. Show that sortingcan be completed in 
O(1og n) time on the EREW model using n processors and O(mn) memory locations. 

4.37 The amount of memory required for bucketing in problem 4.36 can be reduced when the 
elements to be sorted are binary strings in the interval [0,2b - 11 for some b. The 
algorithm consists of b iterations. During iteration i, i = 0,1, . . . , b - 1, each element to be 
sorted is placed in one of two buckets depending on whether its ith bit is 0 or 1; the 
sequence is then reconstructed using procedure ALLSUMS so that all elements with a 0 
ith bit precede all the elements with a 1 ith bit. Show that in this case sorting can be 
completed in O(b log n) time using O(n) processors and O(n) memory locations. 

4.38 Assume that an interconnection network SIMD computer with n processors can sort a 
sequence of length n in O( f (n)) time. Show that this network can simulate an algorithm 
requiring time T on an EREW SM SIMD computer with n memory locations and n 
processors in O(Tf (n)) time. 

4.39 Design an asynchronous algorithm for sorting a sequence of length n by enumeration on a 
multiprocessor computer with N processors. 

4.40 Adapt procedure QUICKSORT to run on the model of problem 4.39. 

4.8 B lBL lOGRAPHlCAL REMARKS 

An extensive treatment of parallel sorting is provided in [Akl2]. Taxonomies of parallel sorting 
algorithms can be found in [Bitton] and [Lakshmivarahan]. The odd-even sorting network 
was first presented in [Batcher]. Other sorting networks are proposed in [Lee:], [Miranker], 
[Tseng], [Winslow], and [Wong]. The theoretically fastest possible network for sorting using 
O(n) processors is described in [Leighton] based on ideas appearing in [Ajtai]: It sorts a 
sequence of length n in O(1og n) time and is therefore cost optimal. However, the asymptotic 
expression for the running time of this network hides an enormous constant, which makes it 
infeasible in practice. 

Procedure ODD-EVEN TRANSPOSITION is attributed to [Demuth]. The idea on 
which procedure MERGE SPLIT is based comes from [Baudet]. Other algorithms for sorting 
on a linear array are described in [Akl 11, [Todd], and [Yasuura]. Parallel sorting algorithms 
for a variety of interconnection-network SIMD computers have been proposed. These include 
algorithms for the perfect shuffle ([Stone]), the mesh ([Kumar], [Nassimi 11, and [Thompson]), 
the tree ([Bentley], [Horowitz 21, and [Orenstein]), the pyramid ([Stout]), and the cube 
([Nassimi 21). 
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It is particularly interesting to point out the difference between the tree- and mesh- 
connected computers in their ability to sort a sequence S = {s,, s,, . . . , s,). Assume that a tree 
with n leaf processors P, ,  P,, . . . , P, is available. Initially, Pi contains si. I t  is required to sort S 
such that Pi contains the ith element of the sorted sequence. Clearly, any parallel algorithm for 
solving this problem requires Q(n) time in the worst case since all the values in the right subtree 
of the root may have to be exchanged (through the root) with those in the left subtree. It is 
shown in [Akl2] how an O(log n)-processor tree-connected computer can sort S in  O(n) time for 
an optimal cost of O(n log n). Now consider an n1i2 x n'12 mesh with processors P I ,  P,, . . . , P, 
arranged in row-major order. Initially Pi contains si. Again, it is required to sort S such that Pi 
contains the ith element of the sorted sequence. Suppose that the maximum and minimum 
elements of S are initially in P ,  and P,, respectively. Since these two elements must be 
exchanged for the outcome of the sorting to be correct, R(n1I2) steps are required to sort on the 
mesh. An algorithm is described in [Akl 21 for sorting S on an n-processor mesh-connected 
computer in O(n1I2) time. It is also shown in [Akl2] how an N-processor mesh can sort S with a 
running time of 

for an optimal cost of O(n log n) when N < log2n. 
Procedure CRCW SORT is based on ideas appearing in [KuEera]. A proposal is made in 

[Gottlieb] for a computer architecture implementing the concurrent-read, concurrent-write 
features of the model in section 4.4. Procedure CREW SORT is adapted from [Shiloach]. Other 
parallel sorting algorithms for the CREW model were proposed in [Hirschberg], [Kruskal], 
and [Preparata]. The procedure in section 4.6.2 and procedure EREW SORT are from [Akl 31 
and [Akl 11, respectively. Other issues of interest when studying parallel sorting are external 
sorting, covered in [Akl4], [Bonnucelli], and [Even], and parallel probabilistic sorting 
algorithms, examples of which appear in [Horowitz 23, [Reif], and [Reischuk]. The im- 
portance of parallel sorting in simulating powerful models of parallel computation on weaker 
ones is outlined in [Parberry]. A description of the sequential sorting procedure Mergesort 
mentioned in problem 4.12 can be found in [Horowitz 11. 
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Searching 

5.1 INTRODUCTION 

Searching is one of the most fundamental operations in the field of computing. It is 
used in any application where we need to find out whether an element belongs to a list 
or, more generally, retrieve from a file information associated with that element. In its 
most basic form the searching problem is stated as follows: Given a sequence 
S = { s , ,  s,, . . . , s,) of integers and an integer x, it is required to determine whether 
x = s, for some s, in S. 

In sequential computing, the problem is solved by scanning the sequence S and 
comparing x with its successive elements until either an integer equal to x is found or 
the sequence is exhausted without success. This is given in what follows as procedure 
SEQUENTIAL SEARCH. As soon as an s, in S is found such that x = s,, the 
procedure returns k; otherwise 0 is returned. 

procedure SEQUENTIAL SEARCH (S, x, k) 

Step 1: (1.1) i +- 1 
(1.2) k + 0. 

Step 2: while (i < n and k = 0) d o  
i f  si = x then k + i end if 
i + i +  1 

end while. 

In the worst case, the procedure takes O(n) time. This is clearly optimal,since every 
element of S must be examined (when x is not in S )  before declaring failure. 
Alternatively, if S is sorted in nondecreasing order, then procedure BINARY 
SEARCH of section 3.3.2 can return the index of an element of S equal to x (or 0 if no 
such element exists) in O(1og n) time. Again, this is optimal since this many bits are 
needed to distinguish among the n elements of S.  

In this chapter we discuss parallel searching algorithms. We begin by consider- 
ing the case where S is sorted in nondecreasing order and show how searching can be 
performed on the SM SIMD model. As it turns out, our EREW searching algorithm is 
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no faster than procedure BINARY SEARCH. On the other hand, the CREW 
algorithm matches a lower bound on the number of parallel steps required to search a 
sorted sequence, assuming that all the elements of S are distinct. When this 
assumption is removed, a CRCW algorithm is needed to achieve the best possible 
speedup. We then turn to the more general case where the elements of S are in random 
order. Here, although the SM SIMD algorithms are faster than procedure 
SEQUENTIAL SEARCH, the same speedup can be achieved on a weaker model, 
namely, a tree-connected SIMD computer. Finally, we present a parallel search 
algorithm for a mesh-connected SIMD computer that, under some assumptions 
about signal propagation time along wires, is superior to the tree algorithm. 

5.2 SEARCHING A SORTED SEQUENCE 

We assume throughout this section that the sequence S = { s , ,  s,, . . . , s,) is sorted in 
nondecreasing order, that is, s, < s, < . - .  < s,. Typically, a file with n records is 
available, which is sorted on the s field of each record. This file is to be searched using s 
as the key; that is, given an integer x, a record is sought whose s field equals x. If such a 
record is found, then the information stored in the other fields may now be retrieved. 
The format of a record is illustrated in Fig. 5.1. Note that if the values of the s fields are 
not unique and all records whose s fields equal a given x are needed, then the search 
algorithm is continued until the file is exhausted. For simplicity we begin by assuming 
that the si are distinct; this assumption is later removed. 

5.2.1 EREW Searching 

Assume that an N-processor EREW SM SIMD computer is available to search S for a 
given element x, where 1 < N < n. To begin, the value of x must be made known to all 
processors. This can be done using procedure BROADCAST in O(1og N) time. The 
sequence S is then subdivided into N subsequences of length n/N each, and processor 
Pi is assigned { s ( ~  - + s ( ~ -  I)(,/,,,) + ,, . . . , Si (n lN ) } .  All processors now perform 
procedure BINARY SEARCH on their assigned subsequences. This requires 
O(log(n/N)) in the worst case. Since the elements of S are all distinct, at most one 
processor finds an s, equal to x and returns k. The total time required by this EREW 
searching algorithm is therefore O(1og N) + O(log(n/N)), which is O(log n). Since-this is 
precisely the time required by procedure BINARY SEARCH (running on a single 
processor!), no speedup is achieved by this approach. 

Figure 5.1 Format of record in file to be 
searched. 

'i 
I I I 

OTHER INFORMATION 
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5.2.2 CREW Searching 

Again, assume that an N-processor CREW SM SIMD computer is available to search 
S for a given element x, where 1 < N 6 n. The same algorithm described for the 
EREW computer can be used here except that in this case all processors can read x 
simultaneously in constant time and then proceed to perform procedure BINARY 
SEARCH on their assigned subsequences. This requires O(log(n/N)) time in the worst 
case, which is faster than procedure BINARY SEARCH applied sequentially to the 
entire sequence. 

It is possible, however, to do even better. The idea is to use a parallel version of 
the binary search approach. Recall that during each iteration of procedure BINARY 
SEARCH the middle element s, of the sequence searched is probed and tested for 
equality with the input x. If s, > x ,  then all the elements larger than s, are discarded; 
otherwise all the elements smaller than s, are discarded. Thus, the next iteration is 
applied to a sequence half as long as previously. The procedure terminates when the 
probed element equals x or when all elements have been discarded. In the parallel 
version, there are N processors and hence an (N + 1)-ary search can be used. At each 
stage, the sequence is split into N + 1 subsequences of equal length and the N 
processors simultaneously probe the elements at the boundary between successive 
subsequences. This is illustrated in Fig. 5.2. Every processor compares the element s of 
S it probes with x: 

1. If s > x, then if an element equal to x is in the sequence at all, it must precede s; 
consequently, s and all the elements that follow it (i.e., to its right in Fig. 5.2) are 
removed from consideration. 

2. The opposite takes place if s < x. 

Thus each processor splits the sequence into two parts: those elements to be discarded 
as they definitely do not contain an element equal to x and those that might and are 
hence kept. This narrows down the search to the intersection of all the parts to be 
kept, that is, the subsequence between two elements probed in this stage. This 
subsequence, shown hachured in Fig. 5.2, is searched in the next stage by the same 
process. This continues until either an element equal to x is found or all the elements 
of S are discarded. Since every stage is applied to a sequence whose length is 1/(N + 1) 
the length of the sequence searched during the previous stage less 1, O(log,+ ,(n + 1)) 
stages are needed. We now develop the algorithm formally and then show that this is 
precisely the number of steps it requires in the worst case. 

Let g be the smallest integer such that n 6 (N + 1)g - 1, that is, 
g = rlog(n + l)/log(N + 1)1. It is possible to prove by induction that g stages are 
sufficient to search a sequence of length n for an element equal to an input x. Indeed, 
the statement is true for g = 0. Assume it is true for (N + - 1. Now, to search a 
sequence of length (N + - 1, processor Pi, i = 1,2,. . . , N, compares x to sj  where 
j = i (N + as shown in Fig. 5.3. Following this comparison, only a subsequence 
of length (N + l)g-' - 1 needs to be searched, thus proving our claim. This 
subsequence, shown hachured in Fig. 5.3, can be determined as follows. Each 
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processor Pi uses a variable ci that takes the value left or right according to whether 
the part of the sequence Pi decides to keep is to the left or right of the element it 
compared to x during this stage. Initially, the value of each ci is irrelevant and can be 
assigned arbitrarily. Two constants c, = right and c,,  , = left are also wed. Follow- 
ing the comparison between x and an element s j ,  of S, Pi assigns a value to ci (unless 
sji = x, in which case the value of ci is again irrelevant). If ci # ci - , for some i ,  
1 < i < N ,  then the sequence to be searched next runs from s, t~o s,, where 
q = ( i  - 1)(N + + 1 and r = i (N + - 1. Precisely one processor updates q 
and r in the shared memory, and all remaining processors can simultaneoiusly read the 
updated values in constant time. The algorithm is given in what follows as procedure 
CREW SEARCH. The procedure takes S and x as input: If x = s, for some k, then k is 
returned; otherwise a 0 is returned. 

procedure CREW SEARCH (S, x, k) 

Step 1: {Initialize indices of sequence to be searched} 
(1.1) q t 1 
(1.2) r t n. 

Step 2: {Initialize results and maximum number of stages} 
(2.1) k c 0  
(2.2) g + rlog(n + I ) / IO~(N + 1)1. 

Step 3: while (q < r and k = 0) do 
(3.1) jo t q -  1 
(3.2) for i = 1 to N do in parallel 

(i) ji c (q - 1) + i(N + l)e-' 
{P i  compares x to sj and determines the part of the sequence to be kept} 

(ii) if ji < r 
then if sji = x 

then k  + ji 
else if sj, > x 

then ci t left 
else ci + right 
end if 

end if 
else (a) ji + r + 1 

(b) ci + left 
end if 

{The indices of the subsequence to be searched in the next iteration are 
computed} 

(iii) i fc i#ci- , then(a) q t j i - l  + 1 
(b) r + j i -  1 

end if 
(iv) if (i = N and ci # ci+ ,) then q t ji + 1 

end if 
end for 

(3.3) g + g - 1. 
end while. 
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Figure 5.2 Searching sorted sequence with N processors. 

Figure 5.3 Derivation of number of stages required to search sequence. 

Analysis 

Steps 1,2, 3.1, and 3.3 are performed by one processor, say, P,, in constant time. Step 
3.2 also takes constant time. As proved earlier, there are at most g iterations of step 3. 
It follows that procedure CREW SEARCH runs in O(log(n + l)/log(N + 1)) time, that 
is, t(n) = O(log,+,(n + 1)). Hence c(n) = O(N log,+,(n + I)), which is not optimal. 

Example 5.1 

Let S = {1,4,6,9, 10, 11, 13, 14, 15, 18,20,23, 32,45,51) be the sequence to be searched 
using a CREW SM SIMD computer with N processors. We illustrate two successful and 
one unsuccessful searches. 

1. Assume that N = 3 and that it is required to find the index k of the element in S 
equal to 45 (i.e., x = 45). Initially, q = 1, r = 15, k = 0, and g = 2. During the first 
iteration of step 3, P ,  computes j ,  = 4 and compares s, to x. Since 9 < 45, 
c ,  = right. Simultaneously, P,  and P,  compares, and s,,, respectively, to x:  Since 
14 < 45 and 23 < 45, c, = right and c,  = right. Now c,  f c,; therefore q = 13 and 
r remains unchanged. The new sequence to be searched runs from s, ,  t o  s,,, as 
shown in Fig. 5.4(a), and g = 1. In the second iteration, illustrated in Fig. 5.4(b), P I  
computes j ,  = 12 + 1 and compares s,, to x :  Since 32 < 45, c,  = right. Simulta- 
neously, P ,  compares s,, to x,  and since they are equal, it sets k to 14 (c, remains 
unchanged). Also, P ,  compares s,, to x :  Since 51 > 45, c,  = left. Now c,  # c,: 
Thus q = 12 + 2 + 1 = 15 and r = 12 + 3 - 1 = 14. The procedure terminates 
with k = 14. 

2. Say now that x = 9, with N still equal to 3. In the first iteration, PI  compares s, to 
x :  Since they are equal, k is set to 4. All simultaneous and subsequent com- 
putations in this iteration are redundant since the following iteration is not 
performed and the procedure terminates early with k = 4. 
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Figure 5.4 Searching sequence of fifteen elements using procedure CREW SEARCH. 

3. Finally, let N = 2 and x = 21. Initially, g = 3. In the first iteration P ,  computes 
j, = 9 and compares s, to x: Since 15 < 21, c, = right. Simultaneously, P, 
computes j, = 18: Since 18 > 15, j, points to an  element outside the sequence. 
Thus P, sets j ,  = 16 and c, = left. Now c, # c,: Therefore q = 10 and r = 15, that 
is, the sequence to be searched in the next iteration runs from s,, to s ,  ,, and g = 2. 
This is illustrated in Fig. 5 . q ~ ) .  In the second iteration, P, computes j, = 9 + 3 and 
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compares s , ,  to x: since 23 > 21, c ,  = left. Simultaneously, P ,  computes j ,  = 15: 
Since 51 > 21, c ,  = left. Now c ,  # c,, and therefore r = 1 1  and q remains 
unchanged, as shown in Fig. 5.qd). In the final iteration, g = 1 and P I  computes 
j ,  = 9 + 1 and compares s , ,  to x: Since 18 < 21, c,  = right. Simultaneously, P ,  
computes j2 = 9 + 2 and compares s , ,  to x: Since 20 < 21, c ,  = right. Now 
c ,  # c,, and therefore q = 12. Since q > r, the procedure terminates unsuccessfully 
with k = 0. 

We conclude our discussion of parallel searching algorithms for the CREW 
model with the following two observations: 

1. Under the assumption that the elements of S are sorted and distinct, procedure 
CREW SEARCH, although not cost optimal, achieves the best possible running 
time for searching. This can be shown by noting that any algorithm using N 
processors can compare an input element x to at most N elements of S 
simultaneously. After these comparisons and the subsequent deletion of ele- 
ments from S definitely not equal to x, a subsequence must be left whose length 
is at least 

r(n - N)/(N + 1)1 2 (n - N)/(N + 1) = [(n + 1)/(N + I)] - 1. 

After g repetitions of the same process, we are left with a sequence of length 
[(n + 1)/(N + I)#] - 1. It follows that the number of iterations required by any 
such parallel algorithm is no smaller than the minimum g such that 

[(n + l)/(N + - 1 < 0, 

which is 

2. Two parallel algorithms were presented in this section for searching a sequence 
of length n on a CREW SM SIMD computer with N processors. The first 
required O(log(n/N)) time and the second O(log(n + l)/log(N + 1)). In both 
cases, if N = n, then the algorithm runs in constant time. The fact that the 
elements of S are distinct still remains a condition for achieving this constant 
running time, as we shall see in the next section. However, we no longer need S 
to be sorted. The algorithm is simply as follows: In one step each Pi, i = 1, 2, 
. . . , n, can read x and compare it to si;  if x is equal to one element of S, say, s,, 
then P, returns k; otherwise k remains 0. 

5.2.3 CRCW Searching 

In the previous two sections, we assumed that all the elements of the sequence S to be 
searched are distinct. From our discussion so far, the reason for this assumption may 
have become apparent: If each si is not unique, then possibly more than one processor 
will succeed in finding a member of S equal to x. Consequently, possibly several 
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processors will attempt to return a value in the variable k, thus causing a write 
conflict, an occurrence disallowed in both the EREW and CREW models. Of course, 
we can remove the uniqueness assumption and still use the EREW and CREW 
searching algorithms described earlier. The idea is to invoke procedure {STORE (see 
problem 2.13) whose job is to resolve write conflicts: Thus, in O(log N) time we can get 
the smallest numbered of the successful processors to return the index k it has 
computed, where s, = x. The asymptotic running time of the EREW search algorithm 
in section 5.2.1 is not affected by this additional overhead. However, procedure 
CREW SEARCH now runs in 

t(n) = O(log(n + l)/log(N + 1)) + O(1og N). 

In order to appreciate the effect of this additional O(log N) term, note that when 
N = n, t(n) = O(1og n). In other words, procedure CREW SEARCH with n processors 
is no faster than procedure BINARY SEARCH, which runs on one processor! 

Clearly, in order to maintain the efficiency of procedure CREW SEARCH while 
giving up the uniqueness assumption, we must run the algorithm on a CRCW SM 
SIMD computer with an appropriate write conflict resolution rule. Whatever the rule 
and no matter how many processors are successful in finding a member of S equal to 
x, only one index k will be returned, and that in constant time. 

5.3 SEARCHING A RANDOM SEQUENCE 

We now turn to the more general case of the search problem. Here the elements of the 
sequence S = {s,, s,, . . . , s,) are not assumed to be in any particular order and are not 
necessarily distinct. As before, we have a file with n records that is to be searched using 
the s field of each record as the key. Given an integer x, a record is sought whose s field 
equals x; if such a record is found, then the information stored in the other fields may 
now be retrieved. This operation is referred to as querying the file. Besides querying, 
search is useful in file maintenance, such as inserting a new record and updating or 
deleting an existing record. Maintenance, as we shall see, is particularly easy when the 
s fields are in random order. 

We begin by studying parallel search algorithms for shared-mernory SIMD 
computers. We then show how the power of this model is not really needed for the 
search problem. As it turns out, performance similar to that of SM SIMD algorithms 
can be obtained using a tree-connected SIMD computer. Finally, we demonstrate that 
a mesh-connected computer is superior to the tree for searching if signal propagation 
time along wires is taken into account when calculating the running time of 
algorithms for both models. 

5.3.1 Searching on S M  SIMD Computers 

The general algorithm for searching a sequence in random order on a SM SIMD 
computer is straightforward and similar in structure to the algorithm in section 5.2.1. 
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We have an N-processor computer to search S = {s,, s,, . . . , s,} for a given element x, 
where 1 < N < n. The algorithm is given as procedure SM SEARCH: 

procedure SM SEARCH (S,  x ,  k) 

Step 1: for i = 1 to N do in parallel 
Read x 

end for. 

Step 2: for i = 1 to N do in parallel 
(2.1) Si { ~ ( i -  l )(n/N)+ 1 r S ( i  - I ) ( n / N )  + 2 ,  . . . r ~ i ( n l N ) J  

(2.2) SEQUENTIAL SEARCH (S , ,  x ,  k i )  
end for. 

Step 3: for i = 1 to N do in parallel 
if ki > 0 then k t ki end if 

endfor. 

Analysis 

We now analyze procedure SM SEARCH for each of the four incarnations of the 
shared-memory model of SIMD computers. 

5.3.1 .I EREW. Step 1 is implemented using procedure BROADCAST and 
requires O(1og N) time. In step 2, procedure SEQUENTIAL SEARCH takes O(n/N) 
time in the worst case. Finally, procedure STORE (with an appropriate conflict 
resolution rule) is used in step 3 and runs in O(log N )  time. The overall asymptotic 
running time is therefore 

and the cost is 

c(n) = O(N log N) + O(n), 

which is not optimal. 

5.3.1.2 ERCW. Steps 1 and 2 are as in the EREW case, while step 3 now 
takes constant time. The overall asymptotic running time remains unchanged. 

5.3.1 -3 CREW. Step 1 now takes constant time, while steps 2 and 3 are as in 
the EREW case. The overall asymptotic running time remains unchanged. 

5.3.1.4 CRCW. Both steps 1 and 3 take constant time, while step 2 is as in 
the EREW case. The overall running time is now O(n/N), and the cost is 

which is optimal. 
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In order to put the preceding results in perspective, let us consider. a situation 
where the following two conditions hold: 

1. There are as many processors as there are elements in S, that is, N = n. 
2. There are q queries to be answered, that is, q values of x are queuecl waiting for 

processing. 

In the case of the EREW, ERCW, and CREW models, the time to process one query 
is now O(1og n). For q queries, this time is simply multiplied by a factor of q. This is of 
course an improvement over the time required by procedure SEQUENTIAL 
SEARCH, which would be on the order of qn. For the CRCW compute]:, procedure 
SM SEARCH now takes constant time. Thus q queries require a constant multiple of 
q time units to be answered. 

Surprisingly, a performance slightly inferior to that of the CRCW algorithm but 
still superior to that of the EREW algorithm can be obtained using a much weaker 
model, namely, the tree-connected SIMD computer. Here a binary tree with O(n)  
processors processes the queries in a pipeline fashion: Thus the q queries require a 
constant multiple of log n + (q  - 1 )  time units to be answered. For large: values of q 
(i.e., q > log n), this behavior is equivalent to that of the CRCW algoritl-~m. We now 
turn to the description of this tree algorithm. 

5.3.2 Searching on a Tree 

A tree-connected SIMD computer with n leaves is available for searching a file of n 
records. Such a tree is shown in Fig. 5.5 for n = 16. Each leaf of the tree stores one 
record of the file to be searched. The root is in charge of receiving input from the 
outside world and passing a copy of it to each of its two children. It is also responsible 
for producing output received from its two children to the outside world. As for the 
intermediate nodes, each of these is capable of: 

1. receiving one input from its parent, making two copies of it, and sending one 
copy to each of its two children; and 

2. receiving two inputs from its children, combining them, and passing the result to 
its parent. 

The next two sections illustrate how the file stored in the leaves can be queried and 
maintained. 

5.3.2.1 Querying. Given an integer x, it is required to search the file of 
records on the s field for x, that is, determine whether there is a value in 
S = {s,, s,, . . . , s,) equal to x. Such a query only requires a yes or no answer. This is 
the most basic form of querying and is even simpler than the one that we have been 
concerned with so far in this chapter. The tree-connected computer handles this query 
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LEAF 

Figure 5.5 Tree-connected computer for searching. 

in three stages: 

Stage I :  The root reads x and passes it to its two children. In turn, these send x 
to their children. The process continues until a copy of x reaches each leaf. 
Stage 2: Simultaneously, all leaves compare the s field of the record they store to 
x: If they are equal, the leaf produces a 1 as output: otherwise a 0 is produced. 
Stage 3: The outputs of the leaves are combined by going upward in the tree: 
Each intermediate node computes the logical or of its two inputs (i.e., 0 or 0 = 0, 
0 or 1 = 1, 1 or 0 = 1, and 1 or 1 = 1) and passes the result to its parent. The 
process continues until the root receives two bits, computes their logical or, and 
produces either a 1 (for yes) or a 0 (for no). 

It takes O(1og n) time to go down the tree, constant time to perform the comparison at 
the leaves, and again O(1og n) time to go back up the tree. Therefore, such a query is 
answered in O(log n) time. 

Example 5.2 

Let S = {25,14,36,18,15, 17,19,17) and x = 17. The three stages above are illustrated in 
Fig. 5.6. 

Assume now that q such queries are queued waiting to be processed. They can 
be pipelined down the tree since the root and intermediate nodes are free to handle the 
next query as soon as they have passed the current one along to their children. The 
same remark applies to the leaves: As soon as the result of one comparison has been 
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(a) STAGE 1 

(b) STAGE 2 

(c) STAGE 3 
Figure 5.6 Searching sequence of eight 
elements using tree. 

produced, each leaf is ready to receive a new value of x. The results are also pipelined 
upward: The root and intermediate nodes can compute the logical or of the next pair 
of bits as soon as the current pair has been cleared. Typically, the root and 
intermediate nodes will receive data flowing downward (queries) and upward (results) 
simultaneously: We assume that both can be handled in a single time unit; otherwise, 
and in order to keep both flows of data moving, a processor can switch :its attention 
from one direction to the other alternately. It takes O(1og n) time for the answer to the 
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first query to be produced at the root. The answer to the second query is obtained in 
the following time unit. The answer to the last query emerges q - 1 time units after the 
first answer. Thus the q answers are obtained in a total of O(log n) + O(q) time. 

We now examine some variations over the basic form of a query discussed so far. 

1. Position If a query is successful and element s, is equal to x, it may be desired 
to know the index k. Assume that the leaves are numbered 1 , .  . . , n and that leaf i 
contains si. Following the comparison with x, leaf i produces the pair (1, i) if si = x; 
otherwise it produces (0, i). All intermediate nodes and the root now operate as 
follows. If two pairs (1, i) and (0, j) are received, then the pair (1, i) is sent upward. 
Otherwise, if both pairs have a 1 as a first element or if both pairs have a 0 as a first 
element, then the pair arriving from the left son is sent upward. In this way, the root 
produces either 

(i) (1 ,  k) where k is the smallest index of an element in S equal to x or 
(ii) (0, k) indicating that no match for x was found and, therefore, that the value of k 

is meaningless. 

With this modification, the root in example 5.2 would produce (1,6). 
This variant of the basic query can itself be extended in three ways: 

(a) When a record is found whose s field equals x, it may be desirable to obtain the 
entire record as an answer to the query (or perhaps some of its fields). The 
preceding approach can be generalized by having the leaf that finds a match 
return a triple of the form (1, i, required information). The intermediate nodes 
and root behave as before. 

(b) Sometimes, the positions of all elements equal to x in S may be needed. In this 
case, when an intermediate node, or the root, receives two pairs (1, i) and (1, j), 
two pairs are sent upward consecutively. In this way the indices of all members 
of S equal to x will eventually emerge from the root. 

(c)  The third extension is a combination of (a) and (b): All records whose s fields 
match x are to be retrieved. This is handled by combining the preceding two 
solutions 

It should be noted, however, that for each of the preceding extensions care must be 
taken with regards to timing if several queries are being pipelined. This is because the 
result being sent upward by each node is no longer a single bit but rather many bits of 
information from potentially several records (in the worst case the answer consists of 
the n entire records). Since the answer to a query is now of unpredictable length, it is 
no longer guaranteed that a query will be answered in O(1og n) time, that the period is 
constant, or that q queries will be processed in O(log n) + O(q) time. 

2. Count Another variant of the basic query asks for the number of records 
whose s field equals x. This is handled exactly as the basic query, except that now the 
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intermediate nodes and the root compute the sum of their inputs (instead d the logical 
or). With this modification, the root in example 5.2 would produce a 2. 

3. Closest Element Sometimes it may be useful to find the element of S whose 
value is closest to x. As with the basic query, x is first sent to the leaves.. Leaf i now 
computes the absolute value of si - x, call it a,, and produces (i, a,) as output. 

Each intermediate node and the root now receive two pairs (i, a,) and (j, aj): The 
pair with the smaller a component is sent upward. With this modification and x = 38 
as input, the root in example 5.2 would produce (3,2) as output. Note that the case of 
two pairs with identical a components is handled either by choosing one of the two 
arbitrarily or by sending both upward consecutively. 

4. Rank The rank of an element x in S is defined as the number of ellements of S 
smaller than x plus 1. We begin by sending x to the leaves and then having each leaf i 
produce a 1 if si < x, and a 0 otherwise. Now the rank of x in S is computed by making 
all intermediate nodes add their inputs and send the result upward. The root adds 1 to 
the sum of its two inputs before producing the rank. With this modification, the root's 
output in example 5.2 would be 3. 

It should be emphasized that each of the preceding variants, if car~efully timed, 
should have the same running time as the basic query (except, of course, when the 
queries being processed do not have constant-length answers as pointed out earlier). 

5.3.2.2 Maintenance. We now address the problem of maintaining a file 
of records stored at the leaves of a tree, that is, inserting a new record and updating or 
deleting an existing record. 

1. Insertion In a typical file, records are inserted and deleted continually. It is 
therefore reasonable to assume that at any given time a number of leaves are 
unoccupied. We can keep track of the location of these unoccupied leaves by storing 
in each intermediate node and at the root 

(i) the number of unoccupied leaves in its left subtree and 
(ii) the number of unoccupied leaves in its right subtree. 

A new record received by the root is inserted into an unoccupied leaf as follows: 

(i) The root passes the record to the one of its two subtrees with unoccupied leaves. 
If both have unoccu,pied leaves, the root makes an arbitrary decision; if neither 
does, the root signals an overflow situation. 

(ii) When an intermediate node receives the new record, it routes it to its subtree 
with unoccupied leaves (again, making an arbitrary choice, if necessary). 

(iii) The new record eventually reaches an unoccupied leaf where it is stored. 

Note that whenever the root, or an intermediate node, sends the new record to a 
subtree, the number of unoccupied leaves associated with that subtreee is decreased by 
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1. It should be clear that insertion is greatly facilitated by the fact that the file is not to 
be maintained in any particular order. 

2. Update Say that every record whose s field equals x must be updated with 
new information in (some of) its other fields. This is accomplished by sending x and 
the new information to all leaves. Each leaf i for which si = x implements the change. 

3. Deletion If every record whose s field equals x must be deleted, then we begin 
by sending x to all leaves. Each leaf i for which si  = x now declares itself as unoccupied 
by sending a 1 to its parent. This information is carried upward until it reaches the 
root. On its way, it increments by 1 the appropriate count in each node of the number 
of unoccupied leaves in the left or right subtree. 

Each of the preceding maintenance operations takes O(1og n) time. As before, q 
operations can be pipelined to require O(1og n) + O(q) time in total. 

We conclude this section with the following observations. 

1. We have obtained a search algorithm for a tree-connected computer that is 
more efficient than that described for a much stronger model, namely, the EREW SM 
SIMD. Is there a paradox here? Not really. What our result indicates is that we 
managed to find an algorithm that does not require the full power of the shared- 
memory model and yet is more efficient than an existing EREW algorithm. Since any 
algorithm for an interconnection network SIMD computer can be simulated on the 
shared-memory model, the tree algorithm for searching can be turned into an EREW 
algorithm with the same performance. 

2. It may be objected that our comparison of the tree and shared-memory 
algorithms is unfair since we are using 2n - 1 processors on the tree and only n on the 
EREW computer. This objection can be easily taken care of by using a tree with n/2 
leaves and therefore a total of n - 1 processors. Each leaf now stores two records and 
performs two comparisons for every given x. 

3. If a tree with N leaves is available, where 1 < N < n, then n/N records are 
stored per leaf. A query now requires 

(i) O(log N) time to send x to the leaves, 
(ii) O(n/N) time to search the records within each leaf for one with an s field equal to 

x, and 
(iii) O(1og N) time to send the answer back to the root, 

that is, a total of O(1og N) + O(n/N). This is identical to the time required by the 
algorithms that run on the more powerful EREW, ERCW, or CREW SM SIMD 
computers. Pipelining, however, is not as attractive as before: Searching within each 
leaf no longer requires constant time and q queries are not guaranteed to be answered 
in O(1og n) + O(q) time. 
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4. Throughout the preceding discussion we have assumed that the wire delay, 
that is, the time it takes a datum to propagate along a wire, from one level of the tree 
to the next is a constant. Thus for a tree with n leaves, each query or maintenance 
operation under this assumption requires a running time of O(1og n) to be processed. 
In addition, the time between two consecutive inputs or two consecutive outputs is 
constant: In other words, searching on the tree has a constant period (provided, of 
course, that the queries have constant-length answers). However, a direct hardware 
implementation of the tree-connected computer would obviously have connections 
between levels whose length grows exponentially with the level number. As Fig. 5.5 
illustrates, the wire connecting a node at level i to its parent at level i + 1 has length 
proportional to 2'. The maximum wire length for a tree with n leaves is O(n) and occurs 
at level log n - 1. Clearly, this approach is undesirable from a practical point of view, 
as it results in a very poor utilization of the area in which the processors and wires are 
placed. Furthermore, it would yield a running time of O(n) per query if the 
propagation time is taken to be proportional to the wire length. In orde:r to prevent 
this, we can embed the tree in a mesh, as shown in Fig. 5.7. Figure 5.7 illustrates an n- 

INTERMEDLATE 
NODE 

Figure 5.7 Tree-connected computer embedded in mesh. 
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node tree, with n = 31, where 

(i) the maximum wire length is O(n1I2), 
(ii) the area used is O(n), and 

(iii) the running time per query or maintenance operation is O(n1l2) and the period is 
O(n1I2), assuming that the propagation time of a signal across a wire grows 
linearly with the length of the wire. 

This is a definite improvement over the previous design, but not sufficiently so to 
make the tree the preferred architecture for search problems. In the next section we 
describe a parallel algorithm for searching on a mesh-connected SIMD computer 
whose behavior is superior to that of the tree algorithm under the linear propagation 
time assumption. 

5.3.3 Searching on a Mesh 

In this section we show how a two-dimensional array of processors can be used to 
solve the various searching problems described earlier. Consider the n-processor 
mesh-connected SIMD computer illustrated in Fig. 5.8 for n = 16, where each 
processor stores one record of the file to be searched. This architecture has the 
following characteristics: 

1. The wire length is constant, that is, independent of the size of the array; 

2. the area used is O(n); and 
3. the running time per query or maintenance operation is O(n1I2) and the period is 

constant regardless of any assumption about wire delay. 

Clearly, this behavior is a significant improvement over that of the tree 
architecture under the assumption that the propagation time of a signal along a wire is 
linearly proportional to the length of that wire. (Of course, if the wire delay is assumed 
to be a constant, then the tree is superior for the searching problem since log n < nli2 
for sufficiently large n.) 

5.3.3.1 Querying. In order to justify the statement in 3 regarding the 
running time and period of query and maintenance operations on the mesh, we 
describe an algorithm for that architecture that solves the basic query problem; 
namely, given an integer x, it is required to search the file of records on the s field for x. 
We then show that the algorithm produces a yes or no answer to such a query in 
O(n1I2) time and that q queries can be processed in O(q) + O(n'12) time. Let us denote 
by siqj the s field of the record held by processor P(i, j). The algorithm consists of two 
stages: unfolding and folding. 

Unfolding. Processor P(1,l) reads x. If x = s,,,, it produces an output b,,, 
equal to 1; otherwise b,,, = 0. It then communicates (b,,,, x) to P(1,2). If x = s,,, or 
b,,, = 1, then bIT2 = 1; otherwise b,,, = 0. Now simultaneously, the two row 
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INPUTIOUTPUT 
4 1 1 )  - p(1,2) - 3 - P(1.4) 

Figure 5.8 Mesh-connected computer for searching. 

neighbors P ( 1 , l )  and P(1 ,2 )  send ( b  ,,,, x )  and (b , , , ,  x )  to P ( 2 , l )  and P(2,2) ,  
respectively. Once b,, ,  and b,,, have been computed, the two column neighbors 
P(1 ,2 )  and P(2,2)  communicate (b,,,, x )  and (b,,,, x )  to P(1,3)  and P(2,3),  respectively. 
This unfolding process, which alternates row and column propagation, cointinues until 
x reaches P(n'I2, n1I2). 

Folding. At the end of the unfolding stage every processor has had a chance to 
"see" x and compare it to the s field of the record it holds. In this second stage, the 
reverse action takes place. The output bits are propagated from row to row and from 
column to column in an alternating fashion, right to left and bottom to top, until the 
answer emerges from P ( l ,  1). The algorithm is given as procedure MESH SEARCH: 

procedure MESH SEARCH (S, x, answer) 

Step 1: {P(1, 1) reads the input) 
if x = s,, ,  then b,,, + 1 

else b, , ,  + 0 
end if. 

Step 2: {Unfolding} 
for i = 1 to n1I2 - 1 do 

(2.1) for j = 1 to i do in parallel 
(i) P(j, i) transmits (bj,i, x) to P(j, i + 1) 
(ii) if (X = s ~ , ~ +  , or bj,i = 1) then bjqi+ , + 1 

else bj,i+ , + 0 
end if 

end for 
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(2.2) for j = 1 to i + 1 do in parallel 
(i) P(i, j) transmits (bi,j, x) to P(i + 1, j )  
(ii) i f (x = s i+ l , j  or bi.j = 1) then bi+l. j+ 1 

else bi+l. j  6 0 
end if 

end for 
end for. 

Step 3: {Folding} 
for i = n1I2 downto 2 do 

(3.1) for j = 1 to i do in parallel 
P(j, i) transmits bj,; to P(j, i - 1) 

end for 
(3.2) for j = 1 to i - 1 do in parallel 

bj,i- 1 bj.i 
end for 

(3.3) if ( b i , i l = l  or bi, i=l)then bi,i-l+-l 
else bi,i- , t 0 

end if 
(3.4) for j = 1 to i - 1 do in parallel 

P(i, j) transmits b , ,  to P(i - 1, j) 
end for 

(3.5) for j = 1 to i - 2 do in parallel 
bi- l , j  + bi.j 

end for 
(3.6) i f (b ,-,, i - l  = 1 or bi.i-l = 1)then bi- l , i - l  + l  

else bi_, , i - l  t 0 
end if 

end for. 

Step 4: {P(l, l) produces the output} 
if b,,, = 1 then answer + yes 

else answer t no 
end if. 

Analysis 

As each of steps 1 and 4 takes constant time and steps 2 and 3 consist of nl i2  - 1 
constant-time iterations, the time to process a query is O(n1'2). Notice that after the 
first iteration of step 2, processor P(1,l) is free to receive a new query. The same 
remark applies to other processors in subsequent iterations. Thus queries can be 
processed in pipeline fashion. Inputs are submitted to P(1,l) at a constant rate. Since 
the answer to a basic query is of fixed length, outputs are also produced by P(l, 1) at a 
constant rate following the answer to the first query. Hence the period is constant. 

Example 5.3 

Let a set of 16 records stored in a 4 x 4 mesh-connected SIMD computer be as shown in 
Fig. 5.9. Each square in Fig. 5.9(a) represents a processor and the number inside it is the s 



Sec. 5.3 Searching a Random Sequence 

Figure 5.9 Searching sequence of sixteen elements using procedure MESH 
SEARCH. 

field of the associated record. Wires connecting the processors are omitted for simplicity. 
It is required to determine whether there exists a record with s field equal to 15 (i.e., 
x = 15). Figures 5.9(b)-5.9(h) illustrate the propagation of 15 in the arra:y. Figure 5.9(i) 
shows the relevant b values at the end of step 2. Figures 5.9(j)-5.9(0) illustrate the folding 
process. Finally Fig. 5.9(p) shows the result as produced in step 4. Note that in Fig. 5.9(e) 
processor P(1,l) is shown empty indicating that it has done its job propagating 15 and is 
now ready to receive a new query. 

Some final comments are in order regarding procedure MESH SEARCH. 

1. N o  justification was given for transmitting bi,j along with x during the unfolding 
stage. Indeed, if only one query is to  be answered, no processor needs to  
communicate its b value to a neighbor: All processors can compute and retain 
their outputs; these can then be combined during the folding stage. However, if 
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several queries are to be processed in pipeline fashion, then each processor must 
first transmit its current b value before computing the next one. In this way the 
biVj are continually moving, and no processor needs to store its b value. 

2. When several queries are being processed in pipeline fashion, the folding stage of 
one query inevitably encounters the unfolding stage of another. As we did for the 
tree, we assume that a processor simultaneously receiving data from opposite 
directions can process them in a single time unit or that every processor 
alternately switches its attention from one direction to the other. 

3. It should be clear that all variations over the basic query problem described in 
section 5.3.2.1 can be easily handled by minor modifications to procedure 
MESH SEARCH. 

5.3.3.2 Maintenance. All three maintenance operations can be easily 
implemented on the mesh. 

1. Insertion Each processor in the top row of the mesh keeps track of the 
number of unoccupied processors in its column. When a new record is to be inserted, 
it is propagated along the top row until a column is found with an unoccupied 
processor. The record is then propagated down the column and inserted in the first 
unoccupied processor it encounters. The number of unoccupied processors in that 
column is reduced by 1. 

2. Updating All records to be updated are first located using procedure MESH 
SEARCH and then the change is implemented. 

3. Deletion When a record is to be deleted, it is first located, an indicator is 
placed in the processor holding it signifying it is unoccupied, and the count at the 
processor in the top row of the column is incremented by 1. 

5.4 P R O B L E M S  

5.1 Show that C2(log n) is a lower bound on the number of steps required to search a sorted 
sequence of n elements on an EREW SM SIMD computer with n processors. 

5.2 Consider the following variant of the EREW SM SIMD model. In one step, a processor 
can perform an arbitrary number of computations locally or transfer an arbitrary number 
of data (to or from the shared memory). Regardless of the amount of processing - 
(computations or data transfers) done, one step is assumed to take a constant number of 
time units. Note, however, that a processor is allowed to gain access to a unique memory 
location during each step (as customary for the EREW model). Let n processors be 
available on this model to search a sorted sequence S = {s,, s,, . . . , s,} of length n for a 
given value x. Suppose that any subsequence of S can be encoded to fit in one memory 
location. Show that under these conditions the search can be performed in O(10g"~n) time. 
[Hint: Imagine that the data structure used to store the sequence in shared memory is a 
binary tree, as shown in Fig. 5.1qa) for n = 31. This tree can be encoded as shown in Fig. 
5.10(b).] 
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Figure 5.10 Data structures for problem 5.2. 

5.3 Prove that R(l~g' '~n) is a lower bound on the number of steps required to search a sorted 
sequence of n elements using n processors on the EREW SM SIMD computer of problem 
5.2. 

5.4 Let us reconsider problem 5.2 but without the assumption that arbitrary subsequences of 
S can be encoded to fit in one memory location and communicated in one step. Instead, we 
shall store the sequence in a tree with d levels such that a node at level i contains d - i 
elements of S and has d - i + 1 children, as shown in Fig. 5.11 for n = 23. Each node of 
this tree is assigned to a processor that has sufficient local memory to store the elements of 
S contained in that node. However, a processor can read only one element of S at every 
step. The key x to be searched for is initially available to the processor in charge of the 
root. An additional array in memory, with as many locations as there are processors, 
allows processor Pi  to communicate x to P j  by depositing it in the location a.ssociated with 
Pj .  Show that O(n) processors can search a sequence of length n in O(log ,n/log log n). 
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Figure 5.11 Data structure for problem 5.4. 

5.5 Let M(N,r, s) be the number of comparisons required by an N-processor CREW SM 
SIMD computer to merge two sorted sequences of length r and s, respectively. Prove that 
M(N, 1,s) = riog(s + I ) ~ o ~ ( N  + 1)i. 

5.6 Let 1 < r < N and r < s. Prove that 

5.7 Let 1 < N d r < s. Prove that 

5.8 Consider an  interconnection-network SIMD computer with n processors where each 
processor has a fixed-size local memory and is connected to each of the other n - 1 
processors by a two-way link. At any given step a processor can perform any amount of 
computations locally but can communicate at  most one input to at most one other 
processor. A sequence S is stored in this computer one element per processor. It is required 
to search S for an  element x initially known to one of the processors. Show that Q(1og n) 
steps are required to perform the search. 

5.9 Assume that the size of the local memory of the processors in the network of problem 5.8 is 
no longer fixed. Show that if each processor can send or receive one element of S or x at a 
time, then searching S for some x can be done in O(log nllog log n) time. 

5.10 Reconsider the model in problem 5.8 but without any restriction on the kind of 
information that can be communicated in one step from one processor to another. Show 
that in this case the search can be performed in O(logl'*n) time. 

5.11 Let the model of computation described in problem 2.9, that is, a linear array of N 
processors with a bus, be available. Each processor has a copy of a sorted sequence S of n 
distinct elements. Describe an algorithm for searching S for a given value x on this model 
and compare its running time to  that of procedure CREW SEARCH. 

5.12 An algorithm is described in example 1.4 for searching a file with n entries on a CRCW SM 
SIMD computer. The n entries are not necessarily distinct or sorted in any order. The 
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algorithm uses a location F in shared memory to determine whether early termination is 
possible. Give a formal description of this algorithm. 

5.13 Give a formal description of the tree algorithm for searching described in section 5.3.2.1. 
5.14 Given a sequence S and a value x, describe tree algorithms for solving; the following 

extensions to the basic query: 
(a) Find the predecessor of x in S, that is, the largest element of S smaller than x. 
(b) Find the successor of x in S, that is, the smallest element of S larger than x. 

5.15 A file of n records is stored in the leaves of a tree machine one record per leaf. Each record 
consists of several fields. Given ((i, xi), (j, xj), . . . , (m, x,)), it is required to find the records 
with the ith field equal to xi, the jth field equal to xi, and so on. Describe an algorithm for 
solving this version of the search problem. 

5.16 Consider a tree-connected SIMD computer where each node contains a record (not just 
the leaves). Describe algorithms for querying and maintaining such a file of records. 

5.17 Repeat problem 5.14 for a mesh-connected SIMD computer. 
5.18 Consider the following modification to procedure MESH SEARCH. As usual, P(1,l) 

receives the input. During the unfolding stage processor P(i, j) can send data simulta- 
neously to P(i + 1, j) and P(i, j + 1). When the input reaches P(nl/', nl/'), this processor 
can compute the final answer and produce it as output (i.e., there is no folding stage). 
Describe the modified procedure formally and analyze its running time. 

5.19 Repeat problem 5.11 for the case where the number of processors is n and each processor 
stores one element of a sequence S of n distinct elements. 

5.20 A binary sequence of length n consisting of a string of 0's followed by a string of 1's is given. 
It is required to find the length of the string of 0's using an EREW SM SIMD computer 
with N processors, 1 < N < n. Show that this can be done in O(log(n/N)) time. 

5.21 In a storage and retrieval technique known as hashing, the location of a dlata element in 
memory is determined by its value. Thus, for every element x, the address of x is f (x), 
where f is an appropriately chosen function. This approach is used when the data space 
(set of potential values to be stored) is larger than the storage space (memory locations) but 
not all data need be stored at once. Inevitably, collisions occur, that is, f (x)  = f(y) for 
x # y, and several strategies exist for resolving them. Describe a parallel algorithm for the 
hashing function, collision resolution strategy, and model of computation of your choice. 

5.22 The algorithms in this chapter addressed the discrete search problem, that is, searching for 
a value in a given sequence. Similar algorithms can be derived for the contirluous case, that 
is, searching for points at which a continuous function takes a given value. Describe 
parallel algorithms for locating (within a given tolerance) the point at which a certain 
function (i) assumes its largest value and (ii) is equal to zero. 

5.23 It was shown in section 5.2.2 that procedure CREW SEARCH achieves th~e best possible 
running time for searching. In view of the lower bound in problem 5.1, show that no 
procedure faster than MULTIPLE BROADCAST of section 3.4 exists for simulating a 
CREW algorithm on an EREW computer. 

5.5 B lBL lOGRAPHlCAL  R E M A R K S  

The problem of searching a sorted sequence in parallel has attracted a good de:al of attention 
since searching is an often-performed and time-consuming operation in most database, 
information retrieval, and office automation applications. Algorithms similar to procedure 
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CREW SEARCH for searching on the EREW and CREW models, as well as variations of these 
models, are described in [Coraor], [Kruskal], [Munro], and [Snir]. In [Baer] a parallel 
computer is described that consists of N processors connected via a switch to M memory 
blocks. During each computational step several processors can gain access to several memory 
blocks simultaneously, but no more than one processor can gain access to a given memory 
block (recall Fig. 1.4). A sorted sequence is distributed among the memory blocks. Various 
implementations of the binary search algorithm for this model are proposed in [Baer]. A brief 
discussion of how to speed up information retrieval operations through parallel processing is 
provided in [Salton I]. 

Several algorithms for searching on a tree-connected computer are described in 
[Atallah], [Bentley], [Bonuccelli], [Chung], [Leiserson 11, CLeiserson21, [Ottman], 
[Somani], and [Song]. Some of these algorithms allow for records to be stored in all nodes of 
the tree, while others allow additional connections among the nodes (such as, e.g., connecting 
the leaves as a linear array). The organization of a commercially available tree-connected 
computer for database applications is outlined in [Seaborn]. Also, various ways to implement 
tree-connected computers in VLSI are provided in [Bhatt] and [Schmeck 11. An algorithm 
analogous to procedure MESH SEARCH can be found in [Schmeck 21. The idea that the 
propagation time of a signal along a wire should be taken as a function of the length of the wire 
in parallel computational models is suggested in [Chazelle] and [Thompson]. 

Other parallel algorithms for searching on a variety of architectures are proposed in the 
literature. It is shown in [Kung 23, for example, how database operations such as intersection, 
duplicate removal, union, join, and division can be performed on one- and two-dimensional 
arrays of processors. Other parallel search algorithms are described in [Boral], [Carey], 
[Chang], [DeWitt I], [DeWitt 23, [Ellis I], [Ellis 21, [Fisher], [Hillyer], [Kim], [Lehman], 
[Potter], [Ramamoorthy], [Salton 21, [Schuster], [Stanfill], [Stone], [Su], [Tanaka], and 
[Wong]. In [Rudolph] and [Weller] the model of computation is a so-called parallel pipelined 
computer, which consists of N components of M processors each. Each component can initiate 
a comparison every 1/M units of time; thus up to N M  comparisons may be in progress at one 
time. The algorithms in [Rudolph] and [Weller] implement a number of variations of binary 
search. Several questions related to querying and maintaining files on an MIMD computer are 
addressed in [Kung 11, [Kwong I], and [Kwong 21. Parallel hashing algorithms are presented 
in [Miihlbacher]. Finally, parallel search in the continuous case is the subject of [Gal] and 
[Karpl. 
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Generating Permutations 
and Combinations 

6.1 INTRODUCTION 

The enumeration of combinatorial objects occupies an important place in computer 
science due to its many applications in science and engineering. In this chapter we 
describe a number of parallel algorithms for the two fundamental problems of 
generating permutations and combinations. We begin with some definitions. 

Let S be a set consisting of n distinct items, say, the first n positive integers; thus 
S = {1,2,. . . , n). An m-permutation of S is obtained by selecting m distinct integers out 
of the n and arranging them in some order. Thus for n = 10 and m = 4, a 4- 
permutation might be (5 7 9 2). Two m-permutations are distinct if they differ with 
respect to the items they contain or with respect to the order of the items. The number 
of distinct m-permutations of n items is denoted by "P,, where 

Thus for n = 4, there are twenty-four distinct 3-permutations. Note that vvhen m = n, 
"Pn = n!. 

Now let x = (x, x, . . . x,) and y = (y, y, . . . y,) be two m-permutations of S. We 
say that x precedes y in lexicographic order if there exists an i ,  1 < i < fin, such that 
x j  = yj for all j < i and xi < y,. The 3-permutations of {1,2,3,4) in lexicographic 
order are 

(1231, ( 1 2 %  ( 1 3 %  ( 1 3 %  

(1 4 21, (1 4 3), (2 1 3), (2 1 41, 

(2 3 I), (2 3 4), (2 4 I), (2 4 31, 

Note that, since S = (1, 2, 3, 41, lexicographic order coincides with increasing 
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numerical order. Had the elements of S been letters of the alphabet, lexicographic 
order would have been equivalent to the order used to list words in a dictionary. 

An m-combination of S is obtained by selecting m distinct integers out of the n 
and arranging them in increasing order. Thus for n = 6 and m = 3, one 3-combination 
is (2 4 5). Two m-combinations are distinct if they differ with respect to the items they 
contain. The number of distinct m-combinations of n items is denoted by "C, [and 
sometimes C)], where 

Thus for n = 4, there are four distinct 3-combinations. Since m-combinations are a 
special case of m-permutations, the definition of lexicographic order applies to them as 
well. The 3-combinations of {1,2,3,4) in lexicographic order are 

It should be clear that each of the two integers "P, and "C, can be computed 
sequentially in O(m) time. 

This chapter addresses the problems of generating all m-permutations and m- 
combinations of n items in lexicographic order. We begin by describing a number of 
sequential algorithms in section 6.2. Two of these algorithms are concerned with 
generating m-permutations and m-combinations in lexicographic order, respectively. 
The other algorithms in section 6.2 implement two numbering systems that associate a 
unique integer with each m-permutation and each m-combination, respectively. Three 
parallel m-permutation generation algorithms for the EREW SM SIMD model of 
computation are described in section 6.3. The first of these algorithms is a direct 
parallelization of the sequential algorithm in section 6.2. It uses m processors and runs 
in O("P,log m) time. The second algorithm is based on the numbering system for m- 
permutations described in section 6.2 and is both adaptive and cost optimal. It uses N 
processors, where 1 < N Q "P,/n, and runs in O(YP,/Nlm) time. The third algorithm 
applies to the case where m = n; it uses N processors, where 1 < N Q n, and runs in 
O(rn!/Nln) time for an optimal cost of O(n! n). Section 6.4 is devoted to two parallel m- 
combination generation algorithms for EREW SM SIMD computers. The first uses m 
processors and runs in O("C,log m) time. This algorithm is neither adaptive nor cost 
optimal. The second algorithm enjoys both of these properties and is based on the 
numbering system for m-combinations described in section 6.2. It uses N processors, 
where 1 < N Q "C,/n, and runs in O(rnCm/Nlm) time. 

6.2 SEQUENTIAL ALGORITHMS 

In this section we describe a number of sequential algorithms. The first algorithm 
generates all m-permutations of n items in lexicographic order. We also show how all 
m-permutations of n items can be put into one-to-one correspondence with the 
integers 1,. . . , "P,. Two algorithms, one for mapping a given permutation to an 
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integer and another that performs the inverse mapping, are described. We: then move 
to combination-related algorithms. Three algorithms are described: The first gen- 
erates all m-combinations of n items in lexicographic order; the second maps a given 
combination to a unique integer 1,. . . , "C,; and the third generates a unique 
combination corresponding to a given integer 1,. . . , "C,. All the algorithms presented 
in this section will then be used in our development of parallel permutation and 
combination generation algorithms. We continue to assume that S = (1:. 2,. . . , n). 

6.2.1 Generating Permutations Lexicographically 

Our algorithm for generating all m-permutations of {1,2,. . . , n) proceeds as follows. 
Beginning with the permutation (1 2 . .  . m) all m-permutations are generated in 
lexicographic order, until the last permutation, namely, (n n - 1 . . . n -- m + 1), is 
generated. Given (p, p, . . . p,) the next permutation is obtained by calling ,a procedure 
NEXT PERMUTATION. This procedure uses a bit array u = u,, u,, . . . , u, as 
follows: 

(i) When the procedure begins execution all the entries of u are 1. 
(ii) For each element pi in the given permutation (p, p, . . . p,), if pi = j, then uj is set 

to 0. 
(iii) When the procedure terminates, all entries of u are 1. 

In order to generate the next permutation, the procedure begins by determining 
whether the current permutation is updatable. A permutation (p, p, . . . p,) is up- 
datable if for at least one of its elements pi there exists a j such that pi .< j < n and 
uj = 1. Thus the only permutation that is not updatable is (n n - 1 . . . n - m + 1). 
Having determined that a permutation (p, p, . . . p,) is updatable, the rightmost 
element pi and the smallest index j for which the preceding condition holds are 
located: pi is made equal to j and uj to 0. All the elements pi+ ,, pi+,, . . . , pm to the 
right of pi are now updated. This is done as follows: p i+ , ,  1 < k < m - i, is made equal 
to s if us is the kth position in u that is equal to 1. The algorithm is given as 
procedure SEQUENTIAL PERMUTATIONS followed by procedure NEXT 
PERMUTATION, which it calls: 

procedure SEQUENTIAL PERMUTATIONS (n, m) 

Step 1: (1.1) (p,p, . . . p,) 6 (1 2.. . m) 
(1.2) produce ( p ,  p, . . . p,) as output 
(1.3) u, ,  u 2 , .  . . , u,, t (1, 1,. . . , 1). 

Step 2: for i = 1 to ("P, - 1) do 
NEXT PERMUTATION (n, m, p,,  p,, . . . , p,) 

end for. 
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procedure NEXT PERMUTATION (n, m, p , ,  p,, . . . , p,) 
if(p,p z . . . p , ) Z ( n n - l . . . n - m + l )  
then (1) for i = 1 to m do 

u t o  
p, 

end for 
(2) f + n 
(3) {Find the largest unused integer) 

while u, # 1 do 
f - f - 1  

end while 
(4)  k t m  + 1 
(5 )  i e 0  
(6) {Find rightmost updatable element) 

while i = 0  do 
(6.1) k t  k - 1 
(6.2) up*+ 1 
(6.3) if p, < f 

then {update p,) 
(i) find smallest j such that 

p, < j < n and u j  = 1 
(ii) i t k  
(iii) pi t j 
(iv) up t O  

else {laigest unused integer is set equal to p,) 
f +Pk 

end if 
end while 

(7) {Update elements to the right of pi) 
for k = 1 to m - i do 

if u, is kth position in u that is 1 
then pi+, + s 
end if 

end for 
(8) {Reinitialize array u }  

for k = 1 to i do 
u e l  

' k  

end for 
(9) produce (p, p ,  . . . p,) as output 

end if. 

Analysis. Procedure SEQUENTIAL PERMUTATIONS consists of one 
execution of step 1 requiring O(n) time and "P ,  - 1 executions of step 2. In step 2 each 
call to procedure NEXT PERMUTATION performs O(m) steps. This can be seen as 
follows. Steps 1, 3, 8, and 9 take O(m) time, while steps 2, 4, and 5 require constant 
time. Since only m positions of array u are 0 after step 1, both steps 6 and 7 take O(m) 
steps. The overall running time of procedure SEQUENTIAL PERMUTATIONS is 
O("P,m). This behavior is optimal in view of the fact that n("P,m) time is required to 
produce "P, lines of output, each m elements long. 
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6.2.2 Numbering Permutations 

We now show that a one-to-one correspondence exists between the integers 1,. . . , "P, 
and the set of m-permutations of {1,2,. . . , m) listed in lexicographic order. Specifi- 
cally, we define a function rankp with the following properties: 

(i) Let (p, p,. . . p,) be one of the "P, m-permutations of {1,2,. . . ,n); then 
rankp(p,, p,, . . . ,p,) is an integer in {1,2,. . . , "P,). 

(ii) Let (p, p, .. . p,) and (q, 9, . . . q,) be two m-permutations of (1, 2, . .., n); 
then (p, p, . . . p,) precedes (q, q, . . . q,) lexicographically if a.nd only if 
rankp(p,, p,, . . . , p,) < rankp(q1, 92,. . . ,q,). 

(iii) Let d = rankp(p,,p,,. . . ,p,); then (p, p,. . . p,) can be obtained from 
rankp-'(d), that is, rankp is invertible, as can be deduced from (i) and (ii). 

For the permutation (p, p, . . . p,) define the sequence {r,, r,, . . . , r,) as follows: 

i -1  1 if pi < pj, 
ri = pi - i + 1 [pi < pj] where [pi < pj1 = 

j= l  0 otherwise. 

The string r, r, . . . r, can be seen as a mixed radix integer where 

Expressing r, r, . . . rm as a decimal number gives us the integer corresponding to 
(PI ~2 . . . ~m):  

Let d = rankp(p,, p,, . . . , p,); the permutation (p, p, . . . p,) can be obtained from d as 
follows. A sequence (r,, r,, . . . , r,) is computed from 

Then (p, p2 . . . p,) is defined recursively by 

where di is the smallest nonnegative integer such that 
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Functions rankp and rankp-' are given below as procedures RANKP and 
RANKPINV, respectively. 

procedure RANKP (n, m, P I ,  p,, . . . , P,, d )  

Step 1: for i = 1 to m do 
(1.1) d t - i  
(1.2) for j = 1 to i - 1 do 

if pi < pj then d t d + 1 end if 
end for 

(1.3) si t pi + d 
end for. 

Step 2: d t s,. 

Step 3: i + 1. 

Step 4: for j  = m - 1 downto 1 do 
(4.1) i + (n  - j )  x i 
(4.2) d t d + ( s j  x i )  

end for. 

Step 5: d t d + 1. 

procedure RANKPINV (n,  rn, d, p,, p,, . . . , p,) 

Step 1: d + d - 1. 

Step 2: for i = 1 to n do 
si c 0  

end for. 

Step 3: a +- 1. 

Step 4: for i = m - 1 downto 1 do 
a + - a x @ - m + i )  

end for. 

Step 5: for i = 1 to rn do 
(5.1) b + Ld/a] 
(5.2) d t d - ( a  x b) 
(5.3) if n > i then a +- a/(n - i )  end if 
(5.4) k t 0  
(5.5) j +- 0  
(5.6) {Find the ( b  + 1)st position in  s equal t o  0 )  

while k  < b + 1 do 
(i) j + j +  1 

(ii) if sj  = 0 then k + k + 1 end if 
end while 

(5.7) Pi + j  
(5.8) s j  t 1 

end for. 
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Analysis. In procedure RANKP, steps 2, 3, and 5 take constant time while 
step 4 consists of a constant time loop executed m times. Step 1 consists of two nested 
O(m) time loops plus two constant time steps. The procedure therefore requires O(m2) 
time. The running time of procedure RANKPINV is dominated by step 5, which 
requires O(mn) time. 

6.2.3 Generating Combinations Lexicographically 

We now give a sequential algorithm for generating all m-combinations of ( l , 2 , .  . . , n) 
in lexicographic order. The algorithm begins by generating the initial combination, 
namely (1 2. .  . m). Then, every one of the "C, - 1 subsequent m-combinations is 
derived from its predecessor (c, c2 . .  . c,) as follows. First observe that the last 
combination to be generated is ((n - m + l)(n - m + 2). . . n). A combination 
(c, c2 ... c,) is therefore updatable if for some j, 1 < j < m, cj < n - m + j. If 
(c, c2 . . . c,) is updatable, then the largest j satisfying the above condition is 
determined. The next combination in lexicographic order can now be obtained by 

1. incrementing cj by one, and 
2. setting cj+, c cj + 1, c ~ + ~  c c ~ + ~  + 1,. . . ,c, c c,-I + 1. 

The algorithm is given below as procedure SEQUENTIAL COMBINATIONS along 
with procedure NEXT COMBINATIONS which it calls. 

procedure SEQUENTIAL COMBINATIONS (n, m) 

Step 1: (1.1) (c, c, . . . c,) t (1 2 . .  . m) 
(1.2) produce (c, c, . .. c,) as output. 

Step 2: for i = 1 to "C, - 1 do 
NEXT COMBINATION (n, m, c,, c,, . . . , c,) 

end for. 

procedure NEXT COMBINATION (n, m, c , ,  c,, . . . , c,) 

Step 1: j + m. 

Step 2: while 0' > 0) do 
i f c j < n - - m + j  
then 

(2.1) cj+ cj + 1 
(2.2) for i = j + 1 to m do 

ci 4- C i - l  + 1 
end for 

(2.3) produce (c, c,. . . c,) as output 
e l s e j t j -  1 
end if 

end while. 
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Analysis. Procedure NEXT COMBINATION scans a given m- 
combination once from right to left and then (from an updatable position) left 
to right. This takes O(m) steps in the worst case. Procedure SEQUENTIAL 
COMBINATIONS requires O(m) time in step 1 to produce the initial permutation. 
Step 2 consists of "C, - 1 iterations each of which is a call to procedure NEXT 
COMBINATION and thus requires O(m) time. The overall running time of procedure 
SEQUENTIAL COMBINATIONS is O("C,m). This behavior is optimal since 
R("C,m) steps are required to produce "C, lines of output, each m elements long. 

6.2.4 Numbering Combinations 

As we did with m-permutations, we now show that a one-to-one correspondence exists 
between the integers 1,. . . , "C, and the set of m-combinations of {1,2,. . . , n) listed in 
lexicographic order. Let (c, c, . . . c,) represent one such combination (where, by 
definition, c, < c, < . . . < em). We define 

complement(n, c,, c,, . . . , c,) = (dl d, . . . dm) 

as the complement of (c, c, . . . c,) with respect to (1 ,2 , .  . . , n), where 

d, = (n + 1) - 

The following function takes n and (c, c, . . . c,) as input and returns (dl d, . . . dm) as 
output in O(m) time. 

function COMPLEMENT (n, c,,  c2,. . . , c,) 

Step I: for i = 1 to m do 
di t (n  + 1 )  - c,-,+ 

end for. 

Step 2: COMPLEMENT +-(dl d, . . .dm).  

Now let the reverse of (c, c, . . . c,) be given by (c, em-, . . . c, c,). The mapping 

m 

order(c,, c,, . . . ,c,) = 2 " - 'C i  
i = l  

has the following properties: 

1. if (c, C, .. . em) and (c; c;. . . ck) are two m-combinations of { l ,2, .  . . , n} and the 
reverse of (c, c, . . . c,) precedes the reverse of (c; c; . . . ck) in lexicographic 
order, then 

order(c,, c,, . . . , c,) < order(c;, c;, . . . , ck); 
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2. order(1, 2,. . . , m) = 0 and order((n - m + I), (n - m + 2), . . . , n) = "C, - 1 im- 
plying that the transformation order maps the " C, different m-combinations 
onto (O,l,. . . , "C, - 1) while preserving reverse lexicographic order. 

The following function takes (c, c,. . . c,) as input and returns order 
(c,, c,, . . . ,em) as output in O(m2) time: 

function ORDER (c,, c,, . . . , c,) 

Step 1: sum t 0. 
Step 2: for i = 1 to  m do 

sumtsum + "- 'Ci 
end for. 

Step 3: ORDERtsum. 

Using order and complement, we can define the following one-to-one mapping 
of the "C, possible combinations onto {1,2,. . . , "C,), which preserves lexicographic 
ordering: 

rankc(n, c,, c,, . . . ,em) = "C, - order(complement(n, c,, c,, . . . , c,)). 

Thus rankc(n, 1, 2,. . . , m) = 1, rankc(n, 1, 2, . . . , m, m + 1) = 2, . . . , rankc(n, 
(n - m + I), (n - m + 2), . . . , n) = "C,. The following procedure is an implementation 
of the preceding mapping: It takes n and the combinations (c, c, . . . c,) as input and 
returns the ordinal position h of the latter in O(m2) time. 

procedure RANKC (n, c,, c,, . . .,em, h) 

Step 1: h t "C,. 

Step 2: (dl d, . . . dm) + COMPLEMENT(& c,, c,, . . . , c,). 
Step 3: h t h - ORDER(d,, d,, . . . ,dm). 

We now turn to the question of inverting the rankc mapping. Specifically, given 
an integer h, where 1 < h < "C,, it is required to determine the combination 
(cl c2 .. . c,) such that rankc(n, c,, c,, . . . , c,) = h. We begin by defining the inverse of 
order with respect to {1,2,. . . , n} as follows. Let order(c,, c,, . . . , c,) = g. Then 

orderinverse(n, m, g) = (c, c, . . . c,) 
where ci is equal to the largest j such that 

(i) i < j < n  and 
(ii) (g - ck-lck)>~-lci, 

The following function is an implementation of the preceding mapping. It takes n, m, 
and g as input and returns a combination (c, c, . . . c,) as output in O(mn) time. 
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function ORDERINV(n, m, g) 

Step 1: for i = m downto 1 do 
(1.1) j + n 
(1.2) c; +- 0 
(1.3) t t n - ' C i  
(1.4) while (c, = 0) do 

(i) if g 2 t 
then c, t j  
end if 

(ii) t t (t x - i))/j 
('.' 111) J '+j-l 

end while 
(1.5) g+-g-"-'C, 

end for. 

Step 2: ORDERINV t (c, c,. . . em). [7 

We are finally in a position to define the inverse of rankc. If rankc(n, c,, 
c,, . . . ,em) = h, then 

rankc-'(n, m, h) = complement(n, orderinverse(n, m, "C, - h). 

The following procedure RANKCINV takes n, m, and h as input and returns the 
combination (c, c, . . . c,) as output in O(mn) time. 

procedure RANKCINV(n, m, h, c,, c,, . . . , c,) 

Step 1: (dl d, . . . d,)tORDERINV(n, m, "C, - h). 

Step 2: (c, c,. . . c,)+COMPLEMENT(n, d l ,  d,, . . . ,dm). 

6.3 GENERATING PERMUTATIONS IN  PARALLEL 

We set the stage in the previous section to address the problem of generating 
permutations in parallel. Our first algorithm is a parallel version of the algorithm in 
section 6.2.1. 

6.3.1 Adapting a Sequential Algorithm 

We begin by making a few observations regarding procedure NEXT PERMU- 
TATION. 

1. Given an m-permutation (p, p, . . . p,) the procedure first checks whether it is 
updatable. 

2. If the permutation is updatable, then its rightmost element p, is checked first to 
determine whether it can be incremented; if it can, then the procedure 
increments it and terminates. 
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3. Determining whether p, can be incremented requires scanning no more than m 
positions of array u whose entries indicate which of the integers {1,2, . . . , n} 
currently appear in ( p ,  p, . . . p,) and which do not. This scanning also yields the 
new value of p, in case the latter can be incremented. 

4. If the rightmost element cannot be incremented, then the procedure finds the 
first element to the left of p, that is smaller than its right neighbor. This element, 
call it p,, is incremented by the procedure and all elements to its right are 
updated. 

5. Determining the new value of p, requires scanning no more than m positions 
of u. 

9. Updating all positions to the right of p, requires scanning no more than the j r s t  
m positions of u. 

These observations indicate that the algorithm in section 6.2.1 lends itself quite 
naturally to parallel implementation. Assume that m processors are available on an 
EREW SM SIMD computer. We give our first parallel m-permutation generator as 
procedure PARALLEL PERMUTATIONS. The procedure takes n and m as input 
and produces all "P, m-permutations of ( l ,2 , .  . . , n). It assumes that processor Pi has 
access to position i  of an output register where each successive permutation is 
produced. There are three arrays in shared memory: 

1.  p = p,, p,, . . . , p,, which stores the current permutation. 
2. u = u,, u,, . . . , u,, where ui = 0 if i  is in the current permutation ( p ,  p, . . . p,); 

otherwise ui = 1. Initially, ui = 1 for 1 < i  < n. 
3. x = x l r  x , ,  . . . , X ,  is used to store intermediate results. 

Procedure PARALLEL PERMUTATIONS also invokes the following four 
procedures for EREW SM SIMD computers: 

1. Procedure BROADCAST (a, m, x) studied in chapter 2, which uses an array 
x , ,  x,, . . . , x ,  to distribute the value of a to m processors P, ,  P,, . . . , P,. 

2. Procedure ALLSUMS ( x l ,  x, ,  . . . , x,) also studied in chapter 2, which uses m 
processors to compute the prefix sums of the array x , ,  x,, . . . , x ,  and replace xi with 
x ,  + x 2  + ... + x i  for 1 < i  Gn. 

3. Procedure MINIMUM (x,, x,, . . . , x,) given in what follows, which uses m 
processors to find the smallest element in the array x , ,  x,, . . . , x ,  and return it in x ,  : 

procedure MINIMUM (x,, x2,. . . , x,) 
for j = 0 to (log m - 1) do 

for i = 1 to m in step of 2 j+  ' do in parallel 
(1) Pi obtains through shared memory 
(2) if < x i  then xi + xi+ ,, end if 

end for 
end for. 
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4. Procedure MAXIMUM ( x , ,  x, ,  . . . , x,), which uses m processors to find thc 
largest element in the array x , ,  x, ,  . . . , x ,  and return it in x , .  This procedure is 
identical to procedure MINIMUM, except that step 2 now reads 

if > X ,  then x ,  + x,+z,  end if. 

5. Procedure PARALLEL SCAN (p,, n), which is helpful in searching for the 
next available integer to increment a given element p, of an m-permutation 
( p l  p2 . .  . p,) of {1,2,. . . , n). Given p, and n, array u in shared memory is used to 
determine which of the m integers p, + 1, p, + 2,. . . , p, + m satisfy the two conditions 
of 

(i) being smaller than or equal to n and 
(ii) being not present in ( p ,  p, . . . p,) 

and are therefore available for incrementing p,. Array x  in shared memory is used to 
keep track of these integers. 

procedure PARALLEL SCAN (p,, n) 

for i = 1 to m do in parallel 
if p , +  i < n  and 1 
then xi +- p, + i 
else xi t co 
end if 

end for. 

From chapter 2 we know that procedures BROADCAST and ALLSUMS run 
in O(1og m) time. Procedures MINIMUM and MAXIMUM clearly require O(1og m) 
time as well. Procedure PARALLEL SCAN takes constant time. We are now ready to 
state procedure PARALLEL PERMUTATIONS: 

procedure PARALLEL PERMUTATIONS (n, m) 

Step 1: (1.1) for i = 1 to m do in parallel 
(i) Pi 1 

(ii) produce pi as output 
end for 

(1.2) {Initialize array u} 
for i = 1 to rn/ml do 

for j = 1 to m do in parallel 
(i) k +- (i - l)m + j 

(ii) if k < n then u, t 1 end if 
end for 

end for. 
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Step 2: for t = 1 to ("P, - 1) do 
(2.1) for i = 1 to m do in parallel 

"P,'O 

end for 
(2.2) {Check whether rightmost element of (p, p, . . . p,) can be in- 

cremented; i.e., if there is a j, p, < j < n, such that j # p, for 
l < k < m - 1 )  
(i) BROADCAST (p,, m, x) 
(ii) PARALLEL SCAN (p,, n) 

(2.3) {If several j satisfying the condition in (2.2) are found, the smallest is 
assigned to p,} 
(i) {The smallest of the xi is found and placed in x,} 

MINIMUM (x,, x,, . . . ,x,) 
(ii) if x, # co then (a) u-,_ +- 1 

(b) Pm X I  

(c) k t m -  1 
(d) Go to step (2.7) 

end if 
(2.4) {Rightmost element cannot be incremented; find rightmost element 

p, such that P, < pk+ ,) 
(i) for i = 1 to m - 1 do in parallel 

if pi < pi+, then xi +- i 
else xi + - 1 

end if 
end for 

(ii) {The largest of the xi is found and placed in x , )  
MAXIMUM (x,, x,, . . . , x,) 

(iii) k + x, 
(iv) BROADCAST (k, m, x) 
(v) BROADCAST (p,, m, x) 

(2.5) {Increment p,: the smallest available integer larger than p, is 
assigned to pk) 
(i) for i = k to m do in parallel 

u -1 
p, 

end for 
(ii) PARALLEL SCAN (p,, n) 
(iii) MINIMUM (x,, x,, . . . , x,) 
(iv) pk xl 

( 4  upk+o 
(2.6) {Find the smallest m - k integers that are available and assign their 

values to p,, , , p,, ,, . . . , p,, respectively. This reduces to finding 
the first m - k positions of u that are equal to 1) 

(i) Eor i = 1 to m do in parallel 
Xi + U i  

end for 
(ii) ALLSUMS (x,, x,, . . . , x,) 
(iii) for i = 1 to m do in parallel 

i f x i < ( m - k ) a n d u i =  1 
then p,,,, +- i 
end if 

end for 
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(2.7) {Clean up array u and output current m-permutation) 
(i) for i = 1 to k do in parallel 

u C l  
p. 

end for 
(ii) for i = 1 to m do in parallel 

produce pi as output 
end for 

end for. 

Analysis. Step 1 takes O(n/m) time. There are "P, - 1 iterations of step 2, 
each requiring O(1ogm) time, as can be easily verified. The overall running time of 
PARALLEL PERMUTATIONS is therefore O("P,log m). Since m processors are 
used, the procedure's cost is O("P,m log m). 

Example 6.1 

We illustrate the working of procedure PARALLEL PERMUTATIONS by showing 
how a permutation is updated. Let S = {1,2,3,4,5) and let ( p ,  p2 p3 p,) = ( 5  1 4 3) be a 4- 
permutation to be updated during an iteration of step 2. In step 2.1 array u is set up as 
shown in Fig. 6.l(a). In step 2.2, p, = 3 is broadcast to all four processors to check 
whether any of the integers p, + 1, p, + 2, p, + 3, and p, + 4 is available. The processors 
assign values to array x as shown in Fig. 6.l(b). This leads to the discovery in step 2.3 that 
p, cannot be incremented. In step 2.4 the processors assign values to array x to indicate 
the positions of those elements in the permutation that are smaller than their right 
neighbor, as shown in Fig. 6.l(c). The largest entry in x is determined to be 2; this means 
that p, is to be incremented and all the positions to its right are to be updated. Now 2 and 
p, are broadcast to the four processors. In step 2.5 array u is updated to indicate that the 
old values of p,, p,, and p, are now available, as shown in Fig. 6.l(d). The processors now 
check whether any of the integers p ,  + 1, p, + 2, p, + 3, and p, + 4 is available and 
indicate their findings by setting up array x as shown in Fig. 6.l(e). The smallest entry in x 
is found to be 2: p, is assigned the value 2 and u ,  is set to 0, as shown in Fig. 6.l(f). In step 
2.6 the smallest two available integers are found by setting array x equal to the first four 
positions of array u. Now procedure ALLSUMS is applied to array x with the result 
shown in Fig. 6.l(g). Since x, < 4 - 2 and u ,  = 1, p , + ,  is assigned the value 1. Similarly, 
since x, = 4 - 2 and u ,  = 1, p, +, is assigned the value 3. Finally, in step 2.7 positions 2 
and 5 of array u are set to 1 and the 4-permutation (p, p, p,  p,) = (5 2 1 3) is produced as 
output. 

Discussion. We conclude this section with two remarks on procedure 
PARALLEL PERMUTATIONS. 

1. The procedure has a cost of O("P,m log m), which is not optimal in view of the 
O("P,m) operations sufficient to generate all m-permutations of n items by 
procedure SEQUENTIAL PERMUTATIONS. 

2. The procedure is not adaptive as it requires the presence of m processors in 
order to function properly. As pointed out earlier, it is usually reasonable to 
assume that the number of processors on a shared memory parallel computer is 
not only fixed but also smaller than the size of the typical problem. 
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Figore 6.1 Updating permutation using 
procedure PARALLEL PERMUTA - 
TIONS. 

The preceding remarks lead naturally to the following questions: 

1. Can a parallel permutation algorithm be derived that uses N processors, where 
1 < N < "P,? 

2. Would the algorithm be cost optimal? 

These two questions are answered affirmatively in the following section. 
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6.3.2 An Adaptive Permutation Generator 

In this section we describe an adaptive and cost-optimal parallel algorithm for 
generating all m-permutations of { l ,2, .  . . , n). The algorithm is designed to run on an 
EREW SM SIMD computer with N processors P I ,  P,, . . . , P,, where 1 < N 6 "P,. It 
makes use of procedure NEXT PERMUTATION and RANKPINV described in 
section 6.2. The idea of the algorithm is to let each processor generate a subset of the 
permutations lexicographically. Furthermore, all the permutations generated by Pi 
precede in lexicographic order those generated by Pi+,,  1 < i < N. Thus Pi begins 
with the jth permutation, where j = (i - l)rnPm/N1 + 1, and then generates the next 
rPm/N1  - 1 permutations. The algorithm is given as procedure ADAPTIVE 
PERMUTATIONS: 

procedure ADAPTIVE PERMUTATIONS (n,  m)  

for i = 1 to N do in parallel 
( 1 )  j + ( i  - 1) r n P m / N 1  + 1 
( 2 )  if j < "P ,  then 

(2.1) RANKPINV (n,  m, j, P I ,  P Z ,  . . . , P,) 
(2.2) produce the jth permutation ( p ,  p,  . . . p,) as output 
(2.3) for i = 1 to r P , / N 1  - 1 do 

NEXT PERMUTATION (n,  m, p , ,  P , , .  . . , P,) 
end for 

end if 
end for. 

Analysis. Step 1 requires O(m) operations. Generating the jth permutation 
in step 2.1 takes O(mn) operations and producing it as output in step 2.2 another O(m). 
There are rnPm/N1 - 1 iterations of step 2.3 each involving O(m) operations. The 
overall running time of procedure ADAPTIVE PERMUTATIONS is therefore 
dominated by the larger of O(mn) and O(rnPm/Nlm). Assuming that n d rnPm/N1, that 
is, 1 < N d "Pm/n, the procedure runs in O(r"Pm/Nlm) time with an optimal cost of 
O("Pmm). 

Three points are worth noting regarding procedure ADAPTIVE PERMU- 
TATIONS. 

The first two are: 

1. Once the values of n and m are made known to all the processors, using 
procedure BROADCAST, say, the shared memory is no longer needed. Indeed 
the processors, once started, independently execute the same algorithm and 
never need to communicate among themselves. 

2. Steps 2.1-2.3 may not be executed at all by some processors. This is illustrated 
by the following example. 
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Example 6.2 

Let n = 5, m = 3, and N = 13. Thus PP,/N1 = = 5. Processor P I  computes j = 1, 
uses procedure RANKPINV to generate the first permutation in lexicographic order, 
namely, (1 2 3), and then calls procedure NEXT PERMUTATION four times to generate 
(1 2 4), (1 2 5), (1 3 2), and (1 3 4). Simultaneously, P, generates the sixth through the tenth 
permutations, namely, (1 3 5), (1 4 2), (1 4 3), (1 4 5), and (1 5 2). Similarly, P,, P,, . . . , PI, 
each generates five 3-permutations. As for PI,, it computes j = 12 x 5 + 1 = 61, finds it 
larger than 5P,, and consequently does not execute steps 2.1-2.3. 

The third point regarding procedure ADAPTIVE PERMUTATIONS is: 

3. Although step 2.3 is iterated FP,/N1 - 1 times by the processors that execute 
it, fewer permutations than this number may be generated. This is illustrated by 
the following example. 

Example 6.3 

Again let n = 5 and m = 3 but this time assume that N = 7. Thus r5P,/71 = 9. Each of 
processors P I , .  . . , P, generates nine 3-permutations. Processor P,, however, generates 
only six 3-permutations, namely, the fifty -fifth through the sixtieth. During each of the 
final three iterations of step 2.3 executed by P,, procedure NEXT PERMUTATION 
detects that (p ,  p2p3) = (543), that is, the last permutation has been reached, and 
consequently does nothing. 

6.3.3 Parallel Permutation Generator for Few Processors 

Sometimes only few processors can be used to generate all m-permutations of n items. 
Assume, for example, that N processors are available, where 1 < N < n. A surpris- 
ingly simple parallel algorithm can be developed for this situation. The algorithm runs 
on an EREW SM SIMD computer and is adaptive and cost optimal. Unlike 
procedure ADAPTIVE PERMUTATIONS, however, it does not make use of the 
numbering system of section 6.2.2. We illustrate the algorithm for the special case 
where m = n, that is, when all n!  permutations of n items are to be generated. 

Let S = { 1 2 ,  n ,  as before, and consider the permutation 
(12 ... i -  1 i i  + 1 ... n)ofS.Foreachi, l  < i <  n,ann-  lpermutationisdefinedas 
follows: 

For ease of presentation, we begin by assuming that N = n, that is, that there are 
as many processors available as items to permute. The idea is to let processor Pi, for 
1 < i < n, begin with the permutation (i 1 2 . .  . i - 1 i + 1 . .  . n) and generate all 
subsequent permutations in lexicographic order, which have i in the first position. 
There are exactly (n - I)! such permutations. 
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In general, for N processors, where 1 < N < n,  each processor generates [ n ! / N 1  
permutations. In other words, each processor does the job of r n / N )  processors in the 
informal description of the previous paragraph. The algorithm is given as procedure 
FULL PERMUTATIONS: 

procedure FULL PERMUTATIONS (n )  

for j = 1 to N do in parallel 
for i = (j - 1) r / N ]  + 1 to j r n lN1  do 

if i  < n then 
( 1 )  ( p , p 2 . . . p n - , ) = ( 1 2 . . . i -  l i i +  l . . . n ) - i  
(2 )  produce ( i  p ,  p,  . . . p,- ,) as output 
(3) for k = 1 to ( (n  - l)! - 1) do 

NEXT PERMUTATION (n,  n, i, p , ,  p,, . . . , p , -  ,) 
end for 

end if 
end for 

end for. 

Analysis. Procedure NEXT PERMUTATION is called r n / N l [ ( n  - I)! - 11 
times, each call requiring O ( n )  steps to generate a permutation. Steps 1 and 2 are also 
executed r n / N l (  times and require O(n) time. The overall running time of procedure 
FULL PERMUTATIONS is therefore 

Since p(n)  = N, the procedure has an optimal cost of c ( n )  = O ( n !  n) .  

6.4 GENERATING COMBINATIONS I N  PARALLEL 

We now turn to the problem of generating all "C, m-combinations of S = { l ,  2,. . . , n }  
in lexicographic order. On the surface, this may appear to be a special case of the 
problem addressed in the previous section; indeed each m-combination is an m- 
permutation. It is not clear, however, how an algorithm for generating m- 
permutations, such as procedure PARALLEL PERMUTATIONS, for example, can 
be made to e f i c i e n t l y  generate combinations o n l y .  It appears therefore that a special 
approach will have to be developed for this problem. In this section we describe two 
algorithms for generating m-combinations in parallel. Both algorithms are designed to 
run on the EREW SM SIMD model of computation. 

6.4.1 A Fast Combination Generator 

We begin by restating the following properties of m-combinations of n items, listed in 
lexicographic order. 
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Property 1. For 1 < m < n, the first combination in lexicographic order is 
( 1  2 . .  . m), and the last one is (n - m + 1 n - m + 2 . .  . n). 

Property 2. Denote the last combination by ( x ,  x ,  . . . x,). If ( y ,  y ,  . . . y,) is 
one of the other possible combinations, then 

(i) y ,  < y ,  < . . . < ym and yi < xi for 1 < i < m. 
(ii) If there is a subscript i, 2 < i < m, such that all y's from yi to y, equal x i  to x,, 

respectively, and y i - ,  < x i -  ,, then the next successive combination is given by 
( y i y ;  . . . y a )  where y ; = y j  for l < j < i - 2 ,  and y ; = ~ ~ - ~ + j - i + 2  for 
i - 1 < j < m. Otherwise, the next successive combination is given by 
( Y , Y ~ . . . Y , - ,  Y m  + 1 ) .  

The preceding discussion leads naturally to our first parallel combination 
generator. The first combination generated is (1 2 . .  . m). Now, if ( y ,  y,  . . . y,) is the 
combination just generated, then the next successive combination is given by property 
2(ii). The algorithm uses five arrays b, c,  x ,  y, and z ,  each of length m, in shared 
memory. The ith position of each of these arrays is denoted by hi, ci, x i ,  y,, and z i ,  
respectively. The first of these arrays, array b, is used for broadcasting. Array c is 
simply an output buffer where every new combination generated is placed. The last 
three arrays are used to store intermediate results: 

1. Array x holds the last combination, namely, 

x i = n - m + i  for 1 < i < m .  

2. Array y holds the current combination being generated. 
3. Array z keeps track of those positions in y that have reached their limiting 

values; thus for 1 < i < m 

p. = 
if yi = x i ,  

' false otherwise. 

The algorithm is given in what follows as procedure PARALLEL 
COMBINATIONS. It uses m processors PI, P, , .  . . , P, and invokes procedure 
BROADCAST. 

procedure PARALLEL COMBINATIONS (n, m) 

Step 1: {Initialization) 
for i = 1 to m do in parallel 

(1.1) xi t n - m + i 
(1.2) yi t i 
(1.3) if yi = xi then zi + hue 

else zi + false 
end if 

(1.4) ci + i 
end for. 
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Step 2: {The value of z, if broadcast} 
BROADCAST (z, , rn, b). 

Step 3: while z, = false do 
(3.1) k t O  
(3.2) {Find rightmost element of current combination that has not reached its 

limiting value} 
for i = 2 to rn do in parallel 

if zi-, = false and zi = true 
then (i) yi- , + yi-, + 1 

(ii) k t i 
end if 

end for 
(3.3) BROADCAST (k, m, b) 
(3.4) {If no element has reached its limiting value, increment y,; otherwise update 

all elements from y, to y,) 
if k = 0  then y, + y, + 1 
else (i) BROADCAST (y,- ,, m, b) 

(ii) for i = k to m do in parallel 
yi+yk- ,  + ( i - k +  1) 

end for 
end if 

(3.5) for i = 1 to rn do in parallel 
(i) ci + Yi 

(ii) if yi = xi then zi = true 
else zi = false 

end if 
end for 

(3.6) BROADCAST ( z , ,  m, b) 
end while. 

Note that step 3.1 is executed by one processor, say, P,. Also, in step 3.2 at  most 
one processor finds zi-, = false and zi = true and updates y i_ ,  and k. Finally in the 
then part of step 3.4 only one processor, say, P,, increments y,. 

Analysis. Steps 1, 3.1,3.2, and 3.5 take constant time. In steps 2, 3.3, 3.4, and 
3.6 procedure BROADCAST requires O(1og m) time. Since step 3 is executed ("C, - 1) 
times, the overall running time of procedure PARALLEL COMBINATIONS is 
O("C,log m), and its cost O("C,m log m), which is not optimal. 

Example 6.4 

The behavior of PARALLEL COMBINATIONS is illustrated in Fig. 6.2 for the case 
where n = 5 and m = 3. The figure shows the contents of each of the arrays y, z, and c as 
well as the value of k after each step of the procedure where they are modified by an 
assignment. Note that t and f represent true and false, respectively. Also, 
(x, x, x,) = (3 4 5) throughout. C] 



AFTER STEP yl y2 y3 z1 z2 z3 c1 c2 c3 k 

1 1 2 3  f f f 1 2 3  

Figure 6.2 Generating combinations of three out of five items using procedure 
PARALLEL COMBINATIONS. 
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Discussion. When stating desirable properties of algorithms in chapter 2, 
we said that 

(i) a parallel algorithm should be adaptive, that is, capable of modifying its 
behavior according to the number of processors actually available on the 
parallel computer being used, 

(ii) its running time should vary with the number of processors used, and 
(iii) its cost should be optimal. 

Procedure PARALLEL COMBINATIONS does not satisfy any of the preceding 
criteria: 

(i) It requires the availability of m processors. 
(ii) Although quite fast, its running time does not decrease with an increasing 

number of processors. 

(iii) Its cost exceeds the O("C,m) operations sufficient to generate all m combinations 
of n items by procedure SEQUENTIAL COMBINATIONS. 

The purpose of the next section is to exhibit an algorithm satisfying these three 
desirable properties. 

6.4.2 An Adaptive Combination Generator 

We conclude our treatment of combination generators by describing an adaptive and 
cost-optimal parallel algorithm for generating all m-combinations of { I ,  2,. . . , n}. The 
algorithm is designed to run on an EREW SM SIMD computer with N processors PI, 
P, ,  . . . , P,, where 1 < N < "C, .  It makes use of procedures NEXT COMBINATION 
and RANKCINV described in section 6.2. The idea of the algorithm is to let each 
processor generate a subset of the combinations lexicographically. Furthermore, all 
the combinations generated by Pi precede in lexicographic order those generated by 
Pi+l, 1 < i < N. Thus Pi begins with the jth combination, where j = 
(i - l ) p C , / N 1  + 1 and then generates the next r"C,/N1 - 1 combinations. The 
algorithm, which is similar to the one in section 6.3.2, is given as procedure 
ADAPTIVE COMBINATIONS: 

procedure ADAPTIVE COMBINATIONS (n, m) 

for i = 1 to N do in parallel 
( 1 )  j + (i - 1 )  pC, /N1 + 1 
(2)  if j < "C ,  then 

(2.1) RANKCINV (n, m, j, c , ,  c,,  . . . , c,) 
(2.2) produce the jth combination ( c ,  c ,  . . . c,) as output 
(2.3) for i = 1 to pC, /N1 - 1 do 

NEXT COMBINATION (n, m, c , ,  c,, . . . , c,) 
end for 

end if 
end for. 
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Analysis. Step 1 requires O(m) operations. Generating the j th combination 
in step 2.1 takes O(mn) operations and producing it as output in step 2.2 another 
O(mn). Each of the r C , / N 1  - 1 iterations of step 2.3 involves O(m) operations. The 
overall running time of procedure ADAPTIVE COMBINATIONS is therefore 
dominated by the larger of O(mn) and O(r"C,/Nlrn). Assuming that n < r C m / N 1 ,  that 
is, 1 < N < "C,/n, the procedure runs in O ( r C , / N l m )  time with an optimal cost of 
O("C,m). 

The three comments made in section 6.3.3 regarding procedure ADAPTIVE 
PERMUTATIONS are also valid here: 

1. The shared memory is only needed to  broadcast n and m. 
2. Steps 2.1-2.3 may not be executed a t  all by some processors. 

3. Fewer than r C , / N 1  - 1 combinations may be generated in step 2.3. 

Example 6 5  

Let n = 7, m = 1, and N = 5. Then r7C,/51 = 2. Processor P, computes j = 1 and 
generates the first two combinations. Processors P, and P, compute j = 3 and j = 5, 
respectively, and each generates an additional two combinations. Processor P, computes 
j = 7 and succeeds in generating the one and last combination. Processor P, computes 
j = 9 and since 9 > 'C , ,  it does not execute step 2. 

6.5 P R O B L E M S  

6.1 In procedure PARALLEL PERMUTATIONS, the processors make extensive use of the 
shared memory to communicate. Design a parallel algorithm for generating all m- 
permutations of n items in O("P,logm) time using rn processors that never need to 
communicate (through shared memory or otherwise). Once the values of n and m have 
been made known to the processors, the latter operate independently and generate all "P, 
permutations lexicographically. 

6.2 Once the algorithm in problem 6.1 has been developed, it is not difficult to make it 
adaptive. Given N processors, 1 c N < "P,,,, the modified algorithm would run in 
O("P,m log m/N) time, which would not be cost optimal. On the other hand, procedure 
ADAPTIVE PERMUTATIONS is both adaptive and cost optimal. Design an adaptive 
and cost-optimal parallel algorithm for generating permutations that uses neither the 
shared memory nor the numbering system of section 6.2.2. 

6.3 Is it possible to design a parallel algorithm for generating all m-permutations of n items on 
the EREW SM SIMD model of computation in O("P,) time using m processors? Would 
the permutations be in lexicographic order? 

6.4 Procedure ADAPTIVE PERMUTATIONS is cost optimal only when the number of 
processors N lies in the range 1 < N < "P,/n. Can the procedure be modified (or a new 
procedure designed) to extend this range of optimality? Is there a parallel algorithm that is 
cost optimal for all values of N from 2 to "P,? 

6.5 Can you generalize procedure FULL PERMUTATIONS to generate all m-permutations, 
where m can take any value from 1 to n? 

6.6 Consider the sorting networks described in chapter 4. These networks can be used as 
permutation generators as follows. Let S = {I, 2,3,4,5} and assume that we wish to 
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generate the permutation (5 3 2 1 4) from the initial permutation (1 2 3 4 5). We begin by 
assigning each integer in the initial permutation an index (or subscript) indicating its 
position in the desired permutation. This gives (142, 3,4, 5,). The sequence of indices can 
now be sorted on a sorting network: When two indices are to be swapped, each carries its 
associated integer along. The result is (5, 3,2, 144,) as required. For a given n, can all n! 
permutations be generated in this fashion? Would they be in lexicographic order? Analyze 
the running time, number of processors, and cost of your algorithm. 

6.7 Repeat problem 6.6 for each of the interconnection networks described in chapter 1. 

6.8 Is there any advantage to using the approach in problem 6.6 on the shared-memory SIMD 
model of computation? How would the resulting algorithm compare with those in section 
6.3? 

6.9 A permutation network is a circuit that is hard wired to effect a particular permutation of its 
input. It takes n inputs and produces n outputs. An example of a permutation network for 
n = 4 is shown in Fig. 6.3. For input (1 2 3 4) the network produces (2 4 1 3). Feeding 
(2 4 1 3) back into the network (using the dotted lines) yields (4 3 2 1). Repeating the 
process yields (3 1 4 2) and then (1 2 3 4), that is, the original permutation. This means that 
the network in Fig. 6.3 is capable of producing only four of the twenty-four permutations 
of four items. Can you design a network capable of generating all permutations? 

6.10 The permutation network in Fig. 6.3 is an example of a single-stage network. A two-stage 
network is illustrated in Fig. 6.4 for n = 4. In general, multistage networks can be designed. 
How many permutations does the network of Fig. 6.4 (with feedback as shown in dotted 
lines) generate? Can you design a network capable of generating all 4! permutations? How 
many stages would it have? 

6.11 Modify procedure PARALLEL COMBINATIONS to run using N processors, where 
1 < N < m .  Show that the running time of the modified procedure is 
O("C,(m/N + log N)), which is cost optimal for n < m/log N. 

6.12 In procedure PARALLEL COMBINATIONS, the processors make extensive use of the 
shared memory to communicate. Design a parallel algorithm for generating all m- 
combinations of n items in O("C,log m) time using m processors that never need to 
communicate (through the shared memory or otherwise). Once the value of n and m have 
been made known to the processors, the latter operate independently and generate all "C, 
combinations lexicographically. 

!.. -...............................J ' Figure 6.3 Permutation network. 



Sec. 6.5 Problems 

Figure 6.4 Two-stage permutation 

6.13 Once the algorithm in problem 6.12 has been developed, it is not difficult to make it 
adaptive. Given N processors, 1 < N < "C,, the modified algorithm would run in 
O("C,m log m/N) time, which would not be cost optimal. On the other hand, procedure 
ADAPTIVE COMBINATIONS is both adaptive and cost optimal. Design an adaptive 
and cost-optimal parallel algorithm for generating combinations that uses neither the 
shared memory nor the numbering system in section 6.2.4. 

6.14 Is it possible to design a parallel algorithm for generating all m-combinations of n items on 
the EREW SM SIMD model of computation in O("Cm) time using m processors? Would 
the combinations be in lexicographic order? 

6.15 Establish the validity of property 2 in section 6.4.1 by induction on the index i. 
6.16 Procedure ADAPTIVE COMBINATIONS is cost optimal only when the number of 

processors N lies in the range 1 < N < "C,/n. Can this procedure be modified (or a new 
procedure designed) to extend this range of optimality? Is there a parallel algorithm that is 
cost optimal for all values of N from 2 to "C,? 

6.17 An n-permutation of {I, 2,. . . , n} is said to be a derangement if for each i, 1 < i < n, integer 
i does not appear in position i in the permutation. Thus for n = 5, (2 5 4  3 1) is a 
derangement. In all there are 

n! (1 - (l/l!) + (1/2!) - . . . + (-  l)"(l/n!)) 

derangements of n items. Design a parallel algorithm to generate derangements and 
analyze its running time, number of processors used, and cost. 

6.18 Given an integer n, it is possible to represent it as the sum of one or more positive integers 
ai : 

This representation is called a partition if the order of the ai is of no consequence. Thus 
two partitions of an integer n are distinct if they differ with respect to the ai they contain. 
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For example, there are seven distinct partitions of the integer 5: 

Design a parallel algorithm for generating all partitions of an integer n. 

6.19 For a given integer n, the representation 

is said to be a composition if the order of the ai is important. Thus two compositions of an 
integer n are distinct if they differ with respect to the ai they contain and the order in which 
the ai are listed. For example, there are sixteen compositions of the integer 5: 

Design a parallel algorithm for generating all compositions of an integer n. 

6.20 A partition (or composition) a ,  + a ,  + . . . + a, of an integer n is said to be restricted if the 
value of m is given. Thus, form = 2, there are two partitions of the integer 5, namely, 4 + 1 
and 3 + 2, and four compositions, namely, 4 + 1, 1 + 4, 3 + 2, and 2 + 3. Design parallel 
algorithms that, for given n and m, generate all restricted partitions and all restricted 
compositions, respectively. 

6.6 B l B L l O G R A P H l C A L  R E M A R K S  

The problem of generating permutations has a long history, and dozens of sequential 
algorithms exist for its solution. This history is traced in [Sedgewick] along with a review of the 
different approaches. A sequential algorithm, different from the one in section 6.2.1, for 
generating all m-permutations of n items is described in [Rohl]. The numbering system in 
section 6.2.2 is based on ideas from [Knott 23. Many sequential algorithms have also been 
proposed for generating all m-combinations of n items. A number of these are compared in 
[Akl 21. The combination generator (section 6.2.3) and numbering system (section 6.2.4) are 
based on ideas from [Mifsud] and [Knott 11, respectively. 

There has been surprisingly little reported in the literature on fast generation of 
permutations and combinations in parallel. The algorithm in section 6.3.1 is based on that in 
section 6.2.1, and neither has appeared elsewhere. Both procedures ADAPTIVE 
PERMUTATIONS and FULL PERMUTATIONS are from [Akl3]. An adaptive but not 
cost-optimal parallel algorithm for generating all "P, permutations is described in [Gupta]. It 
runs on an EREW SM SIMD computer with N processors, I < N < "P,, in 
O(rP,/Nlm log m) time. Other algorithms are described in [Chen] and [Mor]. 

Another approach to generating m-permutations is through the use of so-called 
permutation networks. Examples of such networks are provided in [Benei], [Clos], [Golomb], 
[Lawrie], [Lenfant 11, [Lenfant 21, [Nassimi 21, [Nassimi 31, [Orcutt], [Siegel], and [Wu]. 
Some permutation generators are application dependent: They generate only those per- 
mutations that are needed to solve the problem at hand. Some of these are described in 
[Batcher], [Fraser], [Nassimi 11, and [Pease]. The two approaches mentioned in this 
paragraph are restricted in at least one of the following three ways: 
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1. They are based on a hard-wired interconnection of a predefined number of processors 
that can generate permutations for a fixed-size input only. 

2. They are capable of generating only a subset of all possible permutations. 
3. They typically require O(n) processors and O(logn) steps, where a 2 1, to generate one 

permutation of an input of length n: All permutations are therefore generated in 
O(n! logn)  steps for a cost of O(n! n logn),  which is not optimal. 

By contrast the algorithms in sections 6.3.2 and 6.3.3 are 

1. adaptive, that is, the number of available processors bears no relation to the size of the 
input to be permuted; 

2. capable of generating all possible permutations of a given input; and 
3. cost optimal. 

Procedure PARALLEL COMBINATIONS is based on an algorithm in [Chan], while 
procedure ADAPTIVE COMBINATIONS is from [Akl 31. Sequential algorithms for generat- 
ing derangements, partitions, and compositions are given in [Akl l] and [Page]. Other 
problems involving the generation of combinatorial objects for which no parallel algorithms are 
known are described in [Liu], [Nijenhuis], and [Reingold]. 
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Matrix Operations 

7.1 INTRODUCTION 

Problems involving matrices arise in a multitude of numerical and nonnumerical 
contexts. Examples range from the solution of systems of equations (see chapter 8) to 
the representation of graphs (see chapter 10). In this chapter we show how three 
operations on matrices can be performed in parallel. These operations are matrix 
transposition (section 7.2), matrix-by-matrix multiplication (section 7.3), and matrix- 
by-vector multiplication (section 7.4). Other operations are described in chapters 8 
and 10. One particular feature of this chapter is that it illustrates the use of all the 
interconnection networks described in chapter 1, namely, the one-dimensional array, 
the mesh, the tree, the perfect shuffle, and the cube. 

7.2 TRANSPOSITION 

An n x n matrix A is given, for example: 

it is required to compute the transpose of A: 
r 1 

In other words, every row in matrix A is now a column in matrix AT.  The elements of A 
are any data objects; thus aij could be an integer, a real, a character, and so on. 
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Sequentially the transpose of a matrix can be computed very easily as shown in 
procedure TRANSPOSE. The procedure transposes A in place, that is, it returns AT in 
the same memory locations previously occupied by A. 

procedure TRANSPOSE (A) 

for i = 2 to n do 
f o r j = l t o i - 1 d o  

aij - aji 
end for 

end for. 

This procedure runs in O(n2) time, which is optimal in view of the R(n2) steps required 
to simply read A. 

In this section we show how the transpose can be computed in parallel on three 
different models of parallel computation, namely, the mesh-connected, shuffle- 
connected, and the shared-memory SIMD computers. 

7.2.1 Mesh Transpose 

The parallel architecture that lends itself most naturally to matrix operations is the 
mesh. Indeed, an n x n mesh of processors can be regarded as a matrix and is 
therefore perfectly fitted to accommodate an n x n data matrix, one element per 
processor. This is precisely the approach we shall use to compute the transpose of an 
n x n matrix A initially stored in an n x n mesh of processors, as shown in Fig. 7.1 for 
n = 4. Initially, processor P( i , j )  holds data element aij ;  at the end of the 
computation P( i , j )  should hold aji .  Note that with this arrangement R(n) is a 
lower bound on the running time of any matrix transposition algorithm. This is seen 
by observing that a, ,  cannot reach P(n, 1 )  in fewer than 2n - 2 steps. 

The idea of our algorithm is quite simple. Since the diagonal elements are not 
affected during the transposition, that is, element a,, of A equals element a,, of AT, the 
data in the diagonal processors will stay stationary. Those below the diagonal are sent 
to occupy symmetrical positions above the diagonal (solid arrows in Fig. 7.1). 
Simultaneously, the elements above the diagonal are sent to occupy symmetrical 
positions below the diagonal (dashed arrows in Fig. 7.1). Each processor P( i , j )  has 
three registers: 

1. A(i, j )  is used to store aij  initially and aji when the algorithm terminates; 
2. B(i, j )  is used to store data received from P(i, j + 1 )  or P(i - 1 ,  j ) ,  that is, from its 

right or top neighbors; and 
3. C(i, j )  is used to store data received from P(i, j - 1 )  or P(i + 1, j ) ,  that is, from its 

left or bottom neighbors. 

The algorithm is given as procedure MESH TRANSPOSE. Note that the contents of 
registers A(i, i), initially equal to a,,, 1 < i < n, are not affected by the procedure. 
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Figure 7.1 Matrix to be transposed, stored in mesh of processors. 

procedure MESH TRANSPOSE (A) 

Step 1: do steps 1.1 and 1.2 in parallel 
(1.1) for i = 2 to n do in parallel 

for j = 1 to i - 1 do in parallel 
C(i - 1, j )  + (a i j ,  j, i )  

end for 
end for 

(1.2) for i = 1 to n - 1 do in parallel 
for j = i + 1 to n do in parallel 

B(i, j - 1) 6 (a i j ,  j, i) 
end for 

end for. 

Step 2: do steps 2.1, 2.2, and 2.3 in parallel 
(2.1) for i = 2 to n do in parallel 

for j = 1 to i - 1 do in parallel 
while P(i, j )  receives input from its neighbors do 

(i) if (a,,, m, k) is received from P(i + 1, j) 
then send it to P(i - 1, j )  
end if 
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(ii) if (a,,, m, k) is received from P(i - 1, j) 
t h e n i f i = m a n d j = k  

then A(i, j )  + a,, {a,, has reached its destination} 
else send (a,,, m, k) to P(i + I, j) 
end if 

end if 
end while 

end for 
end for 

(2.2) for i = 1 to n do in parallel 
while P(i, i) receives input from its neighbors do 
(i) if (a,,, m, k) is received from P(i + 1, i) 

then send it to P(i, i + 1) 
end if 

(ii) if (a,,, m, k) is received from P(i, i + 1) 
then send it to P(i + 1, i) 
end if 

end while 
end for 

(2.3) for i = 1 to n - 1 do in parallel 
for j = i + 1 to n do in parallel 

while P(i, j )  receives input from its neighbors do 
(i) if (a,,, m, k) is received from P(i, j + 1) 

then send it to P(i, j - 1) 
end if 

(ii) if (a,,, m, k) is received from P(i, j - 1) 
t h e n i f i = m a n d j = k  

then A(i, j )  + a,, {a,, has reached its destination} 
else send (a,,, m, k) to P(i, j + 1) 
end if 

end if 
end while 

end for 
end for. 

Analysis. Each element ai j ,  i > j, must travel up its column until it reaches 
PO', j )  and then travel along a row until it settles in PO', i). Similarly for aij, j > i . The 
longest path is the one traversed by a,, (or a,,), which consists of 2(n  - 1) steps. The 
running time of procedure MESH TRANSPOSE is therefore 

which is the best possible for the mesh. Since p(n) = n2,  the procedure has a cost of 
O(n3) ,  which is not optimal. 

Example 7.1 

The behavior of procedure MESH TRANSPOSE is illustrated in Fig. 7.2 for the input 
matrix 
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Figure 7.2 Transposing matrix using procedure MESH TRANSPOSE. 
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The contents of registers A, B, and C in each processor are shown. Note that for clarity 
only the aij component of (aij, j, i) is shown for registers B and C. Also when either B or C 
receives no new input, it is shown empty. 

7.2.2 Shuffle Transpose 

We saw in the previous section that procedure MESH TRANSPOSE computes the 
transpose of an n x n matrix in O(n) time. We also noted that this running time is the 
fastest that can be obtained on a mesh with one data element per processor. However, 
since the transpose can be computed sequentially in O(n2) time, the speedup achieved 
by procedure MESH TRANSPOSE is only linear. This speedup may be considered 
rather small since the procedure uses a quadratic number of processors. This section 
shows how the same number of processors arranged in a different geometry can 
transpose a matrix in logarithmic time. 

Let n = 2q and assume that an n x n matrix A is to be transposed. We use for 
that purpose a perfect shuffle interconnection with n2 processors Po, P I ,  . . . , P22q - l .  

Element aij of A is initially stored in processor P,, where k = 2q(i - 1 )  + ( j  - I), as 
shown in Fig. 7.3 for q = 2. 

We claim that after exactly q shuffle operations processor P, contains element 
aj i .  To see this, recall that if P, is connected to P,, then m is obtained from k by 
cyclically shifting to the left by one position the binary representation of k. Thus Pooo, 
is connected to itself, Poool to Poolo, Poolo to Polo0, . . . , Plool to Pool , ,  P l o l 0  to 

Figure 7 3  Matrix to be transposed, stored in perfect shuffle-connected computer. 
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Po,o , ,  . . . , and P , , ,  , to itself. Now consider a processor index k consisting of 24 bits. 
If k = 2q(i - 1 )  + ( j  - I), then the q most significant bits of k represent i - 1 while the 
q least significant bits represent j - 1. This is illustrated in Fig. 7.4(a) for q = 5, i = 5, 
and j = 12. After q shuffles (i.e., q cyclic shifts to the left), the element originally held by 
P ,  will be in the processor whose index is 

as shown in Fig. 7.4(b). In other words aij has been moved to the position originally 
occupied by a j i  The algorithm is given as procedure SHUFFLE TRANSPOSE. In it 
we use the notation 2k mod (22q - 1) to represent the remainder of the division of 2k 
by 2 2 4  - 1. 

procedure SHUFFLE TRANSPOSE (A) 

for i = 1 to q do 
for k = 1 to 224 - 2 do in parallel 

P, sends the element of A it currently holds to P2kmOd(22s- ,, 
end for 

end for. 

Analysis. There are q constant time iterations and therefore the procedure 
runs in t(n) = O(1og n) time. Since p(n) = n2, c(n) = O(n2 logn), which is not optimal. 
Interestingly, the shuffle interconnection is faster than the mesh in computing the 
transpose of a matrix. This is contrary to our original intuition, which suggested that 
the mesh is the most naturally suited geometry for matrix operations. 

q MOST SIGNIFICANT BlTS q LEAST SIGNIFICANT BlTS 
REPRESENTING (i - 1) REPRESENTING (j - 1)  

q MOST SIGNIFICANT BlTS q LEAST SIGNIFICANT BlTS 
REPRESENTING (j - 1) REPRESENTING (i - 1) 

Figure 7.4 Derivation of number of shufRes required to transpose matrix. 
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Figure 7 5  Transposing matrix using procedure SHUFFLE TRANSPOSE. 

Example 7.2 

The behavior of procedure SHUFFLE TRANSPOSE is illustrated in Fig. 7.5 for the case 
where q = 2. For clarity, the shuffle interconnections are shown as a mapping from the set 
of processors to itself. 

7.2.3 EREW Transpose 

Although faster than procedure MESH TRANSPOSE, procedure SHUFFLE 
TRANSPOSE is not cost optimal. We conclude this section by describing a cost- 
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Figure 7.6 Transposing matrix using pro- 
cedure EREW TRANSPOSE. 

optimal algorithm for transposing an n x n matrix A. The algorithm uses (nZ - n)/2 
processors and runs on an EREW SM SIMD computer. Matrix A resides in the 
shared memory. For ease of exposition, we assume that each processor has two indices 
i and j, where 2 < i ,( n and 1 < j < i - 1. With all processors operating in parallel, 
processor Pij  swaps two elements of A, namely, aij and aj i .  The algorithm is given as 
procedure EREW TRANSPOSE. 

procedure EREW TRANSPOSE (A) 

for i = 2 to n do in parallel 
for j = 1 to i - 1 do in parallel 

aij ++ aji 
end for 

end for. 

Analysis. It takes constant time for each processor to swap two elements. 
Thus the running time of procedure EREW TRANSPOSE is t(n) = O(1). Since 
p(n) = O(n2), c(n) = 0(n2) ,  which is optimal. 

Example 7.3 

The behavior of procedure EREW TRANSPOSE is illustrated in Fig. 7.6 for n = 3. The 
figure shows the two elements swapped by each processor. 

7.3 MATRIX-BY-MATRIX MULTIPLICATION 

In this section we assume that the elements of all matrices are numerals, say, integers. 
The product of an rn x n matrix A by an n x k matrix B is an rn x k matrix C whose 
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elements are given by 

A straightforward sequential implementation of the preceding definition is given by 
procedure MATRIX MULTIPLICATION. 

procedure MATRIX MULTIPLICATION (A, B, C) 

for i = 1 to m do 
fo r j=  1 to kdo 

( 1 )  cij + 0 
(2) for s = 1 to n do 

cij + cij + (a, x bsi) 
end for 

end for 
end for. 

Assuming that m < n and k < n, it is clear that procedure MATRIX 
MULTIPLICATION runs in O(n3) time. As indicated in section 7.6, however, there 
exist several sequential matrix multiplication algorithms whose running time is O(nx), 
where 2 < x < 3. It is not known at the time of this writing whether the fastest of these 
algorithms is optimal. Indeed, the only known lower bound on the number of steps 
required for matrix multiplication is the trivial one of R(n2). This lower bound is 
obtained by observing that n2 outputs are to be produced, and therefore any 
algorithm must require at least that many steps. In view of this gap between n2 and nx, 
2 < x < 3, we will find ourselves unable to exhibit cost-optimal parallel algorithms for 
matrix multiplication. Rather, we present algorithms whose cost is matched against 
the running time of procedure MATRIX MULTIPLICATION. 

7.3.1 Mesh Multiplication 

As with the problem of transposition, again we feel compelled to use a mesh- 
connected parallel computer to perform matrix multiplication. Our algorithm uses 
m x k processors arranged in a mesh configuration to multiply an m x n matrix A by 
an n x k matrix B. Mesh rows are numbered 1, . . . , m and mesh columns 1, . . . , k. 
Matrices A and B are fed into the boundary processors in column 1 and row 1, 
respectively, as shown in Fig. 7.7 for m = 4, n = 5, and k = 3. Note that row i of matrix 
A lags one time unit behind row i - 1 for 2 < i < m. Similarly, column j of matrix B 
lags one time unit behind column j - 1 for 2 < j < k. This ensures that a ,  meets bsj in 
processor P(i , j )  at the right time. At the end of the algorithm, element cij of the 
product matrix C resides in processor P(i, j). Initially ci j  is zero. Subsequently, when 
P(i, j )  receives two inputs a and b, it 

(i) multiplies them, 
(ii) adds the result to c i j ,  
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P(4, l )  P(4.2) P(4.3) 

Figure 7.7 Two matrices to be multiplied, being fed as input to mesh of processors. 

(iii) sends a to P(i, j + 1) unless j = k, and 
(iv) sends b to P(i + 1, j) unless i = m. 

The algorithm is given as procedure MESH MATRIX MULTIPLICATION. 

procedure MESH MATRIX MULTIPLICATION ( A ,  B, C )  

for i = 1 to m do in parallel 
for j  = 1 to k do in parallel 

(1)  cij t 0 
(2) while P(i, j )  receives two inputs a and b do 

(i) cij t cij + (a  x b) 
(ii) if i  < m then send b to P(i + 1, j )  

end if 
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(iii) if j < k then send a to P(i, j + 1) 
end if 

end while 
end for 

end for. 

Analysis. Elements a,, and b , ,  take m + k + n - 2  steps from the beginning 
of the computation to reach P(m, k). Since P(m, k) is the last processor to terminate, 
this many steps are required to compute the product. Assuming that m < n and k < n, 
procedure MESH MATRIX MULTIPLICATION therefore runs in time t(n) = O(n). 
Since p(n) = O(nZ), c(n) = O(n3), which matches the running time of the sequential 
procedure MATRIX MULTIPLICATION. It should be noted that the running time 
of procedure MESH MATRIX MULTIPLICATION is the fastest achievable for 
matrix multiplication on a mesh of processors assuming that only boundary 
processors are capable of handling input and output operations. Indeed, under this 
assumption Q(n) steps are needed for the input to be read (by the processors in row 1 
and column 1, say) and/or for the output to be produced (by the processors in row m 
and column k, say). 

Example 7.4 

The behavior of procedure MESH MATRIX MULTIPLICATION is illustrated in Fig. 
7.8 for 

- 5  - 6  
A = [ :  3 and B = [ - 7  -g]. 

The value of ci j  after each step is shown inside P(i, j ) .  

7.3.2 Cube Multiplication 

The running time of procedure MESH MATRIX MULTIPLICATION not only is 
the best achievable on the mesh, but also provides the highest speedup over the 
sequential procedure MATRIX MULTIPLICATION using nZ processors. Neverthe- 
less, we seek to obtain a faster algorithm, and as we did in section 7.2.2, we shall turn 
to another architecture for that purpose. Our chosen model is the cube-connected 
SIMD computer introduced in chapter 1 and that we now describe more formally. 

Let N = zg processors Po, P, ,  . . . , P , , - ,  be available for some g  3 1. Further, let 
i and i(,) be two integers, 0 < i, i(,) < 2g - 1 ,  whose binary representations differ only . . .  
in position b, 0 < b < g. In other words, if i g - ,  . . . I , , ,  I ,  E , - ~  . . . i l  iO is the binary 

. ., . 
representation of i ,  then i , - ,  . . . I , , ,  I ,  1 , - ,  . . . i ,  io is the binary representation of i',), 
where ib is the binary complement of bit i,. The cube connection specifies that every 
processor Pi is connected to processor Pp,  by a two-way link for all 0 < b < g. The g 
processors to which Pi is connected are called P,'s neighbors. An example of such a 
connection is illustrated in Fig. 7.9 for the case g = 4. Now let n = 2q. We use a cube- 
connected SIMD computer with N = n3 = 23q processors to multiply two n x n 
matrices A and B. (We assume for simplicity of presentation that the two matrices 



Figure 7.8 Multiplying two matrices using procedure MESH MATRIX 
MULTIPLICATION. 

Figure 7.9 Cube-connected 
with sixteen processors. 

computer 
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have the same number of rows and columns.) It is helpful to visualize the processors as 
being arranged in an n x n x n array pattern. In this array, processor P, occupies 
position (i, j, k), where r = in2 + jn + k and 0 < i, j, k < n - 1 (this is referred to as 
row-major order). Thus if the binary representation of r is r3,-, r3,-, . . . ro, then the 
binary representations of i, j, and k are r3,-, . . . r,,, r,,-, . . . r,, and r,-, . ... ro, 
respectively. Each processor P, has three registers A,, B,, and C,, also denoted 
A(i, j, k), B(i, j, k),  and C(i, j, k),  respectively. Initially, processor P, in position (0, j, k), 
0 < j < n, 0 < k < n, contains ajk and bjk in its registers A, and B,, respectively. The 
registers of all other processors are initialized to zero. At the end of the computation, 
C should contain cjk, where 

The algorithm is designed to perform the n3 multiplications involved in computing the 
n2 entries of C simultaneously. It proceeds in three stages. 

Stage I :  The elements of matrices A and B are distributed over the n3 

processors. As a result, A(i, j ,  k )  = aj i  and B(i,j, k )  = b,. 
Stage 2: The products C(i, j ,  k )  = A(i, j, k )  x B(i, j, k )  are computed. 
Stage 3: The sums X;:,' C(i, j, k )  are computed. 

The algorithm is given as procedure CUBE MATRIX MULTIPLICATION. In it we 
denote by { N , r m  = d} the set of integers r, 0 ,< r < N - 1, whose binary represen- 
tation is r3,- . . . rm+ d rm- . . . ro. 

procedure CUBE MATRIX MULTIPLICATION (A, B, C )  

Step 1: for m = 3q - 1 downto 2q do 
for all r in {N, r, = 0) do in parallel 

( 1 . 1 )  Arc.) = A, 
(1.2) Brlrn) = Br 

end for 
end for. 

Step 2: for m = q - 1 downto 0 do 
for all r in { N ,  r, = r,,,,) do in parallel 

Arim) e A, 
end for 

end for. 
Step 3: for m = 29 - 1 downto q do 

for all r in ( N ,  r, = r,,,) do in parallel 
B,cw t B, 

end for 
end for. 

Step 4: for r = 1 to N do in parallel 
C, +- A, x B, 

end for. 
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Step 5: for m = 2q to 3q - 1 do 
for r = 1 to N do in parallel 

c, + c, + c,cm1 

end for 
end for. 

Stage 1 of the algorithm is implemented by steps 1-3. During step 1, the data initially 
in A(0, j, k) and B(0, j, k) are copied into the processors in positions (i, j, k), where 
1 d i < n, so that at the end of this step A(i, j, k) = ajk and B(i, j, k) = bjk for 0 ,1<n .  < ' 
Step 2 copies the contents of A(i, j, i) into the processors in position ( i ,  j, k), so that at 
the end of this step A(i,j, k) = a j i ,  0 < k < n. Similarly, step 3 copies the contents of 
B(i,i, k) into the processors in position (i,j, k), so that at the end of this step 
B(i, j, k) = b,,, 0 < j c n. In step 4 the product C(i, j, k) = A(i, j, k) x B(i, j, k) is com- 
puted by the processors in position (i, j, k) for all 0 < i, j, k < n simultaneously. Finally, 
in step 5, the n2 sums 

are computed simultaneously. 

Analysis. Steps 1, 2, 3, and 5 consist of q constant time iterations, while step 
4 takes constant time. Thus procedure CUBE MATRIX MULTIPLICATION runs 
in O(q) time, that is, t(n) = O(1ogn). We now show that this running time is the fastest 
achievable by any parallel algorithm for multiplying two n x n matrices on the cube. 
First note that each c,, is the sum of n elements. It takes Q(1og n) steps to compute this 
sum on any interconnection network with n (or more) processors. To see this, let s be 
the smallest number of steps required by a network to compute the sum of n numbers. 
During the final step, at most one processor is needed to perform the last addition and 
produce the result. During step s - 1 at most two processors are needed, during step 
s - 2 at most four processors, and so on. Thus after s steps, the maximum number of 
useful additions that can be performed is 

Given that exactly n - 1 additions are needed to compute the sum of n numbers, we 
have n - 1 d 2" - 1, that is, s 3 log n. 

Since p(n) = n3, procedure CUBE MATRIX MULTIPLICATION has a cost of 
c(n) = O(n3 logn), which is higher than the running time of sequential procedure 
MATRIX MULTIPLICATION. Thus, although matrix multiplication on the cube is 
faster than on the mesh, its cost is higher due to the large number of processors it uses. 
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Example 7.5 

Let n = 2' and assume that the two 4 x 4 matrices to be multiplied are 

There are N = 2, processors available on a cube-connected SIMD computer Po, P I ,  . . . , 
P,,. The processors are arranged in a three-dimensional array as shown in Fig. 7.1qa). 
(Note that this three-dimensional array is in fact a six-dimensional cube with connections 
omitted for simplicity.) Each of i, j, k contributes two bits to the binary representation 
r ,  r ,  r ,  r ,  r ,  ro of the index r  of processor P,: i = r,r,, j = r,r,, and k = r,r,. Initially the 
matrices A and B are loaded into registers Po, . . . , P I , ,  as shown in Fig. 7.1qb). 

Since q = 2, step 1 is iterated twice: once for m = 5 and once for m = 4. In the first 
iteration, all processors whose binary index r , r , r , r , r , r ,  is such that r ,  = 0 copy their 
contents into the processors with binary index r ~ r , r , r , r , r ,  (i.e., r; = 1). Thus Po, . . . , 
P , ,  copy their initial contents into P3,, . . . , P,,, respectively, and simultaneously P I , ,  
. . . , P , ,  copy their initial contents (all zeros) into P,,, . . . , P,,, respectively. In the second 
iteration, all processors whose binary index r ,  r ,  r ,  r ,  r ,  r ,  is such that r ,  = 0 copy their 
contents into the processors with binary index r ,  rkr ,  r ,  r ,  r ,  (i.e., rk = 1). Thus Po, . . . , 
P , ,  copy their contents into P I , ,  . . . , P , , ,  respectively, and simultaneously P,,,  . . . , P,, 
copy their new contents (acquired in the previous iteration) into P,,, . . . , P,,, 
respectively. At the end of step 1, the contents of the sixty-four processors are as shown in 
Fig. 7.1qc). 

There are two iterations of step 2: one for m = 1 and one for m = 0. During the first 
iteration all processors with binary index r ,  r4r3 r , r ,  ro such that r ,  = r ,  copy the 
contents of their A registers into those of processors with binary index r ,  r , r ,  r ,  r', r,. 
Thus, for example, Po and P I  copy the contents of their A registers into the A registers of 
P ,  and P,, respectively. During the second iteration all processors with binary index 
r ,  r ,  r ,  r ,  r ,  r ,  such that r ,  = r ,  copy the contents of their A registers into the A registers 
of processors with binary index r ,  r ,  r ,  r ,  r ,  rb. Again, for example, Po and P ,  copy the 
contents of their A registers into the A registers of P I  and P,, respectively. At the end of 
this step one element of matrix A has been replicated across each "row" in Fig. 7.10(a). 
Step 3 is equivalent except that it replicates one element of matrix B across each 
"column." The contents of the sixty-four processors at the end of steps 2 and 3 are shown 
in Fig. 7.10(d). In step 4, with all processors operating simultaneously, each processor 
computes the product of its A and B registers and stores the result in its C register. Step 5 
consists of two iterations: one for m = 4 and one for m = 5. In the first iteration the 
contents of the C registers of processor pairs whose binary indices differ in bit r ,  are 
added. Both processors keep the result. The same is done in the second iteration for 
processors differing in bit r , .  The final answer, stored in Po, . . . , P I ,  is shown in Fig. 
7.1qe). 
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(e) 
Figure 7.10 Multiplying two matrices using procedure CUBE MATRIX MULTIPLICATION. 

7.3.3 CRCW Multiplication 

We conclude this section by presenting a parallel algorithm for matrix multi- 
plication that is faster and has lower cost than procedure CUBE MATRIX 
MULTIPLICATION. The algorithm is designed to run on a CRCW SM SIMD 
computer. We assume that write conjlicts are resolved as follows: When several 
processors attempt to write in the same memory location, the sum of the numbers to 
be written is stored in that location. The algorithm is a direct parallelization of 
sequential procedure MATRIX MULTIPLICATION. It uses m x n x k processors 
to multiply an m x n matrix A by an n x k matrix B. Conceptually the processors may 
be thought of as being arranged in a m x n x k array pattern, each processor having 
three indices (i, j, s), where 1 < i < m, 1 < j < n, and 1 < s < k .  Initially matrices A 
and B are in shared memory; when the algorithm terminates, their product matrix C is . 
also in shared memory. The algorithm is given as procedure CRCW MATRIX 
MULTIPLICATION. 

procedure CRCW MATRIX MULTIPLICATION (A, B, C) 

for i = 1 to m do in parallel 
for j = 1 to k do in parallel 

for s = 1 to n do in parallel 
(1) ci j  + 0 
(2) cij + a, x bSj 

end for 
end for 

end for. 

Analysis. It is clear that procedure CRCW MATRIX MULTIPLICATION 
runs in constant time. Since p(n) = n3, 



1 88 Matrix Operations Chap. 7 

which matches the running time of sequential procedure MATRIX MULTI - 
PLICATION. 

Example 7.6 

A CRCW SM SIMD computer with sixty-four processors can multiply the two matrices 
A and B of example 7.5 in constant time. All sixty-four products shown in Fig. 7.1qd) are 
computed simultaneously and stored (i.e., added) in groups of four in the appropriate 
position in C. Thus, for example, P , ,  P , ,  P3 ,  and P,  compute 17 x (-7), 23 x (-18), 
27 x (-  13), and 3 x (-20), respectively, and store the results in c ,  ,, yielding 
c , ,  = -944. 

7.4 MATRIX-BY-VECTOR MULTIPLICATION 

The problem addressed in this section is that of multiplying an m x n matrix A by an 
n x 1 vector U to produce an m x 1 vector < as shown for m = 3 and n = 4: 

The elements of V are obtained from 

This of course is a special case of matrix-by-matrix multiplication. We study it 
separately in order to demonstrate the use of two interconnection networks in 
performing matrix operations, namely, the linear (or one-dimensional) array and the 
tree. In addition, we show how a parallel algorithm for matrix-by-vector multiplica- 
tion can be used to solve the problem of convolution. 

7.4.1 Linear Array Multiplication 

Our first algorithm for matrix-by-vector multiplication is designed to run on a linear 
array with m processors P I ,  P2 ,  . . . , P,. Processor Pi is used to compute element ui of 
t! Initially, ui is zero. Matrix A and vector U are fed to the array, as shown in Fig. 7.1 1, 
for n = 4 and m = 3. Each processor Pi  has three registers a, u, and u. When Pi receives 
two inputs ai j  and u j ,  it 

(i) stores ai j  in a and uj in u, 

(ii) multiplies a by u 

(iii) adds the result to ui, and 
(iv) sends uj  to P i - ,  unless i = 1. 
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Figure 7.11 Matrix and vector to be 
multiplied, being fed as input to linear 
array. 

Note that row i of matrix A lags one time unit behind row i + 1 for 1 < i < m - 1. 
This ensures that aij meets uj at the right time. The algorithm is given as procedure 
LINEAR MV MULTIPLICATION. 

procedure LINEAR MV MULTIPLICATION (A, U, V) 

for i = 1 to m do in parallel 
(1) vi t 0 
(2) while Pi receives two inputs a and u do 

(2.1) vi t vi + (a  x u)  
(2.2) if i > 1 then send u to P i -  

end if 
end while 

end for. 

Analysis. Element a , ,  takes m + n - 1 steps to reach PI. Since P ,  is the last 
processor to terminate, this many steps are required to compute the product. 
Assuming m < n, procedure LINEAR MV MULTIPLICATION therefore runs in 
time t(n) = O(n). Since m processors are used, the procedure has a cost of O(n2), which 
is optimal in view of the R(nZ) steps required to read the input sequentially. 

Example 7.7 

The behavior of procedure LINEAR MV MULTIPLICATION for 

A = [: 3 and 0 = [i] 
is illustrated in Fig. 7.12. 
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Figure 7.12 Multiplying matrix by vector 
using procedure LINEAR MV MULTI - 

(d ) PLICATION. 

7.4.2 Tree Multiplication 

As observed in the previous section, matrix-by-vector multiplication requires 
m + n - 1 steps on a linear array. It is possible to reduce this time to m - 1 + log n by 
performing the multiplication on a tree-connected SIMD computer. The arrangement 
is as shown in Fig. 7.13 for m = 3 and n = 4. The tree has n leaf processors PI, P,, . . . , 
P,, n - 2 intermediate processors P, + ,, P, + ,, . . . , P2,- ,, and a root processor P,, _ ,. 
Leaf processor Pi stores ui throughout the execution of the algorithm. The matrix A is 
fed to the tree row by row, one element per leaf. When leaf processor Pi receives aj i ,  it 
computes ui  x aji and sends the product to its parent. When intermediate or root 
processor P, receives two inputs from its children, it adds them and sends the result to 
its parent. Eventually oj emerges from the root. If the rows of A are input at the leaves 
in consecutive time units, then the elements of V are also produced as output from the 
root in consecutive time units. The algorithm is given as procedure TREE MV 
MULTIPLICATION. 

procedure TREE MV MULTIPLICATION (A, U, V) 

do steps 1 and 2 in parallel 
(1) for i = 1 to n do in parallel 

f o r j = l  tomdo 
(1.1) compute ui x aji 
(1.2) send result to parent 
end for 

end for 
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1 a1 2 a1 3 a1 4 

a21 a22 a23 a24 Figure 7.13 Tree-connected computer for 
a3 1 a32 a33 a34 matrix-by-vector multiplication. 

(2) for i = n + 1 to 2n - 1 do in parallel 
while Pi receives two inputs do 

(2.1) compute the sum of the two inputs 
(2.2) if i < 2n - 1 then send the result to parent 

else produce the result as output 
end if 

end while 
end for. 

Analysis. I t  takes log n steps after the first row of A has been entered at the 
leaves for v, to emerge from the root. Exactly m - 1 steps later, v, emerges from the 
root. Procedure TREE MV MULTIPLICATION thus requires m - 1 + log n steps 
for a cost of O(n2) when m ,< n. The procedure is therefore faster than procedure 
LINEAR MV MULTIPLICATION while using almost twice as many processors. It 
is cost optimal in view of the R(n2) time required to read the input sequentially. 

Example 7.8 

The behavior of procedure TREE MV MULTIPLICATION is illustrated in Fig. 7.14 for 
the same data as in example 7.7. 

7.4.3 Convolution 

We conclude this section by demonstrating one application of matrix-by-vector 
multiplication algorithms. Given a sequence of constants {w,, w,, . . . , w,) and an 
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Figure 7.14 Multiplying matrix by vector 
using procedure TREE MV MULTI - 

(d) PLICATION. 

input sequence {x, ,  x,, . . . , x,), it is required to compute the output sequence { Y , ,  y,, 
. . . , y,,-,) defined by 

This computation, known as convolution, is important in digital signal processing. It 
can be formulated as a matrix-by-vector multiplication. This is shown for the case 
n = 3: 
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7.5 P R O B L E M S  

7.1 Procedure MESH TRANSPOSE requires that the destination (j, i) of each element aij be 
sent along with it during the computation of the transpose of a matrix A. Design an 
algorithm for transposing a matrix on a'mesh where it is not necessary for each element to 
carry its new destination along. 

7.2 Is the running time of procedure SHUFFLE TRANSPOSE the smallest achievable when 
transposing a matrix on a shuffle-connected SIMD computer? 

7.3 Can the transpose of an n x n matrix be obtained on an interconnection network, other 
than the perfect shuffle, in O(log n) time? 

7.4 Is there an interconnection network capable of simulating procedure EREW 
TRANSPOSE in constant time? 

7.5 Assume that every processor of an n x n mesh-connected computer contains one element 
of each of two n x n matrices A and B. Use a "distance" argument to show that, regardless 
of input and output considerations, this computer requires R(n) time to obtain the product 
of A and B. 

7.6 Modify procedure MESH MULTIPLICATION so it can be used in a pipeline fashion to 
multiply several pairs of matrices. By looking at Fig. 7.7, we see that as soon as processor 
P(1,l) has multiplied a , ,  and b ,  ,, it is free to receive inputs from a new pair of matrices. 
One step later, P(1,2) and P(2,l) are ready, and so on. The only problem is with the results 
of the previous computation: Provision must be made for ci j ,  once computed, to vacate 
P(i, j )  before the latter becomes involved in computing the product of a new matrix pair. 

7.7 Consider an n x n mesh of processors with the following additional links: (i) the rightmost 
processor in each row is directly connected to the leftmost, (ii) the bottommost processor 
in each column is directly connected to the topmost. These additional links are called 
wraparound connections. Initially, processor P(i, j) stores elements aij and bij of two 
matrices A and B, respectively. Design an algorithm for multiplying A and B on this 
architecture so that at the end of the computation, P(i, j )  contains (in addition to aij and 
bi j )  element cij of the product matrix C. 

7.8 Repeat problem 7.7 for the mesh under the same initial conditions but without the 
wraparound connections. 

7.9 Design an algorithm for multiplying two n x n matrices on a mesh with fewer than n2 

processors. 
7.10 Design an algorithm for multiplying two n x n matrices on an n x n mesh of trees 

architecture (as described in problem 4.2). 
7.11 Extend the mesh of trees architecture to three dimensions. Show how the resulting 

architecture can be used to multiply two n x n matrices in O(1ogn) time using n3 

processors. Show also that m pairs of n x n matrices can be multiplied in O(m + 2 log n) 
steps. 

7.12 Assume that every processor of a cube-connected computer with nZ processors contains 
one element of each of two n x n matrices A and B. Use a "distance" argument to show 
that, regardless of the number of steps needed to evaluate sums, this computer requires 
n(1ogn) time to obtain the product of A and B. 

7.13 Design an algorithm for multiplying two n x n matrices on a cube with n2 processors in 
O(n) time. 
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7.14 Combine procedure CUBE MATRIX MULTIPLICATION and the algorithm in 
problem 7.13 to obtain an algorithm for multiplying two n x n matrices on a cube with 
n2m processors in O((n/m) + logm) time, where 1 < m < n. 

7.15 Design an algorithm for multiplying two matrices on a perfect shuffle-connected SIMD 
computer. 

7.16 Repeat problem 7.15 for a tree-connected SIMD computer. 
7.17 I t  is shown in section 7.3.2 that n processors require Q(1ogn) steps to add n numbers. 

Generalize this bound for the case of k processors, where k < n. 
7.18 Modify procedure CRCW MATRIX MULTIPLICATION to run on an EREW SM 

SIMD computer. Can the modified procedure be made to have a cost of O(n3)? 
7.19 Design an M I M D  algorithm for multiplying two matrices. 
7.20 Given m n x n matrices A , ,  A,,  . . . , A,, design algorithms for two different intercon- 

nection networks to compute the product matrix 

C =  A ,  x A ,  x . . .  x A,. 

7.21 Let w be a primitive nth root of unity, that is, w" = 1 and wi  # 1 for 1 < i < n. The Discrete 
Fourier Transform (DFT) of the sequence {a,, a , ,  . . . , a,- ,} is the sequence {b,, b, ,  . . . , 
b,- ,) where 

n- 1 

bi = C ai x wij for 0 < j < n. 
i = O  

Show how the D F T  computation can be expressed as a matrix-by-vector product. 
7.22 The inverse of an n x n matrix A is an n x n matrix A-'  such that 

A x A-' = A-' x A = I ,  where I is an n x n identity matrix whose entries are 1 on the 
main diagonal and 0 elsewhere. Design a parallel algorithm for computing the inverse of a 
given matrix. 

7.23 A q-dimensional cube-connected SIMD computer with n = zq processors Po, P , ,  . . . , P,- , 
is given. Each processor Pi holds a datum x i .  Show that each of the following 
computations can be done in O(log n) time: 
(a) Broadcast xo to P I ,  P, ,  . . . , P,- ,. 
(b) Replace x ,  with xo + x ,  + ... + x , _ , .  
(c)  Replace xo with the smallest (or largest) of x,, x , ,  . . . , x , - ,  . 

7.24 An Omega network is a multistage interconnection network with n inputs and n outputs. It 
consists of k = log n rows numbered 1,2,  . . . , k with n processors per row. The processors 
in row i are connected to those in row i + 1, i = 1, 2, . . . , k - 1, by a perfect shufRe 
interconnection. Discuss the relationship between the Omega network and a k- 
dimensional cube. 

7.6 B lBL lOGRAPHlCAL  R E M A R K S  

A mesh algorithm is described in [Ullman] for computing the transpose of a matrix that, unlike 
procedure MESH TRANSPOSE, does not depend directly on the number of processors on the 
mesh. Procedure SHUFFLE TRANSPOSE is based on an idea proposed in [Stone 11. 

For references to sequential matrix multiplication algorithms with O(nX) running time, 
2 < x < 3, see [Gonnet], [Strassen], and [Wilf]. A lower bound on the number of parallel steps 
required to multiply two matrices is derived in [Gentleman]. Let f (k) be the maximum number 
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of processors to which a datum originally in a given processor can be transmitted in k or fewer 
routing steps. A mesh-connected computer, for example, has f(k) = 2kZ + 2k + 1. It is shown in 
[Gentleman] that multiplying two n x n matrices requires at least s routing steps, where 
f(2s) 2 n2. It follows that matrix multiplication on a mesh requires R(n) steps. Several mesh 
algorithms besides procedure MESH MATRIX MULTIPLICATION are proposed in the 
literature whose running time matches this bound. Such algorithms appear in [Flynn], 
[Preparata], [Ullman], and [Van Scoy 11. Algorithms for the mesh with wraparound 
connections and two- and three-dimensional mesh of trees are described in [Cannon], [Nath], 
and [Leighton], respectively. The idea of procedure CUBE MATRIX MULTIPLICATION 
originated in [Dekel], where a number of other matrix multiplication algorithms for the cube 
and perfect shufAe interconnection networks are described. The Zylogn) lower bound on 
computing the sum of n numbers is adapted from [Munro]. Matrix multiplication algorithms 
for the cube and other interconnection networks and their applications are proposed in 
[Cheng], [Fox], [Horowitz], [Hwang 11, [Hwang 21, [Kung 23, [Mead], [Ramakrishnan], 
and [Varman]. Algorithms for shared-memory computers similar to procedure CRCW 
MATRIX MULTIPLICATION can be found in [Chandra], [Horowitz], [Savage 11, and 
[Stone 21. A discussion of various implementation issues regarding parallel matrix multiplica- 
tion algorithms is provided in [Clint]. 

Matrix-by-vector multiplication algorithms for a number of computational models 
appear in [Kung 11, [Mead], and [Nath]. Parallel algorithms and lower bounds for a variety of 
matrix operations arising in both numerical and nonnumerical problems are described in 
[Abelson], [Agerwala], [Borodin 11, [Borodin 23, [Chazelle], [Csanky], [Eberly], [Fishburn], 
[Fortes], [Guibas], [Hirschberg], [Kronsjo], [KuEera], [Kulkarni], [Kung 23, [Leiserson], 
[Lint], [Mead], [Navarro], [Pease 11, [Quinn], [Savage 23, and [Van Scoy 21. 

The computational abilities of the Omega network [Lawrie] and its relationship to other 
interconnection networks such as the generalized-cube [Siegel2], indirect binary n-cube [Pease 
21, Staran yip [Batcher], and SW-banyan [Goke] are investigated in [Siege] 11. 
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Numerical Problems 

8.1 INTRODUCTION 

In any scientific or engineering application of computers, it is usually required to solve 
a mathematical problem. Such applications span a wide range, from modeling the 
atmosphere in weather prediction to modeling hot plasmas in theoretical physics and 
from the design of space stations, airplanes, automatic pilots and air-traffic control 
systems to the design of power stations, automobiles, and ground transportation 
networks. In these applications computers are used to find zeros of functions, solve 
systems of equations, calculate eigenvalues, and perform a variety of numerical tasks 
including differentiation, integration, interpolation, approximation, and Monte Carlo 
simulations. These problems have a number of distinguishing properties: 

1. Because they typically involve physical quantities, their data are represented 
using real values, or in computer terminology, floating-point numbers. 
Sometimes the numbers to be manipulated are complex, that is, they are of the 
form a + ib, where a and b are real and 

2. Their solutions are obtained through algorithms derived from a branch of 
mathematics known as numerical analysis and are therefore based on mathemat- 
ical theory. 

3. Their algorithms usually consist of a number of iterations: Each iteration is 
based on the result of the previous one and is supposed, theoretically, to 
improve on it. 

4. Generally, the results produced by numerical algorithms are approximations of 
exact answers that may or may not be possible to obtain. 

5. There is an almost inevitable element of error involved in numerical com- 
putation: round-of errors (which arise when infinite precision real numbers are 
stored in a memory location of fixed size) and truncation errors (which arise 
when an infinite computation is approximated by a finite one). 
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In this chapter we describe parallel algorithms for the following numerical 
problems: solving a system of linear equations (section 8.2), finding roots of nonlinear 
equations (section 8.3), solving partial differential equations (section 8.4), and 
computing eigenvalues (section 8.5). We assume throughout this chapter that all 
problems involve real (as opposed to complex) numbers. 

8.2 SOLVING SYSTEMS OF LINEAR EQUATIONS 

Given an n x n matrix A and an n x 1 vector b, it is required to solve Ax = b for the 
unknown n x 1 vector x. When n = 4, for example, we have to solve the following 
system of linear equations for x , ,  x,, x,, and x,: 

a l l x1  + a12x2  + ~ 1 ~ x 3  + a14x4 = b l r  

a21x1 + az2x2 + az3x3 + az4x4 = b2, 

a3,x1 + a 3 ~ x ,  + a3,x3 + a3,x4 = b3, 

a4,Xl + U 4 2 X 2  + a4,X3 + a44X4 = be 

8.2.1 An SIMD Algorithm 

A well-known sequential algorithm for this problem is the Gauss-Jordan method. It 
consists in eliminating all unknowns but xi from the ith equation. The solution is then 
obtained directly. A direct parallelization of the Gauss-Jordan method is now 
presented. It is designed to run on a CREW SM SIMD computer with n2 + n 
processors that can be thought of as being arranged in an n x (n + 1) array. The 
algorithm is given as procedure SIMD GAUSS JORDAN. In it we denote bi by a,,"+ , .  

procedure SIMD GAUSS JORDAN (A, b, x) 

Step 1: for j = 1 to n do 
for i = 1 to n do in parallel 

for k = j to n + 1 do in parallel 
if (i # j )  
then aik + aik - (aij/ajj)ajk 
end if 

end for 
end for 

end for. 

Step 2: for i = 1 to n do in parallel 
X i  ai,n + 1 laii 

end for. 

Note that the procedure allows concurrent-read operations since more than one 
processor will need to read a i j ,  a j j ,  and ajk simultaneously. 
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Analysis. Step 1 consists of n constant time iterations, while step 2 takes 
constant time. Thus t(n) = O(n). Since p(n) = O(n2), c(n) = O(n3). Although this cost 
matches the number of steps required by a sequential implementation of the Gauss- 
Jordan algorithm, it is not optimal. To see this, note that the system Ax = b can be 
solved by first computing the inverse A-' of A and then obtaining x from 

The inverse of A can be computed as follows. We begin by writing 

where the Aij are ( 4 2 )  x ( 4 2 )  submatrices of A, and B = A,, - A2,A;, 'Al2. The 
(n/2) x ( 4 2 )  matrices I and 0 are the identity matrix (whose main diagonal elements 
are 1 and all the rest are zeros) and zero matrix (all of whose elements are zero), 
respectively. The inverse of A is then given by the matrix product 

where A,-,' and B -  ' are computed by applying the same process recursively. This 
requires two inversions, six multiplications, and two additions of ( 4 2 )  x ( 4 2 )  
matrices. Denoting the time required by these operations by the functions i(n/2), 
m(n/2), and a(n/2), respectively, we get 

Since 4 4 2 )  = n2/4 and m(n/2) = O((n/2)"), where 2 < x < 2.5 (as pointed out in 
example 1.1 I ) ,  we get i(n) = O(nx). Thus, in sequential computation the time required 
to compute the inverse of an n x n matrix matches, up to a constant multiplicative 
factor, the time required to multiply two n x n matrices. Furthermore, multiplying 
A-' by b can be done in O(nZ) steps. The overall running time of this sequential 
solution of Ax = b is therefore O(nx), 2 < x < 2.5. 

Example 8.1 

Let us apply procedure SIMD GAUSS JORDAN to the system 

In the first iteration of step I ,  j = 1 and the following values are computed in parallel: 
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In the second iteration of step 1, j = 2 and the following values are computed in parallel: 

a12 = a12 - (a121a22)a22 = 1 - (l/$X$) = 0, 

a13 = a 1 3  - (a12/a22)a23 = 3 - (I/$)($) = 4. 
In step 2, the answer is obtained as x, = $ and x, = 5. 

8.2.2 An M l M D  Algorithm 

A different sequential algorithm for solving the set of equations Ax = b is the Gauss- 
Seidel method. We begin by writing 

where E, D, and F are n x n matrices whose elements eij, dij, andJj, respectively, are 
given by 

aij for i > j, aij for i = j, aij for i < j, 
d.. = 

0 otherwise, ~ j = {  0 otherwise. 

Thus (E  + D + F)x = b and Dx = b - Ex - Fx.  For n = 3, say, we have 

Starting with a vector x0 (an arbitrary initial estimate of x), the solution vector is 
obtained through an iterative process where the kth iteration is given by 

In other words, during the kth iteration the current estimates of the unknowns are 
substituted in the right-hand sides of the equations to produce new estimates. Again 
for n = 4 and k = 1, we get 

The method is said to converge if, for some k, 

where abs denotes the absolute value function and c is a prespecified error tolerance. 
The algorithm does not appear to be easily adapatable for an SIMD computer. 

Given N processors, we may assign each processor the job of computing the new 
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iterates for n /N  components of the vector x. At the end of each iteration, all 
processors must be synchronized before starting the next iteration. The cost of this 
synchronization may be high because of the following: 

(i) The x: cannot be computed until x; is available, for all j < i ;  this forces the 
processor computing xi to wait for those computing xj, j < i, and then forces all 
processors to wait for the one computing x,. 

(ii) Some components may be possible to update faster than others depending on 
the values involved in its computation (some of which may be zero, say). 

Typically, this would lead to an algorithm that is not significantly faster than its 
sequential counterpart. 

There are two ways to remedy this situation: 

1. The most recently available values are used to compute xf (i.e., there is no need 
to wait for xr, j < i). 

2. No synchronization is imposed on the behavior of the processors. 

Both of these changes are incorporated in an algorithm designed to run on a CREW 
SM MIMD computer with N processors, where N < n. The algorithm creates n 
processes, each of which is in charge of computing one of the components of x. These 
processes are executed by the N processors in an asynchronous fashion, as described 
in chapter 1. The algorithm is given in what follows as procedure MIMD 
MODIFIED GS. In it xp, old,, and new, denote the initial value, the previous value, 
and the current value of component xi, respectively. As mentioned earlier, c is the 
desired accuracy. Also note that the procedure allows concurrent-read operations 
since more than one process may need new, simultaneously. 

procedure MIMD MODIFIED GS (A, x, b, c) 

Step 1: for i = 1 t o n  do 
(1 .1)  old, + xp 
(1.2) newi + xp 
(1.3) create process i 
end for. 

Step 2: Process i 
(2.1) repeat 

(i) oldi + newi 

until abs(newi - old,) < c 
i =  1 

(2.2) x i  t new,. 

Note that step 2 states one of the n identical processes created in step 1. 
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Discussion. In an actual implementation of the preceding procedure, care 
must be taken to prevent a process from reading a variable while another process is 
updating it, as this would most likely result in the first process reading an incorrect 
value. There are many ways to deal with this problem. One approach uses special 
variables called semaphores. For each shared variable vi there is a corresponding 
semaphore si whose value is set as 

0 if vi is free, 
1 if vi is currently being updated. 

When a process needs to read vi,  it first tests si:  If si = 0, then the process reads vi ;  
otherwise it waits for it to be available. When a process needs to update oi, it first sets 
si to 1 and then proceeds to update v i .  

As pointed out in chapter 1, MIMD algorithms in general are extremely difficult 
to analyze theoretically due to their asynchronous nature. In the case of procedure 
MIMD MODIFIED GS the analysis is further complicated by the use of semaphores 
and, more importantly, by the uncertainty regarding the number of iterations required 
for convergence. An accurate evaluation of the procedure's behavior is best obtained 
empirically. 

Example 8.2 

Consider the system of example 8.1 and assume that two processors are available on a 
CREW SM MIMD computer. Take xy = f, x; = 2, and c = 0.02. Process 1 sets old, = f 
and computes 

new, =+(3 -$) =$. 

Simultaneously, process 2 sets old, = 2 and computes 

new, = +(4 - $) = i. 

The computation then proceeds as follows 

(1) new, = 2, new, = 9, 
(2) new, = #, new, = g, 
(3) new, = 3, new, = g, 
(4) new, = 8, new, = w, 
(5) new, = &&, new, = #. 

Since abs(g - &&) + a b s ( e  - E) < 0.02, the procedure terminates. 
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8.3 FINDING ROOTS OF NONLINEAR EQUATIONS 

In many science and engineering applications it is often required to find the root of an 
equation of one variable, such as 

x5 - x3 + 7 = 0, 

sin x - ex = 0, 

x2 - cos x = 0. 

Finding the root of an equation of this form analytically is usually impossible, and one 
must resort to numerical algorithms to obtain an approximate solution. 

8.3.1 An S lMD Algorithm 

A standard sequential algorithm for root finding is the bisection method. Let f ( x )  be a 
continuous function and let a,  and b, be two values of the variable x such that f (a,) 
and f (b,)  have opposite signs, that is, 

A zero off [i.e., a value z for which f(z) = 01 is guaranteed to exist in the interval 
(a,, b,). Now the interval (a,, b,) is bisected, that is, its middle point 

mo = %a0 + bo) 

is computed. If f (a,)  f (m,) < 0, then z must lie in the interval (a , ,  b , )  = (a,, m,); 
otherwise it lies in the interval (a, ,  b , )  = (m,, b,). We now repeat the process on the 
interval (a, ,  b,). This continues until an acceptable approximation of z is obtained, 
that is, until for some n > 0, 

(i) abs(b, - a,) < c or 
(ii) abs( f (m,)) < c', 

where c and c' are small positive numbers chosen such that the desired accuracy is 
achieved. 

The algorithm using criterion (i) is given in what follows as procedure 
BISECTION. Initially, a = a ,  and b = b,. When the procedure terminates, a zero is 
known to exist in (a, b). 

procedure BISECTION (f; a, b, c) 

while abs(b - a) 2 c do 
(1) m +- $a + b) 
(2) if f (a) f (m) < 0 then b t m 

else a +- m 
end if 

end while. 
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Figure 8.1 Finding root using procedure BISECTION. 

Since the interval to be searched is halved at each iteration, the procedure runs 
in O(1og w) time, where w = abs(b, - a,). When f is discrete rather than continuous, 
procedure BISECTION is equivalent to procedure BINARY SEARCH of chapter 3. 
The procedure's behavior is illustrated in Fig. 8.1 for some function f: After four 
iterations, a zero is known to lie in the interval (m,, m,). 

In much the same way as we did with procedure BINARY SEARCH in section 
5.2.2, we can implement procedure BISECTION on a parallel computer. Given N  
processors, the idea is to conduct an (N  + 1)-section search on a CREW SM SIMD 
computer. The initial interval, known to contain one zero of a functionf; is divided 
into N  + 1 subintervals of equal length. Each processor evaluates the function at one 
of the division points, and based on these evaluations, one of the subintervals is 
chosen for further subdivision. As with the sequential case, this process is continued 
until the interval containing a root is narrowed to the desired width. The algorithm is 
given in what follows as procedure SIMD ROOT SEARCH. It takes the function f; 
the initial interval (a, b), and the accuracy c as input and returns an interval in which a 
zero off  lies and whose width is less than c. The procedure is designed to run on a 
CREW SM SIMD computer since at the end of each iteration all processors need to 
know the endpoints (a, b) of the new interval. Without loss of generality, we assume 
that a < b at all times. 



(b) 

Figure 8.2 Finding root using procedure SIMD ROOT SEARCH. 
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procedure SIMD ROOT SEARCH ( f ,  a, b, c) 

while (b - a) 2 c do 
(1) s + (b - a)l(N + 1) 
(2) Yo f (a) 
(3) YN + 1 f (b) 
(4) for k = 1 to N do in parallel 

(4.1) Yk f (a + ks) 
(4.2) if y k - ,  yk < 0 then (i) a t a + (k - 1)s 

(ii) b + a + ks 
end if 

end for 
(5) if y N y N +  < 0 then a +- a + Ns 

end if 
end while. 

Analysis. Steps 1,2, 3, and 5 may be executed by one processor, say, P,, in 
constant time. In step 4, which also takes constant time, at most one processor P, will 
discover that y, - , y, < 0 and hence update a and b. If no processor updates a and b in 
step 4, then the zero must be in the (N + 1)st interval, and only a is updated in step 5. 
The number of iterations is obtained as follows. Let w be the width of the initial 
interval, that is, w = b - a. After j iterations the interval width is w/(N + 1)'. The 
procedure terminates as soon as w/(N + l) j  < c. The number of iterations, and hence 
the running time, of procedure SIMD ROOT SEARCH is therefore O(log,+ ,w). Its 
cost is O(N log,, ,w), which, as we know from chapter 5, is not optimal. 

Example 8.3 

The behavior of procedure SIMD ROOT SEARCH on the function in Fig. 8.1 when 
three processors are used is illustrated in Fig. 8.2. After one iteration the interval 
containing the zero is (x,, x,), as shown in Fig. 8.2(a). After the second iteration the 
interval is (x,, x,) as shown in Fig. 8.2(b). 

8.3.2 An M l M D  Algorithm 

Another sequential root-finding algorithm that is very commonly used is Newton's 
method. A continuously differentiable function f(x) is given together with an initial 
approximation x, for one of its roots z. The method computes 

x , , + ~  = x,, - f(x,)/fl(x,) for n = 0, 1, 2 ,..., 

until abs(x,+, - x,) < c. Here f '(x) is the derivative of f  (x) and c is the desired 
accuracy. A geometric interpretation of Newton's method is shown in Fig. 8.3. Note 
that the next approximation x,+ , is the intersection with the x axis of the tangent to 
the curve f ( x )  at x,. 

The main reason for this method's popularity is its rapid convergence when x, is 
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Figure 8.3 Newton's method for finding root. 

sufficiently close to z. More precisely, if 

(i) f(x) and its first and second derivatives ff(x) and fU(x), respectively, are 
continuous and bounded on an interval containing a root z, with f '(x) # 0, and 

(ii) abs(xo - z) < 1, 

then for large n, abs(x,+, - z) = k(x, - z ) ~ ,  where k is a constant of proportionality 
that depends on f '(z) and f "(z). In other words, the error in x,, , is proportional to the 
square of the error in x,. 

The method is said to have quadratic convergence under the conditions stated in 
the preceding. In practice, this means that the number of correct digits in the answer 
doubles with each iteration. Therefore, if the answer is to be accurate to m digits, the 
method converges in O(1og m) time. 

One difficulty with Newton's method is finding an initial approximation that is 
sufficiently close to the desired root. This difficulty is almost eliminated by implement- 
ing the method on a CRCW SM MIMD computer as follows. We begin with an 
interval (a, b), where a < b, known to contain one zero z of f(x). The interval is divided 
into N + 1 subintervals of equal size, for some N 2 2, and the division points are 
taken as initial approximations of z. The computation consists of N processes. Each 
process applies Newton's method beginning with one of the division points. The 
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processes are executed concurrently, though asynchronously, depending on the 
availability of processors. As soon as a process converges, it indicates that by writing 
the value it found in a shared-memory location ROOT. Initially, ROOT is set to the 
value oo. As soon as that value is changed by a process, all processes are terminated. 
If two (or more) processes converge at the same time and attempt to write in ROOT 
simultaneously, then only the smallest-numbered process is allowed access while the 
others are denied it. In case a process does not converge after a predefined number of 
iterations, it is suspended. The algorithm is given in what follows as procedure MIMD 
ROOT SEARCH. It takes as input the function f, its derivative f ', the interval (a, b), 
the accuracy c, and the maximum allowable number of iterations r. It returns its 
answer in ROOT. 

procedure MIMD ROOT SEARCH (f, f', a, b, c, r, ROOT) 

Step 1: s t  (b - a)/(N + 1). 

Step 2: for k  = 1 to N do 
create process k 

end for. 

Step 3: ROOT + m. 

Step 4: Process k 
(4.1) xold + a + ks 
(4.2) iteration t 0 
(4.3) while (iteration < r) and (ROOT = co) do 

(i) iteration +- iteration + 1 
(ii) Xnew Xold - f (~old)/f((~old) 

(iii) if abs(xne, - x,,,) < c then ROOT + x,,, 
end if 

(iv) X O I ~  Xnew 

end while. 

Note that variables a, s, r, c, and ROOT used in process k are global. On the other 
hand, variables iteration, x,,,, and x,,, are local; they are not subscripted in order to 
simplify the notation. 

Analysis. Let N processors be available. If N is large, one of the starting 
points will be close enough to z. If in addition f(x), f '(x), and f "(x) are continuous and 
bounded on the interval (a, b), then one of the N processes will converge in O(1og m) 
time, where m is the desired number of accurate digits in the answer. 

Example 8.4 

Let f(x) = x3 - 4x - 5. Thus f1(x) = 3x2 - 4. There is a zero of f(x) in the interval 
(-3, 3). Let N = 5; the interval is divided into six subintervals with division points at 
x = -2, - 1,0, 1, and 2, and the corresponding five processes are created. Let c = 10- lo, 

and assume that five processors are available to execute the five processes simulta- 
neously. In that case, process 5 is the fastest to converge to a root at 2.456678. 
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8.4 SOLVING PARTIAL DIFFERENTIAL EQUATIONS 

Partial differential equations (PDEs) arise in such diverse applications as weather 
forecasting, modeling supersonic flow, and elasticity studies. A particularly important 
class of PDEs is that of linear equations of second order in two independent variables 
x and y. One representative of this class is Poisson's equation 

d2u(x, Y )  
uxx + u,, = G(x,  y) where uxx = - 

d2u(x, Y )  u,,, = -, 
ax2 ' dy2 

u(x, y) is the unknown function, and G is a given function of x and y. The solution of 
this equation is often needed in so-called boundary-value problems, a typical example 
of which is the Model Problem stated as follows. 

Let R and S denote the interior and boundary, respectively, of a region in two- 
dimensional space, and let f ( x ,  y)  be a continuous function defined on S. The desired 
function u(x, y) must satisfy Poisson's equation on R and equal f ( x ,  y) on S. In 
sequential computation, the Model Problem is solved numerically by first deriving a 
discrete version of it. Here R and S are the interior and boundary, respectively, of the 
unit square, 0 < x < 1 ,  0 < y < 1. A uniform mesh of n + 1 horizontal and n + 1 
vertical lines, where n is an arbitrary positive integer, is superimposed over the unit 
square, with a spacing of d = l ln  between lines. The (n + intersections of these 
lines are called mesh points. For a mesh point ( x ,  y) in R, uxx and u,, are approximated 
by difference quotients as follows: 

This leads to the following form of Poisson's equation: 

known as a dzference equation. An iterative process called successive overrelaxation is 
used to obtain an approximate value for u(x, y) at each of the (n - interior mesh 
points. Beginning with an arbitrary value uo(x, y), the following iteration is used: 

where 

&(x, Y )  = [ ~ k -  I ( X  + d, Y )  + U ~ ( X  - d, Y )  + ~ k -  y + d )  

+ uk(x, Y - d )  - d2G(x, y) ] /4  
and 

w = 2/ [1  + sin(.nd)]. 

Let ek denote the absolute value of the difference between uk(x, y) and the exact 
value of u at ( x ,  y). The iterative process continues until 
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where o is a positive integer representing the desired accuracy. Neither e, nor e, is 
known, of course. However, it can be shown that the process converges and the 
preceding inequality is true after k = gn iterations, where g = 013. Since there are 
(n  - interior points, the entire process takes O(n3) time. 

This approach to solving PDEs lends itself naturally to implementation on an 
N x N mesh-connected SIMD computer with N = n - 1, as shown in Fig. 8.4 for 
N = 4. Each processor P(i, j), 1 < i, j < N ,  is in charge of computing an approxi- 
mation of the function u at point (id, jd).  It does so beginning with the initial value 
u,(id, j d )  and then iteratively using the values computed by its four neighbors as input. 
Boundary processors, of course, have fewer than four neighbors and use the values of 
f ( x ,  y)  at x = 0, 1 and y = 0, 1 to replace the input from missing neighbors. One 
difficulty to overcome is the fact that u,(x, y) depends on u,(x - d, y) and u,(x, y - d ) .  
In sequential computation, this is no problem since the kth iterates are computed one 
at a time from x = 0 to x = 1 and from y = 0 to y = 1. By the time u,(x, y) is to be 

Figure 8.4 Mesh of processors for solving partial differential equations. 
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computed, uk(x - d, y) and uk(x, y - d )  are available. In the parallel version each 
iteration will consist of two stages: 

1. During the first stage one-half of the processors compute new values for u based 
on the values held by the other half. 

2. During the second stage, the remaining processors update their values of u using 
the new values just computed in 1. 

The two sets of processors in 1 and 2 are chosen to correspond to the red and black 
squares, respectively, on a checkerboard. Let w,,, and w,,, denote the value of w 
during stages 1 and 2, respectively, of iteration k, where 

w1.1 = 1, 

w,,, = 1/(1 - 4 cos2.rrd), 

and for k = 2, 3 , .  . . , 

wk , ,  = 1 1 ~ 1  - a C O S ~  xd)w,- ,,,I, 
wkS2 = 1/[1 - $ c0s2 7Cd)wk,~]. 

The equations for updating u are now as follows: 

Stage I: For all 1 < i, j < N ,  such that i + j is even, 

uk(id, jd) = uk-,(id, jd )  + wk,,[u;(id, jd )  - uk-,(id, jd)] ,  

where 

ul(id, jd) = [uk-  ,(id + d,  jd) + uk-  l(id - d, jd) 

+ uk-,(id, jd + d )  + uk-,(id, jd - d )  - d2G(x, y)]/4. 

Stage 2: For all 1 < i, j < N such that i + j is odd, 

uk(id, jd) = uk-  ,(id, jd)  + ~ ~ , ~ [ u ; ( i d ,  jd) - uk-  ,(id, jd) ] ,  

where 

&(id, jd)  = [uk(id + d, jd )  + uk(id - d, jd) + uk(id, jd + d )  

+ uk(id. jd - d )  - d2G(x, ~4114. 

The algorithm is given as procedure MESH PDE. 

procedure MESH PDE (f, G, g) 

Step 1: {Compute boundary values) 
(1.1) for i = 1 to N do in parallel 

( i)  P(1, i )  computes f(0, id) 
(i i) P (N ,  i) computes f (1 ,  id) 

end for 
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(1.2) for i = 1 to N do in parallel 
(i) P(i, 1) computes f (id, 0) 
(ii) P(i, N )  computes f (id, 1 )  

end for. 

Step 2: {Input initial values) 
for i = 1 to N do in parallel 

for j = 1 to N do in parallel 
P(i, j )  reads u,(id, jd)  

end for 
end for. 

Step 3: {Iterate until convergence) 
for k = 1 to gn do 

for i = 1 to N do in parallel 
for j = 1 to N do in parallel 

(3.1) if (i + j )  is even 
then P(i, j )  updates u(id, jd) 
end if 

(3.2) if (i + j )  is odd 
then P(i, j )  updates u(id, jd) 
end if 

end for 
end for 

end for. [7 

Analysis. Steps 1 and 2 take constant time. Step 3 consists of O(n) constant 
time iterations. Thus t(n) = O(n). Since p(n) = O(n2), c(n) = O(n3), which matches the 
running time of the sequential algorithm. 

Example 8.5 

Figure 8.5 illustrates the behavior of procedure MESH PDE for the processors in Fig. 
8.4. Note that d = 0.2. 

8.5 COMPUTING EIGENVALUES 

The algebraic eigenvalue problem derives its importance from its relation to the 
problem of solving a system of n simultaneous linear differential equations of first 
order with constant coefficients. Such a system is written as 

where A is an n x n matrix and x is an n x 1 vector. For some vector u # 0, x = ue" is 
a solution of the preceding system if and only if Au = Au. Here, 1 is called an 
eigenvalue and u an eigenoector. The algebraic eigenvalue problem is to determine 
such 1 and u. There are always n eigenvalues. To each eigenvalue, there corresponds at 
least one eigenvector. 



f(d,O) f(2d,0) f(3d,0) f(4d,0) 

(a) STEP 1 

(b) STEP 2 
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( c )  STEP (3.1) 

(d) STEP (3.2) 

Figure 8 5  Solving Model Problem using procedure MESH PDE. 

For an n x n matrix B and an n x 1 vector y, if we apply the transformation 
x = By to the system of differential equations, we get 

dyldt = ( B -  ' AB)y. 

The eigenvalues of B -  ' AB are the same as those of A. We therefore choose B such that 
the eigenvalues of B- 'AB are easily obtainable. For example, if B-'AB is a diagonal 
matrix (i.e., all elements are zero except on the diagonal), then the diagonal elements 
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are the eigenvalues. One method of transforming a symmetric matrix A to diagonal 
form is Jacobi's algorithm. The method is an iterative one, where the kth iteration is 
defined by 

A, = R,A,-,R; for k = 1, 2, . . . , 
with 

The n x n matrices R, are known as plane rotations. Let afj denote the elements 
of A,. The purpose of R, is to reduce the two elements a:; ' and a:, ' to zero (for some 
p < q depending on k). In reality, each iteration decreases the sum of the squares of the 
nondiagonal elements so that A, converges to a diagonal matrix. The process stops 
when the sum of the squares is sufficiently small, or more specifically, when 

i+.i 

for some small tolerance c. At that point, the columns of the matrix 
RTRT . . . R: are the eigenvectors. 

The plane rotations are chosen as follows. If a:;' is a nonzero off-diagonal 
element of A,- ,, we wish to define R, so that a$, = a:, = 0. Denote the elements of R, 
by $,. We take 

k - k -  rpp - rqq - cos 8,, 

r:q = - rip = sin 8, , 

rk = 1 for i # p or q, 

r& = 0 otherwise, 

where cos 8, and sin 0, are obtained as follows. Let 

a, = (at; ' - a$; l)/2akp; ' 
and 

where sign(a,) is + 1 or - 1 depending on whether a, is positive or negative, 
respectively. Then 

cos 0, = 1/(1 + /?,2)'12 and sin 0, = 8,cos 8,. 

The only question remaining is: Which nonzero element a;; ' is selected for reduction 
to zero during the kth iteration? Many approaches are possible, one of which is to 
choose the element of greatest magnitude since this would lead to the greatest 
reduction in d,. 

As described in the preceding, the algorithm converges in O(n2) iterations. Since 
each iteration consists of two matrix multiplications, the entire process takes O(nS) 
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time, assuming that the (sequential) procedure MATRIX MULTIPLICATION is 
used. 

Jacobi's method lends itself naturally to parallel implementation. Let n = 2", for 
some positive integer s. In what follows we give a parallel algorithm designed to run 
on a cube-connected SIMD computer with n3 = 23S processors, as we did in section 
7.3.2. We visualize the processors of this 3s-dimensional cube as being arranged in an 
n x n x n array pattern, with processor P,  occupying position (i, j, m), 0 < i, j, 
m ,< n - 1. The processors are arranged in row-major order, that is, r = in2 + jn + m. 
The matrix A (i.e., A,) is initially stored in the n2 processors occupying positions 
(0, j, m), 0 < j, m < n - 1, one element per processor. In other words, A, is stored in 
the processors of a 2s-dimensional cube. At the beginning of iteration k, k = 1,2, . . . , 
these same processors contain A,-,. They find its largest off-diagonal element and 
create R, and Rf. All n3 processors are then used to obtain C,  = R,A,-, and 
A, = C,Rf. At the end of the iteration, if d, < c, the process terminates. 

The algorithm is given in what follows as procedure CUBE EIGENVALUES. 
The subscript k is omitted from A,, R,, Rf, and d, since new values replace old ones. 

procedure CUBE EIGENVALUES (A ,  c) 

while d > c do 
(1) Find the off-diagonal element in A with largest absolute value 
(2) Create R 
(3) A + R A  
(4) Create RT 

(5) A + A RT  

end while. 

Analysis. As pointed out earlier, the n2 processors holding A form a 2s- 
dimensional cube. From problem 7.23 we know therefore that they can compute d, in 
O(1ogn) time. By the same reasoning, step 1 takes O(1ogn) time. Steps 2 and 4 take 
constant time since each of the n2 processors in positions (0, j, m), 0 < j, m ,< n - 1, 
creates one element of R, and one of R:. Procedure CUBE MATRIX 
MULTIPLICATION of chapter 7 whose running time is O(1og n) is then applied in 
steps 3 and 5 to compute R,AR:. The time per iteration is thus O(1ogn). Since 
convergence is attained after O(n2) iterations, the overall running time is O(n2 log n). 
Given that p(n) = n3, c(n) = O(n5 log n), which is by a factor of log n larger than the 
sequential running time. 

Example 8.6 

Let n = 2 (i.e., s = l), 

A = [: :] and c = lo-'. 

Procedure CUBE EIGENVALUES in this case requires eight processors forming a 
three-dimensional cube. Figure 8.qa) shows the elements of A, inside the processors to 
which they are assigned. 



Figure 8.6 Computing eigenvalues using 
procedure CUBE EIGENVALUES. 
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In the first iteration, the off-diagonal element a , ,  = 1 is chosen for reduction to 
zero (i.e., p = 1 and q = 2). Thus 

cos O1 sin 0 , ]  = [ I/,/: i/Ji] 

- 1 1 4  I/$' -sin 8,  cos 0 ,  

as shown in Fig. 8.qb). Now 

is computed using all eight processors to execute the eight multiplications involved 
simultaneously, as shown in Fig. 8.6(c). 

The elements of RIAo  replace those of A, and RT replaces R,,  as shown in Fig. 
8.qd). Finally ART is computed and the value of A,  at the end of the first iteration is 
shown in Fig. 8.qe). Since the two off-diagonal elements are both zero, the procedure 
terminates. The eigenvalues are 2 and 0, and the eigenvectors are 

(I/,/? I/&)' and (-1/,/3 I/$)'. 

8.6 P R O B L E M S  

8.1 In procedure SIMD GAUSS JORDAN the elements aj j  are called the pivots. If at any 
point a pivot equals zero, then the procedure obviously fails since aj j  is a denominator. In 
fact, if the values of one or more pivots are near zero, then the errors of computation grow 
exponentially as they propagate, and the procedure is said to be numerically unstabk. To 
avoid these problems, a method called pivoting is used: A pair of rows and columns are 
interchanged so that the new element used as a pivot is not too close to zero. Modify 
procedure SIMD GAUSS JORDAN to include pivoting. 

8.2 Gaussian elimination is a standard method for solving the system of equations Ax = b. It 
begins by transforming the given system to the equivalent form U x  = c, where U is an 
n x n upper triangular matrix (i.e., all elements below the diagonal are zero) and c is an 
n x 1 vector. The transformation is performed in n - 1 steps. During step j, variable x j  is 
eliminated from equations i = j + 1, j + 2, . . . , n by subtracting from each of these 
equations the product (a i j /a j j )  x (equation j). The triangular system U x  = c is now solved 
by back substitution, computing x, from the nth equation, x , - ,  from the (n - l)st, and 
finally x ,  from the first. Design a parallel version of Gaussian elimination for a SM SIMD 
computer and analyze its running time and cost. 

8.3 Modify the parallel algorithm derived in problem 8.2 to include pivoting as described in 
problem 8.1. 

8.4 Another method for solving Ax = b is known as LU decomposition. The matrix A is 
decomposed into two matrices L and U such that LU = A, where U is upper triangular 
(ukj = 0 if k > j) and L is lower triangular ( 1 ,  = 0 if i < k) with diagonal elements equal to 
1 ( I ,  = 1 if i = k). The solution of Ax = b is now achieved by solving Ly = b and U x  = y 
using forward and back substitution, respectively. Consider the special case where A is 
positive dejinite, that is, 

(i) aij = aji for all i and j, 1 < i, j < n, meaning that A is symmetric; 
(ii) vTAv > 0 for a11 n x 1 nonzero vectors v. 
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In this case the elements of L and U are obtained as follows: 

where 

ah = a i j  and a:;' = a:, - ( l i k  x u,,). 

(a) Show how the matrices L and U can be computed on an interconnection network 
SIMD computer in which the processors form a hexagonal array as shown in Fig. 8.7. 

(b) Show how both systems Ly = b and U x  = y can be solved on an interconnection- 
network SIMD computer in which the processors form a linear array. 

8.5 A matrix Q is said to be orthogonal if QQT = QTQ = I. The system Ax = b can also be 
solved using a method known as Q R  factorization. Here two matrices Q and R are 
obtained such that 

QA = R 

where Q is orthogonal and R upper triangular. Thus the system R x  = Qb can be solved 
directly by back substitution. Matrix Q is formed as the product of plane rotations, that is, 
matrices P i + , , ,  identical to I except in positions pii, p i + l , i ,  and p i + l , i + l .  Let 
b.. 1J = (a2. LJ + aiz,,,,)lt2, ci = a i j / b i j ,  and si = a , ,  l , j /b i j .  We take pii = pi+ l , i +  = c i ,  and 
pi.i+ , = - p i +  l , i  = si. Each plane rotation therefore annihilates one element of A below 
the diagonal. Show how the matrix R can be computed on an n x n mesh-connected 
SIMD computer. 

8.6 Let two processors be available on an MIMD computer, and assume that procedure 
MIMD MODIFIED GS is used to solve the system of equations 

with c = 0.1 and starting from the initial estimates xy = x i  = x! = x i  = 0. Processors P I  
and P, begin by executing processes 1 and 2, respectively, and halt after one iteration with 
x ,  = x ,  = 0. Processes 3 and 4 are now executed. After a few iterations, the values of x ,  
and x4 eventually converge to approximately 9 and q, respectively. The procedure 
therefore returns an incorrect answer since the solution to the system is x ,  = 1, x ,  = 1, 
x ,  = 2, and x ,  = 1. The error is due to the fact that the values computed for one pair of 
unknowns are not revised once new values for the other pair have been obtained. Suggest 
changes to the procedure to allow for this revision. 

8.7 Derive MIMD algorithms for the methods described in problems 8.2, 8.4, and 8.5. 
8.8 Unlike procedure BISECTION, procedure SIMD ROOT SEARCH assumes that the 

initial interval contains exactly one zero of the input function. Modify the procedure so 
that it returns exactly one of possibly several roots in the initial interval. Analyze the 
running time and cost of the new procedure. 

8.9 An old method for solving f ( x )  = 0 is based on linear interpolation between two previous 
approximations to a root in order to obtain an improved approximation. Let ( x , ,  x,) be an 
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interval containing a root. The method is called regula falsi and uses the iteration 

xnew = X I  - f (x,)(x, - x1)lCf (x,) - f (XI)] 

to obtain a new interval. Derive a parallel version of this algorithm. 

8.10 Procedure MIMD ROOT SEARCH begins with an interval (a, b) known to contain a root 
z of f ( x )  = 0. The interval is divided into N + 1 subintervals and the division points are 
taken as initial approximations of z. Each of N processes applies Newton's method 
beginning with one of these approximations. Discuss the possibility of one of these 
processes converging to a zero outside (a, b) before any other process converges to z. Can 
the procedure be modified to include this possibility? 

8.11 Our analysis of procedure MIMD ROOT SEARCH assumes that N processors are 
available to execute the N processes involved. What can be said about the procedure's 
cost? Analyze the procedure's running time and cost for the case where fewer than N 
processors are available. 

8.12 One disadvantage of Newton's method is that it requires that f1 (x )  be computable. In 
some applications f l ( x )  may not be known. The secant method solves f ( x )  = 0 using 
essentially the same approach but without requiring any knowledge off ' (x).  Instead the 
difference equation 

f ' ( ~ n )  = Cf(xn) - f ( xn -~ )1 / ( xn  - xn-1) 

is used. Thus 

xn.1 = x, - (xn - ~ , - l ) f ( ~ . ) l C f ( ~ . )  - f ( xn -1 )1 .  

The method derives its name from the fact that xn+ is the intersection with the x  axis of 
the secant passing through the points (x , ,  f(x,))  and ( x , - , ,  f ( x , - , ) ) .  Discuss various 
approaches to implementing this algorithm in parallel. 
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8.13 Show that the solution to the discrete Model Problem can be obtained by solving a system 
of (n - 1)' linear equations in (n  - 1)' unknowns using the methods of section 8.2. 

8.14 Procedure MESH PDE assumes the existence of (n - 1)' processors on the mesh. Show 
how the algorithm can be modified for the case where fewer processors are available. 
Analyze the running time and cost of the new algorithm. 

8.15 What changes should procedure MESH PDE undergo to handle the case where R is not 
the unit square but an arbitrary plane region? 

8.16 Jacobi's method is another iterative approach to solving the Model Problem. Given "old" 
values uk- , (x ,  y) at mesh points, the following equation is used to generate "new" values: 

uk(x, y )  = [uk- l ( x  + d ,  Y )  + uk- l(x - d,  Y )  + U k -  I ( x ,  Y + 
+ uk- l (x ,  Y - d )  - d2G(x, ~ ) 1 / 4 .  

Although slow in its convergence, requiring O(nZ)  iterations, this method is easier to 
implement in parallel than successive overrelaxation. Show how this can be done. 

8.17 Modify procedure CUBE EIGENVALUES to produce the eigenvectors as well as 
eigenvalues. 

8.18 Implement Jacobi's method for computing eigenvalues on a mesh-connected SIMD 
computer and analyze its performance. 

8.19 Can you implement Jacobi's method for computing eigenvalues on a parallel model of 
computation with a cost of O(n5)? 

8.20 Jacobi's method for computing eigenvalues can be modified so that more than just one off- 
diagonal element is annihilated in each iteration, thus providing greater parallelism. Show 
how this can be done. 

Figure 8.8 Numerical integration by trapezoidal rule. 
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8.21 As we saw in this chapter, many numerical algorithms are inherently parallel. One further 
example is provided by numerical integration, that is, the computation of an approxi- 
mation to the definite integral 

D = f (s) dx.  

As shown in Fig. 8.8, this problem can be interpreted as that of computing the area 
between the curve for f (x )  and the x axis on the interval (a, b). One very simple formula for 
approximating D is the trapezoidal rule. The interval (a, b )  is divided into N subintervals of 
equal size h = ( b  - a)/N.  With x ,  = a, x ,  = a + h, . . . , x, = b andf, = f (x , ) ,  the approx- 
imate value of D is given by 

Discuss various parallel implementations of this rule. 

8.7 B lBL lOGRAPHlCAL  R E M A R K S  

References to sequential numerical algorithms, including the ones described in this chapter, are 
found in [Conte], [Hamming], [Ralston], [Stewart], [Wilkinson], and [Young]. Parallel 
numerical algorithms are either described or reviewed in [Heller 23, [Hockney], [Hwang], 
[ICPP], [Kronsjo], [Kuck 23, [Kung], [Miranker], [Poole], [Quinn], [Rodrigue], [Sameh 21, 
[Schendel], and [Traub]. 

There is a vast literature on SIMD algorithms for solving systems of linear equations; we 
simply mention [Bojanczyk], [Fortes], [Heller 23, [Mead], [Sameh 21, [Sameh 53, and 
[Traub]. In our analysis of procedure SIMD GAUSS JORDAN, we showed that matrix 
inversion can be reduced to matrix multiplication. Our argument ignored a number of rare 
special cases. A thorough treatment is provided in [Bunch] and [Schonhage]. In fact, the 
converse is also true: It is shown in [Munro] that the product AB of two n x n matrices A  and B 
can be obtained by inverting a 3n x 3n matrix as follows: 

I A O - '  I - A  AB 1; r] -1 : r ] .  
We conclude therefore that inverting an n x n matrix is equivalent to multiplying two n x n 
matrices. Procedure MIMD MODIFIED GS is based on ideas from [Baudet], where results of 
experiments with the method are reported. It should be noted that many situations are known 
in which the Gauss-Seidel method is guaranteed to converge. For example, let A be an n x n 
symmetric matrix all of whose diagonal elements are positive. The Gauss-Seidel method 
converges when applied to the system Ax = b if and only if A is positive definite. Other MIMD 
algorithms for solving linear systems are presented in [Arnold], [Evans], [Lord], and [Wing]. 

The development of procedure SIMD ROOT SEARCH was inspired by [Kung], where 
an MIMD algorithm is also described. Other approaches are proposed in [Eriksen], [Gal], 
[Heller 11, and [Schendel]. 

Parallel algorithms for solving partial differential equations are discussed in [Buzbee 11, 
[Buzbee 23, [Fishburn], [Heller 23, [Jones], [Karp], [Rosenfeld], [Saltz], [Sameh 31, 
[Swarztrauber], [Sweet], and [Traub]. 
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Methods for accelerating the convergence of procedure CUBE EIGENVALUES, as well 
as other algorithms for computing eigenvalues in parallel, are the subject of [Kuck I], [Sameh 
11, and [Sameh 23. Parallel algorithms for special cases of the eigenvalue problem are studied in 
[Heller 21 and [Sameh 41. 

Parallel solutions to a variety of other numerical problems can be found in [Borodin 11, 
[Borodin 21, [Csanky], [Devreese], [Eberly], [Haynes], [Numrich], [Pan], [Valiant], and 
[von zur Gathen]. 
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Computing Fourier 
I ranstorms 

9.1 INTRODUCTION 

This chapter is about one of the most important computations arising in engineering 
and scientific applications, namely, the discrete Fourier transform (DFT). Given a 
sequence of numbers {ao, a,, . . . ,a,-,}, its DFT is the sequence {b,, b,, . . . , bn- ,}, 
where 

In the preceding expression, w is a primitive nth root of unity, that is, w = e2""", where 

9.1.1 The Fast Fourier Transform 

Sequentially, a straightforward computation of bj requires n multiplications and n - 1 
additions of complex numbers. This leads to an O(n2) computation time to obtain the 
entire sequence {bo, b,, . . . , bn- ,}. Such time is prohibitive for very large values of n, 
particularly in applications where several sequences of this kind must be computed 
successively. Fortunately, a better algorithm exists. Let n = 2Vor some positive 
integer s. Thus the expression for bj can be rewritten as 

for j = 0, 1 , .  . . , n - 1. This leads to a recursive algorithm for computing bj since each 
of the two sums in the last expression is itself a DFT. This algorithm, known as the fast 
Fourier transform (FFT), is given in what follows as procedure SEQUENTIAL FFT. 
The procedure takes as input the sequence A = {ao, a,, . . . ,a,- ,) and returns its 
transform B = {b,, b,, . . . , bn- ,}. 
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procedure SEQUENTIAL FFT (A, B) 

if n = 1 then b, + a, 
else ( 1 )  SEQUENTIAL FFT (a,, a, ,  . . . , a,- ,, u,, u , ,  . . . , u ( , , ~ ) -  ,) 

(2)  SEQUENTIAL FFT (a , ,  a,, . . . , a, - , , v,, o, , . . . , v( ,,,, - ,) 
(3) z + 1 
(4)  for j = 0 to n - 1 do 

(4.1) bj+ujmod(ni2) + z(vjmad(n/~)) 
(4.2) z t z  x w 

end for 
end if. 

As can be easily verified, the procedure runs in O(n log n) time. 

9.1.2 An Application of the FFT 

The efficiency of the FFT has made it an extremely popular computational technique 
in such applications as digital signal processing, coding theory, computerized axial 
tomography scanning, speech transmission, weather prediction, statistics, image 
processing, multiplication of very large integers, and polynomial multiplication. In 
order to illustrate its use, we show how the FFT accelerates the computation of the 
product of two polynomials. Consider the polynomial 

whose coefficients fonn the sequence {a,, a, ,  . . . , a , _ , } .  Then element bj of the 
sequence {bo ,  b , ,  . . . , b,_ ,} defined in the preceding is the value of this polynomial at 
x = wj, where wO,  w', . . . , w n '  are the nth roots of unity. Conversely, the value of the 
polynomial 

b, + b , ~  + . . .  + bn-,xn- '  + b n - , x n - l  

at x = ( w - ' ) ~  is given by 

The sequence {a,,  a,, . . . , a n _ , )  is the inverse DFT of {b,,  b , , .  . . , b n - , )  and can 
be computed in O(n log n) time through minor modifications to procedure 
SEQUENTIAL FFT. 

Assume now that we want to multiply the two polynomials 

f ( x )  = 1 a jx j  and g(x) = ckxk 
j = O  k = O  

to obtain the product polynomial h = fg. The straightforward product requires O(n2) 
time. By using the FFT, we can reduce this to an O(n log n) time computation. This is 
done as follows: 
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Step 1: Let N be the smallest integer that is a power of 2 and is greater than 
2n - 1. Each of the two sequences {a,,  a , ,  . . . , a , - , )  and {c,,  c , ,  . . . , en -  ,) is 
padded with N - n zeros. 
Step 2: Compute the FFT of {a,,  a , ,  . . . , a,- ,, 0 , 0 , .  . . , 0 ) .  This yields the values 
of polynomial f  at the Nth roots of unity. 
Step 3: Compute the FFT of {co,  c , ,  . . . , c,- ,, 0 , 0 , .  . . , 0 ) .  This yields the values 
of polynomial g  at the Nth roots of unity. 
Step 4: Compute the product f(w') x g(wJ) for j = 0, 1 ,  . . . , N - 1, where 
w = ezXilN. The resulting numbers are the values of the product polynomial h at 
the Nth roots of unity. 
Step 5: Compute the inverse DFT of the sequence { f  (w')~(w'), f  (w ' )~ (w ' ) ,  . . . , 
f (wN- ' )g(wN-l) ) .  The resulting sequence of numbers are the coeficients of the 
product polynomial h. 

Step 1 takes O(N)  time. Each of steps 2, 3, and 5 is known to require O(N log N)  
operations while step 4 consists of N multiplications. Since N < 4n, the overall 
product takes O(n log n) time. 

9.1.3 Computing the DFT in Parallel 

There is a considerable amount of inherent parallelism in computing the DFT of a 
sequence {a,, a , ,  . . . , a,- ,). Two general approaches can be adopted in order to 
exploit this parallelism. 

1. In the first approach, the sequence {b,,  b, ,  . . . , b, - , ) is computed directly from 
the definition 

using N processors, where typically N 2 n. This results in algorithms whose 
running times are at most linear in n and whose costs are at least quadratic in n. 
We illustrate this approach in section 9.2. 

2. In the second approach, parallel versions of the FFT are derived. Among the 
best of these are algorithms using n processors and running in O(1og n) time for a 
cost of O(n1ogn). This cost matches the running time of procedure 
SEQUENTIAL FFT. We illustrate this approach in sections 9.3 and 9.4. 

9.2 DIRECT COMPUTATION OF THE DFT 

This approach to the parallel computation of the DFT is based on the observation 
that the sequence 
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can be expressed as the following matrix-by-vector product 

or b = Wa, where W is an n x n matrix and b and a are n x 1 vectors. 
Consequently, any of the algorithms developed in chapter 7 for matrix-by- 

matrix multiplication or matrix-by-vector multiplication can be used to compute the 
preceding product. Regardless of which algorithm is used, however, an efficient way 
must be specified for generating the matrix W or more precisely for obtaining the 
various powers of w. Our purpose in this section is twofold: 

1. We first describe a simple algorithm for computing the matrix which runs in 
O(log n) time and uses n2 processors. 

2. We then show how the processors of 1, with an appropriate interconnection 
network, can be used to compute the DFT. 

9.2.1 Computing the Matrix W 

Assume that an SIMD computer is available that consists of n2 processors. The 
processors are arranged in an n x n array pattern with n rows numbered 1,. . . , n, and 
n columns numbered 1,. . . , n. Processor P(k, j), 1 < k, j d n, is required to compute 
~ ( ~ - ' ) ( j - " .  This computation can be accomplished by repeated squaring and 
multiplication. For example, w13 is obtained from [(w2)' x W] x [(w~)~]'.  The 
algorithm is given in what follows as procedure COMPUTE W. Each processor 
P(k, j ) is assumed to have three registers: Mkj, Xkj, and Kj. Register Mkj stores the 
power to which w is to be raised, while registers Xkj and Kj  store intermediate results. 
When the procedure terminates, Kj = w(~-')"-'). 

procedure COMPUTE W (k, j) 

Step 1: Mkj  6 (k - 1 ) ( ~  - 1). 

Step 2: Xk j  t w. 

Step 3: Y,, t 1. 

Step 4: while M k j  # 0 do 
(4.1) if Mkj is odd 

then K j  t Xk j  x K j  
end if 

(4.2) Mkj + LMkjI2J 
(4.3) X k j  t xtj 

end while. 
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Analysis. Steps 1, 2, and 3 of the preceding procedure take constant time. 
There are O(log[(k - 1)(j - I)]) iterations of step 4, each requiring constant time. 
Procedure COMPUTE W therefore runs in O(1ogn) time. In fact, the procedure's 
actual running time can be slightly reduced by noting that wnI2 = - 1, and therefore 
w j f  '"I2' = - wj .  Consequently, only powers of w smaller than n/2 need be computed. 

Discussion. The preceding description does not specify whether or not the 
n2 processors on the SIMD computer share a common memory or are linked by an 
interconnection network. Indeed, procedure COMPUTE W requires no communicat- 
ion among the processors since each processor produces a power of w independently 
of all other processors. In the next section we show that when a particular network 
connects the processors, the DFT of a sequence can be computed in the same amount 
of time required to generate the matrix W 

9.2.2 Computing the DFT 

The n2 processors of the SIMD computer in the previous section are now intercon- 
nected as follows: 

1. The processors in row k are interconnected to form a binary tree, that is, for 
j = 1,. . . , Ln/2J, processor P(k, j) is linked directly to processors P(k, 2j) and 
P(k, 2j + I), with P(k, 2Ln/2J + 1) nonexistent if n is even. 

2. The processors in column j are interconnected to form a binary tree, that is, for 
k = 1,. . . , Ln/2J, processor P(k, j) is linked directly to processors P(2k, j) and 
P(2k + 1, j), with P(2Ln/2J + 1, j) nonexistent if n is even. 

This configuration, called the mesh of trees in problem 4.2, is illustrated in Fig. 9.1 for 
n = 4. We assume that the processors in row 1 and column 1 are in charge of input 
and output operations, respectively. Thus, for example, processor P(1, j) can read a 
datum aj.  It is then possible, using the binary tree connections, to propagate aj to all 
processors in column j. The algorithm is given as procedure PROPAGATE. 

procedure PROPAGATE (aj) 

for m = 1 to (log n) - 1 do 
for k = 2"-' to 2'" - 1 do in parallel 

P(k, j )  sends aj to P(2k, j )  and P(2k + 1, j )  
end for 

end for. 

This procedure (which is essentially procedure BROADCAST of chapter 2 im- 
plemented on a tree) requires O(1og n) time. 

Similarly, assume that each processor in row k contains a number dkj and that 
the sum of these numbers is required. Again, using the binary tree connections, the 
sum can be computed and produced as output by P(k, 1). The algorithm is given as 
procedure SUM. 
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Figure 9.1 Mesh of trees connection. 

procedure SUM (k) 

for m = (log n) - 1 downto 1 do 
for j = 2 "  ' to 2" - 1 do in parallel 

d i j  d k , 2 j  + d k . 2 j +  l 

end for 
end for. [7 

This procedure is a formal statement of the algorithm in example 1.5 and runs in 
O(1og n) time. 

We are now ready to show how the product 

is obtained. There are four stages to this computation. Initially, the elements of matrix 
W are created one element per processor. In the second stage, the elements of the 
vector a are read. Each processor in row 1 reads a different element of vector a and 



Sec. 9.2 Direct Computation of the DFT 237 

propagates it down its column. At this point, processor P(k, j) contains w(~- ' ) ( ' -  ') and 
a j -  ,: All the products a j -  x ~ ( ~ - ' ) t i - l )  are computed simultaneously. Finally, the 
sums of these products are obtained for each row and the results produced by the 
processors in column 1. The algorithm is given as procedure SIMD DFT. 

procedure SIMD DFT (A, B) 

Step 1 :  for k = 1 to n do in parallel 
for j = 1 to n do in parallel 

COMPUTE W (k, j )  
end for 

end for. 

Step 2: for j = 1 to n do in parallel 
(2.1) P(1, j )  receives aj-I as input 
(2.2) PROPAGATE (aj-  ,) 

end for. 

Step 3: for k = 1 to n do in parallel 
for j = 1 to n do in parallel 

dkj  t qj x aj-  
end for 

end for. 

Step 4: for k = 1 to n do in parallel 
(4.1) SUM (k )  
(4.2) bk- 1 + dk, 
(4.3) P(k, 1 )  produces b k - ,  as output 

end for. 

Analysis. Steps 1,2, and 4 require O(1og n) time, while step 3 takes constant 
time. The overall running time of procedure SIMD DFT is therefore 

t(n) = O(1og n). 

This represents a speedup of O(n) with respect to produce SEQUENTIAL FFT (the 
fastest sequential algorithm for computing the DFT). In fact, this running time is the 
best possible for any network that computes the DFT. To see this, note that each bj  is 
the sum of n quantities, and we know from section 7.3.2 that computing such a sum 
requires Q(1og n) parallel time. 

Since p(n) = n2, the procedure's cost is c(n) = O(n210g n) for an efficiency of 
O(l/n) with respect to procedure SEQUENTIAL FFT. 

Example 9.1 

The four steps of procedure SIMD DFT are illustrated in Fig. 9.2 for the case n = 4. 
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Figure 9.2 Computing discrete Fourier transform using procedure SIMD DFT. 

9.3 A PARALLEL FFT ALGORITHM 

With a running time of O(1og n) procedure SIMD DFT is quite fast, and as was just 
shown, it achieves the best possible speedup over the fastest sequential algorithm for 
computing the DFT. The procedure's efficiency, however, is very low due to the large 
number of processors it uses. 

In this section a parallel algorithm with better efficiency is described. The 
algorithm implements in parallel a nonrecursive version of procedure SEQUENTIAL 
FFT. It is designed to run on a mesh-connected SIMD computer with n processors 
Po, P I , .  . . , P,-, arranged in a 2" x 2" array, where n = 2'". The processors are 
organized in row-major order, as shown in Fig. 9.3 for n = 16. 

Let k be a log n-bit binary integer. We denote by r(k) the log n-bit binary integer 
obtained by reversing the bits of k. Thus, for example, if the binary representation of k 
is 0101 1, then the binary representation of r(k) is 11010. The algorithm is given in what 
follows as procedure MESH FFT. The input sequence {a,, a,, . . . , a,- ,} is initially 
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Figure 9.3 Mesh of processors for com- 
puting fast Fourier transform. 

held by the processors in the mesh, one element per processor; specifically P, holds a, 
for k = 0, 1, . . ., n - 1. When the procedure terminates the output sequence, 
{b,, b,,. .., b,-,} is held by the processors such that P, holds b, for k = 0, 
1, ..., n -  1. 

procedure MESH FFT (A, B) 

Step 1: for k = 0 to n - 1 do in parallel 
Ck + ak 

end for. 

Step 2: for h = (log n)  - 1 downto 0 do 
for k = 0 to n - 1 do in parallel 

(2.1) p +  2h 
(2.2) 9 + ~ I P  
(2.3) z + wP 

(2.4) if (k  mod p) = (k  mod 2p) 
then (i) ck + ck + ck + , x z"~)""~ 

(ii) ck+, t ck - ck+ ,  x z r(k)modq 

end if 
end for 

end for. 

Step 3: for k = 0 to n - 1 do in parallel 
bk + cr(k) 

end for. 
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Note that part (ii) in step 2.4 used the old value of c, rather than the new value 
computed in part (i), that is, c ,  and c,,, may be thought of as being updated 
simultaneously. 

Analysis. The purpose of step 1 is to save the values of the input sequence; it 
is performed locally by each processor and takes constant time. Step 2 comprises both 
routing and computational operations, while step 3 consists of routing operations 
only. We analyze the time required by these two kinds of operations separately. 

Computational Operations. There are log n iterations in step 2. During each 
iteration, processor P, performs a fixed number of computations, the most time 
consuming of which is exponentiation, which (as shown in section 9.2.1) takes O(log n) 
time. The time required for computational operations is therefore O(log2n). 

Routing Operations. One time unit is required to communicate a datum from 
one processor to an immediate neighbor. In step 2.4, if k mod p = k mod 2p, then 
processor P, needs to receive c,+, from P, +, (in order to update c, and c, +,) and then 
return c,,, to P,,,. The time required by this routing depends on the value of h. 
When h = 0, p = 1 and communication is between processors on the same row or 
column whose indices differ by 1 (i.e., processors that are directly connected on the 
mesh): The routing takes one time unit. When h = 1, p = 2 and communication is 
between processors on the same row or column whose indices differ by 2: The routing 
takes two time units. Continuing with the same reasoning, when h = logn - 1, 
p = n/2 and communication is between processors on the same column whose indices 
differ by n/2: The routing takes n'I2/2 time units. In general, for p = 2h, h = 2s - 1, 
2s - 2,. . . ,0, the number of time units required for routing is 2hm0ds. The total number 
of time units required for routing in step 2 is therefore 

In step 3, c,(,, is to be routed from Pr(k) to Pk. The two processors that are the 
furthest apart are P2,-, (northeast corner) and P2,,,,- ,, (southwest corner). These two 
processes are separated by 2(2" 1) edges, that is, 2(2" - 1) time units are needed to 
communicate a datum from one of them to the other. This means that the routing 
operations performed in steps 2 and 3 require O(2") time units, that is, O(n'i2) time. 

For sufficiently large values of n, the time needed for routing dominates that 
consumed by computations. Therefore, the overall running time of procedure MESH 
FFT is t(n) = O(nli2). Since p(n) = n, c(n) = O(n3I2). It follows that the procedure 
provides a speedup of O(n'1210g n) with an efficiency of O(log r ~ l n ' ~ ~ ) .  

Compared with procedure SIMD DFT, procedure MESH FFT is slower and 
thus provides a smaller speedup with respect to procedure SEQUENTIAL FFT. On 
the other hand, it uses fewer processors and has a lower cost and a higher efficiency. 
Furthermore, the architecture for which it is designed uses constant-length wires and 
is modular and regular. 
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Example 9.2 

Let n = 4. The contents of the four processors after step 1 of procedure MESH FFT are 
shown in Fig. 9.qa). During the first iteration of step 2, h = 1. All processors 
simultaneously compute p = 2, q = 2, and z = w 2 .  The condition 

k mod p = k mod 2 p  

holds for k = 0, 1 but not for k = 2, 3. Therefore processor Po computes 

c, = c,, + (w2)Oc2 

and 

C 2  = C, - (w2)Oc2 
= a,  - a, ,  

while P, computes 

c ,  = c ,  + (w2)Oc, 
= a ,  + a, ,  

Figure 9.4 Computing fast Fourier trans- 
form using procedure MESH FFT. 
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and 
C3 = C 1  - (w2)Oc3 

= a ,  - a,. 

The contents of the four processors at the end of this iteration are shown in Fig. 9.4(b). 
During the second iteration of step 2, h = 0, p = 1, q = 4, and z = w. This time the 

condition kmod p = kmod 2p holds for k = 0, 2 but not for k = 1, 3. Therefore Po 
computes 

= a, + a,  + a ,  + a,, 

and 

C 1  = C ,  - wOcl 
= a,  + a ,  - (a ,  + a,), 

while P, computes 

c, = c ,  + w1c3 

= a, - a,  + w(a, - a,), 

and 

C3 = C ,  - w1c3 

= a, - a ,  - w(a, - a,). 

During step 3, b,  = c,, b ,  = c,, b, = c,, and b ,  = c,. Consequently, 

b,, = a, + a ,  + a, + a,, 

b ,  = a, + wa, - a, - wa, 

= a, + wa, + w2a, + w3a,, 

b3 = a, - wa, - a, + wa, 

= a,  + w3a1 + w6a, + w9a3, 
as required. 

9.4 P R O B L E M S  

9.1 Suppose that the DFT of several sequences of the form {a,, a,, . . . ,a,- ,} is to be 
computed directly from the definition, that is, as a matrix-by-vector product (see section 
9.2). One approach would be to pipeline the computation on a mesh with O(nZ) processors. 
Another is to take the input sequences n at a time and regard the computation as a matrix- 
by-matrix product; any of the solutions to this problem given in chapter 7 can then be 
used. Propose a precise algorithm for each of these two approaches and analyze the 
running time and number of processors used by each. 



Sec. 9.4 Problems 243 

9.2 Give the iterative sequential algorithm for computing the FFT upon which procedure 
MESH FFT is based, and prove that it is equivalent to the recursive procedure 
SEQUENTIAL FFT of section 9.1. 

93  Show how the algorithm derived in problem 9.2 can be implemented on a linear array of 
processors. 

9.4 A special-purpose parallel architecture for implementing the algorithm derived in problem 
9.2 may consist of log n rows of n/2 processors each. The processors in a row execute the 
computations required by one iteration of the algorithm's main loop (step 2 in procedure 
MESH FFT). This is illustrated for n = 8 in Fig. 9.5, where the two values in 
{c,, c , ,  . . . , c,- ,) updated by each processor are shown. Compare this implementation to 
the one in section 9.3 in terms of number of processors, running time, period, architecture 
regularity, and modularity. 

9 5  Routing operations take place in steps 2.4 and 3 of procedure MESH FFT. As stated in 
section 9.3, however, the procedure does not specify how this routing is to be performed. 
Give a formal description of the routing process. 

9.6 Modify procedure MESH FFT for the case where N processors are available to compute 
the FFT of the sequence {a , ,a , , .  . . , a,- ,) when N < n. 

9.7 The following sequential procedure is another iterative way of computing the FFT. 

c3 = a3 

c, = a, 

Figure 9.5 Architecture for problem 9.4. 
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procedure ITERATIVE FFT (A, B) 

Step 1: fork = 0 t o n  - 1 do 
Ck + ak 

end for. 

Step 2: for h = (log n) - 1 downto 0 do 
(2.1) p + 2h 
(2.2) 9 + nip 
(2.3) z + wql' 
(2.4) for k = 0 to n - 1 do 

if (k mod p) = ( k  mod 2p) 
then (i) ck t ck + ck +, 

(ii) ck + ( ~ k  - ck + k mad p 

end if 
end for 

end for. 
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Step 3: for k = 0 to n - 1 do 

br(k) Ck 

end for. 

Note that part (ii) of step 2.4 uses the old value of ck [not the value computed in (i)]. Show 
how this procedure can be implemented to run on a shuffle-exchange-connected SIMD 
computer using O(n) processors and O(log n) constant time iterations (not counting the 
time required to compute zkmdp during each iteration). 

9.8 An interconnection-network SIMD model known as the cube-connected cycles (CCC) 
network is described as follows. Consider a d-dimensional cube. Each of the 2d corners of 
the cube is a cycle of d processors. Each processor in a cycle is connected to a processor in 
a neighboring cycle in the same dimension. A CCC network with twenty-four processors is 
shown in Fig. 9.6. Note that Pij is connected to Pik when j and k differ only in their ith most 

COLUMN O 1 2 3 4 5 6 7 

ROW 

Figure 9.7 Butterfly network. 
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significant bit. Describe an algorithm for computing the FFT of an n-element input 
sequence on an n-processor CCC network. 

9.9 Show that the CCC network is essentially the network in problem 9.4 with wraparound 
connections (as defined in problem 7.7) between the first and last rows. 

9.10 An interconnection-network SIMD model known as the butterjy network consists of 
d + 1 rows and 2d columns, as shown in Fig. 9.7 for d = 3. Let P(i,j) represent the 
processor in row i and column j. For i > 0, P(i, j) is connected to P(i - 1, j) and P(i - 1, k) 
where the binary representations of k and j differ only in their ith most significant bit. 
Relate the butterfly network to the cube and cube-connected cycles networks. 

9.11 Show how the FFT of an input sequence of length n = 2d can be computed on a butterfly 
network. 

9.12 Repeat problem 9.11 for a d-dimensional cube interconnection network. 
9.13 Repeat problem 9.6 for the parallel algorithms derived in problems 9.7,9.8,9.11, and 9.12. 
9.14 Relate the process of computing the FFT to that of bitonic merging as discussed in 

problem 3.9. 
9.15 Two numbers x and n are given. It is required to raise x to the power n. Assuming that one 

is not allowed to use a concurrent-write shared-memory computer (SIMD or MIMD), 
how fast can this computation be performed in parallel? Compare the running time of 
your parallel algorithm with that of the sequential procedure COMPUTE W in section 
9.2.1. 

9.5 B l B L l O G R A P H l C A L  R E M A R K S  

Various descriptions of the sequential FFT and its applications can be found in [Burrus], 
[Cochran], [Cooley 11, [Cooley 23, [Cooley 33, [Horowitz], [Schonhage], and [Wilf]. Parallel 
algorithms for the direct computation of the DFT are described in [Ahmed], [Mead], and 
[Thompson 21. The mesh of trees architecture was originally proposed for the problem of 
sorting in [Muller] and then rediscovered in [Leighton] and [Nath]. Parallel algorithms for 
implementing the FFT on a mesh-connected SIMD computer appear in [Stevens], [Thom- 
pson 11, and [Thompson 21. 

Other architectures for implementing the FFT in parallel are the linear array ([Thom- 
pson 2]), the perfect shuffle ([Heller], [Pease 11, [Stone], and [Thompson I]), the cube 
([Pease 23 and [Quinn]), the butterfly ([Hwang], [Kronsjo], and [Ullman]), the tree 
([Ahmed]), and the cube-connected cycles ([Preparata]). It is shown in [Fishburn] and 
[Hwang] how to implement the parallel FFT algorithms for the perfect shuffle and butterfly 
networks, respectively, when the number of processors is smaller than the size of the input. 

Other parallel algorithms for Fourier transforms and related computations can be found 
in [Bergland], [Bhuyan], [Briggsl, [Brigham], [Chow], [Corinthios], [Cyre], [Dere], [Des- 
pain 11, [Despain 21, [Evans], [Flanders], [Hockney], [Jesshope], [Korn], [Kulkarni], [Lint], 
[Parker], [Ramamoorthy], [Redinbo], [Swarztrauber], [Temperton], [Wang], [Wold], and 
[Zhang]. The problem of parallel exponentiation is discussed in [Kung]. 
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Graph Theory 

10.1 INTRODUCTION 

In virtually all areas of computer science, graphs are used to organize data, to model 
algorithms, and generally as a powerful tool to represent computational concepts. 
Trees, in particular, are omnipresent. Many branches of engineering and science rely 
on graphs for representing a wide variety of objects from electrical circuits, chemical 
compounds, and crystals to genetical processes, sociological structures, and economic 
systems. The same is true for operations research, where graphs play a crucial role in 
modeling and solving numerous optimization problems such as scheduling, routing, 
transportation, and network flow problems. It is therefore important for these 
applications to develop efficient algorithms to manipulate graphs and answer 
questions about them. As a consequence, a large body of literature exists today on 
computational graph-theoretic problems and their solutions. 

This chapter is concerned with parallel graph algorithms. We begin in section 
10.2 by defining some terms from graph theory. Section 10.3-10.6 are devoted to the 
problems of computing the &connectivity matrix, the connected components, the 
shortest paths, and minimum spanning tree of a graph, respectively. 

10.2 DEFINITIONS 

A graph consists of a finite set of nodes and a finite set of edges connecting pairs of 
these nodes. A graph with six nodes and nine edges is shown in Fig. lO.l(a). Here the 
nodes (also called vertices) are labeled a, b, c, d, e, and J The edges are (a, b), (a, c), (b, c), 
(b, e), (c, d), (c, f), (d, e), (d, f), and (e, f). A graph is directed when its edges (also called 
arcs) have an orientation and thus provide a one-way connection as indicated by the 
arrow heads in Fig. 10.2(a). Here node a is connected to b, node b is connected to c and 
d, and node d is connected to c. The notation G = (q E) is used to represent a graph G 
whose vertex set is V and edge set is E. 

A matrix representation can be used for computer storage and manipulation of a 
graph. Let G be a graph whose vertex set is V = {v,, v,, . . . , v,- ,). This graph can be 
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(a) (b) 

Figure 10.1 Graph with six nodes and its adjacency matrix. 

Figure 10.2 Directed graph and its adjacency matrix 

uniquely represented by an n x n adjacency matrix A whose entries ai j ,  0 6 i, 
j < n - 1, are defined as follows: 

1 if vi is connected to v j ,  a . .  = 

The adjacency matrices for the graphs in Figs. lO.l(a) and 10.2(a) are shown in Figs. 
10.l(b) and 10.2(b), respectively, where v,  = a, v ,  = b, and so on. Note that since the 
graph in Fig. lO.l(a) is undirected, the matrix in Fig. lO.l(b) is symmetric. 

When each edge of a graph is associated with a real number, called its weight, the 
graph is said to be weighted. A weighted graph may be directed or undirected. Figure 
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Figure 103 Weighted graph and its weight matrix. 

10.3(a) shows an undirected weighted graph. The meaning of an edge's weight varies 
from one application to another; it may represent distance, cost, time, probability, and 
so on. A weight matrix W is used to represent a weighted graph, as shown in Fig. 
10.3(b). Here, entry wij of W represents the weight of edge (vi, vj). If vi and vj  are not 
connected by an edge, then wij may be equal to zero, or infinity or any appropriate 
value, according to the application. 

A path from an origin vertex vi to a destination vertex v j  in a graph G = (V ,  E), is a 
sequence of edges (vi, vk), (uk, v,), . . . , (urn, vj) from E, where no vertex appears more 
than once. In Fig. 10.1, for example, (a, c), (c, d), (d, e) is a path from a to e. A cycle is a 
path in which the origin and destination are the same. The sequence (a, b), (b, d), (d, a) 
in Fig. 10.2 forms a cycle. In an unweighted graph, the length of a path or cycle is equal 
to the number of edges forming it. 

A subgraph G' = (V', E') of a graph G = ( V ,  E) is a graph such that V' G V and 
E' c_ E, that is, a graph whose vertices and edges are in G. Figure 10.4 shows two 
subgraphs of the graph in Fig. 10.1. 

(a) (b) 

Figure 10.4 Two subgraphs of graph in Fig. 10.1. 
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10.3 COM PUTlNG THE CONN ECTlVlTY MATRIX 

The connectivity matrix of an n-node graph G is an n x n matrix C whose elements are 
defined as follows: 

1 if there is a path of length 0 or more from vj  to vk, 
c = { 

I k  0 otherwise, 

for j, k = 0, 1, . . . , n - 1 .  Note that a path of length 0 begins and ends at a vertex 
without using any edges, while a path of length 1 consists of one edge. The matrix C is 
also known as the rejlexive and transitive closure of G. Given the adjacency matrix A of 
a graph G, it is required to compute C. The approach that we take uses Boolean matrix 
multiplication, which differs from regular matrix multiplication in that 

(i) the matrices to be multiplied as well as the product matrix are all binary, that is, 
each of their entries is either 0 or 1; 

(ii) the Boolean (or logical) and operation replaces regular multiplication, that is, 0 
and 0 = 0,0  and 1 = 0, 1 and 0 = 0, and 1 and 1 = 1; and 

(iii) the Boolean (or logical) or operation replaces regular addition, that is, 0 or 0 = 0, 
Oor 1 = 1, 1 or 0 =  1, and 1 or 1 = 1. 

Thus if X, J: and Z are n x n Boolean matrices where Z is the Boolean product of X 
and I: then 

zi j  = (x i l  and y l j )  or ( x ,  and Y , ~ )  or..  . or (xi,, and ynj) for i, j = 0, 1, . . . , n - 1. 

The first step in the computation of the connectivity matrix C is to obtain the 
n x n matrix B from A as follows: 

bjk = ajk (for j # k) and bj j  = 1 

for j, k = 0, 1, . . . , n - 1 .  Matrix B therefore represents all paths in G of length less 
than 2; in other words 

1 if there is a path of length 0 or 1 from v j  to v,, 
b. = { 

I k  0 otherwise. 

Similarly, B2 (i.e., the Boolean product of B by itself) represents paths of length 2 or 
less, B4 represents paths of length 4 or less, and Bn represents paths of length n or less. 

We now observe that if there is a path from vi to v j ,  it cannot have length more 
than n - 1. Consequently, C = Bn- ' ,  that is, the connectivity matrix is obtained after 
rlog(n - 1)1 Boolean matrix multiplications. Note that when n - 1 is not a power of 2, 
C is obtained from Bm, where m = 2""g'"- I". This is correct since Bm = Bn- for 
m > n - 1 .  

In order to implement this algorithm in parallel, we can use any of the matrix 
multiplication algorithms described in chapter 7 adapted to perform Boolean matrix 
multiplication. In particular, procedure CUBE MATRIX MULTIPLICATION can 
be used. The resulting algorithm is given in what follows as procedure CUBE 
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CONNECTIVITY. The procedure takes the adjacency matrix A as input and returns 
the connectivity matrix C as output. It runs on a cube-connected SIMD computer 
with N = n3 processors PI, P,, . . . , P,. The processors can be thought of as being 
arranged in an n x n x n array pattern. In this array, P, occupies position (i, j, k), 
where r = in2 + jn + k and 0 < i ,  j, k < n - 1. It has three registers A(i, j, k), B(i, j, k), 
and C(i, j, k). Initially, the processors in positions (0, j, k), 0 < j, k < n - 1, contain the 
adjacency matrix, that is, A(0, j, k) = ajk. At the end of the computation, these 
processors contain the connectivity matrix, that is, C(0, j, k) = cjk, 0 < j, k < n - 1. 

procedure CUBE CONNECTIVITY (A, C) 

Step 1: {The diagonal elements of the adjacency matrix are made equal to 1) 
for j = 0 to n - 1 do in parallel 

4 0 ,  j, j) +- 1 
end for. 

Step 2: {The A registers are copied into the B registers} 
for j = 0 to n - 1 do in parallel 

for k = 0 to n - 1 do in parallel 
B(0, j, k )  + 40, j, k )  

end for 
end for. 

Step 3: {The connectivity matrix is obtained through repeated Boolean multiplication) 
for i = 1 to rlog(n - 1)1 do 

(3.1) CUBE MATRIX MULTIPLICATION (A, B, C) 
(3.2) for j = 0 to n - 1 do in parallel 

for k = 0 to n - 1 do in parallel 
(i) 4 0 ,  j, k) +- C(O, j, k) 
(ii) B(0, j, k) +- C(0, j, k) 

end for 
end for 

end for. 

Analysis. Steps 1,2, and 3.2 take constant time. In step 3.1 procedure CUBE 
MATRIX MULTIPLICATION requires O(1og n) time. This step is iterated logn 
times. It follows that the overall running time of this procedure is t(n) = O(log2n). 
Since p(n) = n3, c(n) = O(n3 log2n). 

Example 10.1 

Consider the adjacency matrix in Fig. 10.2(b). After steps 1 and 2 of procedure CUBE 
CONNECTIVITY, we have computed 
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The first iteration of step 3 produces 

while the second yields B4 = BZ. !J 

10.4 FINDING CONNECTED COMPONENTS 

An undirected graph is said to be connected if for every pair vi and v j  of its vertices 
there is a path from vi to v j .  A connected component of a graph G is a subgraph G' of G 
that is connected. The problem we consider in this section is the following. An 
undirected n-node graph G is given by its adjacency matrix, and it is required to 
decompose G into the smallest possible number of connected components. We can 
solve the problem by first computing the connectivity matrix C of G. Using C,  we can 
now construct an n x n matrix D whose entries are defined by 

, = { V k  i fc,*= 1, 
Jk 0 otherwise, 

for 0 < j, k < n - 1. In other words, row j of D contains the names of the vertices to 
which v j  is connected by a path, that is, those vertices in the same connected 
components as v j .  Finally, the graph G can be decomposed into the smallest number 
of connected components by assigning each vertex to a component as follows: v j  is 
assigned to component 1 if 1 is the smallest index for which djl # 0. 

A parallel implementation of this approach uses procedure CUBE 
CONNECTIVITY developed in the previous section to compute the connectivity 
matrix C. The algorithm is given in what follows as procedure CUBE 
COMPONENTS. The procedure runs on a cube-connected SIMD computer with 
N = n3 processors, each with three registers A, B, and C. The processors are arranged 
in an n x n x n array pattern as explained earlier. Initially, A(0, j, k) = ajk for 0 < j, 
k < n - 1, that is, the processors in positions (0, j, k) contain the adjacency matrix of 
G. When the procedure terminates, C(0, j, 0) contains the component number for 
vertex v j ,  where j = 0, 1,. . . , n - 1. 

procedure CUBE COMPONENTS (A, C )  

Step 1: {Compute the connectivity matrix) 
CUBE CONNECTIVITY (A ,  C).  

Step 2: {Construct the matrix D} 
for j = 0 to n - 1 do in parallel 

for k = 0 to n - 1 do in parallel 
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if C(0, j, k) = 1 then C(0, j, k) = v, 
end if 

end for 
end for. 

Step 3: {Assign a component number to each vertex) 
for j = 0 to n - 1 do in parallel 

(3.1) the n processors in row j (forming a log n-dimensional cube) find the smallest 
1 for which C(0, j, I )  # 0 

(3.2) C(0, j, 0) + 1 
end for. 

Analysis. As shown in the previous section, step 1 requires O(log2n) time. 
Steps 2 and 3.2 take constant time. From problem 7.23, we know that step 3.1 can be 
done in O(log n) time. The overall running time of procedure CUBE COMPONENTS 
is t(n) = O(log2n). Since p(n) = n3, c(n) = O(n310g2n). 

Example 10.2 

Consider the graph in Fig. 10.5(a) whose adjacency and connectivity matrices are given in 
Figs. 10.5(b) and (c), respectively. Matrix D is shown in Fig. 10.5(d). The component 
assignment is therefore: 

component 0: v,, v, ,  v,, v ,  

component 1: v , ,  v,, v ,  

component 2: v 2 ,  0,. 

10.5 ALL -PAIRS SHORTEST PATHS 

A directed and weighted graph G = (< E) is given, as shown, for example, in Fig. 10.6. 
For convenience, we shall refer in this section to the weight of edge (v,, vj) as its length. 

For every pair of vertices vi and u j  in I/: it is required to find the shortest path 
from vi to vj  along edges in E. Here the length of a path or cycle is the sum of the 
lengths of the edges forming it. In Fig. 10.6, the shortest path from v, to v, is along 
edges (v,, v2), (v2, u,), (v3, v6), (v,, v,), and (v,, 0,) and has length 6. 

Formally, the all-pairs shortest paths problem is stated as follows: An n-vertex 
graph G is given by its n x n weight matrix W; construct an n x n matrix D such that 
dij is the length of the shortest path from vi to oj in G for all i and j. We shall assume 
that W has positive, zero, or negative entries as long as there is no cycle of negative 
length in G. 

Let d b  denote the length of the shortest path from vi to v j  that goes through at 
most k - 1 intermediate vertices. Thus d i  = w,,, that is, the weight of the edge from oi 
to vi. In particular, if there is no edge from ui to vj, where i and j are distinct, d,ti = a. 
Also d: = 0. Given that G has no cycles of negative length, there is no advantage in 
visiting any vertex more than once in a shortest path from vi to v j  (even if our 
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(c) 
(dl 

Figure 10.5 Computing connected components of graph. 

definition of a path allowed for a vertex to appear more than once on a path). It 
follows that d i j  = dz- ' .  

In order to compute d$ for k > 1 we can use the fact that 

d$ = min {d,:" + d:,12}, 
1 

that is, d$ is equal to the smallest di i2 + dV2, over all values of I .  Therefore matrix D 
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Figure 
graph. 

Directed and weighted 

can be generated from Dl by computing D2,  D4, .  . . , Dn-I and then taking D = Dn-' .  
In order to obtain Dk from DkI2 by the preceding expression, we can use a special form 
of matrix multiplication in which the standard operations of matrix multiplication, 
that is, x and + are replaced by + and min, respectively. Hence if a matrix 
multiplication procedure is available, it can be modified to generate Dm-' from Dl .  
Exactly rlog(n - 1)1 such matrix products are required. 

The algorithm is implemented in parallel using any of the matrix multiplication 
procedures described in section 7.3 adapted to perform ( +, min) multiplication. Once 
again, as we did in the previous two sections, we shall invoke procedure CUBE 
MATRIX MULTIPLICATION. The resulting algorithm is given in what follows as 
procedure CUBE SHORTEST PATHS. The procedure runs on a cube-connected 
SIMD computer with N = n3 processors, each with three registers A, B, and C. As 
before, the processors can be regarded as being arranged in an n x n x n array 
pattern. Initially, A(0, j, k) = wjk for 0 < j, k < n - 1, that is, the processors in 
positions (0, j, k) contain the weight matrix of G. If v j  is not connected to o, or i f j  = k, 
then wjk = 0. When the procedure terminates, C(0, j, k) contains the length of the 
shortest path from oj to vk for 0 < j, k < n - 1. 

procedure CUBE SHORTEST PATHS (A,  C) 

Step 1: {Construct the matrix D' and store it in registers A and B )  
for j = 0 to n - 1 do in parallel 

for k = 0 to n - 1 do in parallel 
(1.1) if j # k and A(0, j ,  k) = 0 

then A(0, j ,  k)  + co 
end if 

(1.2) B(0, j, k)  + 4 0 ,  j, k) 
end for 

end for. 
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Step 2: {Construct the matrices D ~ ,  D4,. . . , Dn-I through repeated matrix multiplication} 
for i = 1 to rlog(n - 1)l do 

(2.1) CUBE MATRIX MULTIPLICATION (A, B, C) 
(2.2) for j = 0 to n - 1 do in parallel 

for k = 0 to n - 1 do in parallel 
(i) 4 0 ,  j, k) + C(O, j, k) 
(ii) B(O, j, k )  + C(O, j ,  k) 

end for 
end for 

end for. 

Analysis. Steps 1 and 2.2 take constant time. There are [log@ - 1)l 
iterations of step 2.1 each requiring O(1og n) time. The overall running time of 

Figure 10.7 Computing all-pairs shortest paths for graph in Fig. 10.6. 
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procedure CUBE SHORTEST PATHS is therefore t(n) = O(logzn). Since p(n) = n3, 
c(n) = O(n310g2n). 

Example 10.3 

Matrices Dl, D2, D4, and D8 for the graph in Fig. 10.6 are shown in Fig. 10.7. 

10.6 COMPUTING THE MIN IMUM SPANNING TREE 

A tree is a connected (undirected) graph with no cycles. Given an undirected and 
connected graph G = (q E), a spanning tree of G is a subgraph G' = (V', E') of G such 
that 

(i) G' is a tree, and 
(ii) V' = k! 

If the graph G is weighted, then a minimum spanning tree (MST) of G has the smallest 
edge-weight sum among all spanning trees of G. These definitions are illustrated in 
Fig. 10.8. Three spanning trees of the weighted graph in Fig. 10.8(a) are shown in Figs. 

(c )  (d) 

Figure 10.8 Weighted graph and three of its spanning trees. 
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10.8(b)-(d). The tree in Fig. 10.8(d) has minimum weight. Note that when all the edges 
of the graph have distinct weights, the MST is unique. 

If V = (v,, v , ,  . . . , v,_,), then the MST has n - 1 edges. These edges must be 
chosen among potentially n(n - 1)/2 candidates. This gives an Q(nz) lower bound on 
the number of operations required to compute the MST since each edge must be 
examined at least once. For convenience, we henceforth refer to the weight of edge 
(v,, vj) as the distance separating vi and u j  and denote it by dist(vi, vj). 

A sequential algorithm for computing the MST based on the greedy approach to 
problem solving proceeds in stages. Beginning with an arbitrarily chosen vertex, each 
stage adds one vertex and an associated edge to the tree. If vi is a vertex that is not yet 
in the tree, let c(vi) denote a vertex already in the tree that is closest to vi. The algorithm 
therefore consists of two steps: 

Step 1: Include vertex v, in the MST and let c(vi) = vo for i = 1, 2,. . . , n - 1. 
Step 2: This step is repeated as long as there are vertices not yet in the MST: 

(2.1) Include in the tree the closest vertex not yet in the tree; that is, for all vi 
not in the MST find the edge (vi, c(vi)) for which dist(vi, c(vi)) is smallest 
and add it to the tree. 

(2.2) For all ui not in the MST, update c(vi); that is, assuming that vj was the 
most recently added vertex to the tree, then c(vi) can be updated by 
determining the smaller of dist(vi, c(vi)) and dist(vi, vj). 

Step 1 requires n constant time operations. Step 2 is executed once for each of 
n - 1 vertices. If there are already k vertices in the tree, then steps 2.1 and 2.2 consist of 
n - k - 1 and n - k comparisons, respectively. Thus step 2, and hence the algorithm, 
require time proportional to 1;:: (n - k), which is O(nZ). This sequential running 
time is therefore optimal in view of the lower bound stated previously. 

We now show how this algorithm can be adapted to run in parallel on an 
EREW SM SIMD computer. The parallel implementation uses N processors Po, 
PI,. . . , P,- ,. The number of processors is independent of the number of vertices in G 
except that we assume 1 < N < n. As we did in earlier chapters, we find it convenient 
to write N = nl-", where 0 < x < 1. Each processor Pi is assigned a distinct 
subsequence 6 of V of size nx. In other words, Pi is "in charge" of the vertices in 6. 
Note that Pi needs only to store the indices of the first and last vertices in V;.. During 
the process of constructing the MST and for each vertex up in V;. that is not yet in the 
tree, Pi also keeps track of the closest vertex in the tree, denoted c(vp). 

The weight matrix W of G is stored in shared memory, where wij = dist(vi, vj) for 
i, j = 0, 1,. . . , n - 1. If i = j or if vi and vj  are not directly connected by an edge, then 
wij = co. The algorithm initially includes an arbitrary vertex in the tree. The 
computation of the MST then proceeds in n - 1 stages. During each stage, a new 
vertex and hence a new edge are added to the existing partial tree. This is done as 
follows. With all processors operating in parallel, each processor finds among its 
vertices not yet in the tree the vertex closest to (a vertex in) the tree. Among the nl-" 
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vertices thus found, the vertex closest to (a vertex in) the tree is found and added to the 
tree along with the associated edge. This vertex, call it v,, is now made known to all 
processors. The following step is then performed in parallel by all processors, each for 
its nx vertices: For each vertex up not yet in the tree, if dist(vp, v,) < dist(u,, c(v,)), then 
c(v,) is made equal to v,. 

The algorithm is given in what follows as procedure EREW MST. The 
procedure uses procedures BROADCAST and MINIMUM described in sections 
2.5.1 and 6.3.1, respectively. It produces an array TREE in shared memory containing 
the n - 1 edges of the MST. When two distances are equal, the procedure breaks the 
tie arbitrarily. 

procedure EREW MST (w TREE) 

Step 1: (1.1) Vertex v, in Vo is labeled as a vertex already in the tree 
(1.2) for i = 0 to N - 1 do in parallel 

for each vertex vj in & do 
c(vj) 00 

end for 
end for. 

Step 2: for i = 1 to n - 1 do 
(2.1) for j = 0 to N - 1 do in parallel 

(i) Pj  finds the smallest of the quantities dist(vp, c(vp)), where up is a vertex in 
5 that is not yet in the tree 

(ii) Let the smallest quantity found in (i) be dist(v,, v,): Pi delivers a triple 
(d j ,  a j ,  bj), where 

dj = dist(o,, v,), 
aj = v,, and 
bj = vt 

end for 
(2.2) Using procedure MINIMUM the smallest of the distances d j  and its 

associated vertices aj and b j ,  for 0 < j < N - 1, are found; let this triple be 
(d,, a,, b,), where a, is some vertex v, not in the tree and b, is some vertex v, 
already in the tree 

(2.3) Po assigns (oh, vk) to TREE(i), the ith entry of array TREE 
(2.4) Using BROADCAST, oh is made known to all N processors 
(2.5) for j = 0 to N - 1 do in parallel 

(i) if v, is in 5 
then Pj  labels v, as a vertex already in the tree 
end if 

(ii) for each vertex v, in 5 that is not yet in the tree do 
if dist(vp, v,) < dist(vp, c(vp)) 
then c(v,) + v, 
end if 

end for 
end for 

end for. 
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Analysis. Step 1.1 is done in constant time. Since each processor is in charge 
of nx vertices, step 1.2 requires nx assignments. Therefore step 1 runs in O(nx) time. In 
step 2.1, a processor finds the smallest of nx quantities (sequentially) using nx - 1 
comparisons. Procedures MINIMUM and BROADCAST both involve O(1og N) 
constant time operations. Since N = nl-*, steps 2.2 and 2.4 are done in O(1og n) time. 
Clearly steps 2.3 and 2.5 require constant time and O(nx) time, respectively. Hence 
each iteration of step 2 takes O(nx) time. Since this step is iterated n + 1 times, it is 
completed in'O(n'+X) time. Consequently, the overall running time of the procedure is 
O(nl+"). The procedure is therefore adaptive. Its cost is 

c(n) = p(n) x t(n) 
- -x - x O(n'+X) 

= O(n7. 

This means that the procedure is also cost optimal. Note that, for sufficiently large 
n,nX >lognfor  any xand N =n l - "  = n/nx < n/log n. The procedure's optimality is 
therefore limited to the range N < nllog n. 

Example 10.4 

Let G be a weighted nine-node graph whose weight matrix is given in Fig. 10.9. Also 
assume that an EREW SM SIMD computer with three processors is available. Thus 

Figure 10.9 Weight matrix for example 10.4. 
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Figure 10.10 Computing minimum spanning tree using procedure EREW MST. 
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3 = 9'-", that is, x = 0.5. Processors Po, P,, and P, are assigned sequences 
VO = {v,, v,, v,), Vl = {v,, v4, v,), and V2 = {v6, v,, v,). In step 1.1, v, is included in the 
tree and is assigned as the closest vertex in the tree to all remaining vertices. 

During the first iteration of step 2, Po determines that dist(u,, v,) < dist(v,, v,) and 
returns the triple (5, v,, v,). Similarly, P I  and P, return (I, v,, v,) and (5, v,, v,), 
respectively. Procedure MINIMUM is then used to determine oh = v3 and hence 
TREE(1) = (v,, v,). Now v, is made known to all processors using BROADCAST and P I  
labels it as a vertex in the tree. In step 2.5, Po keeps c(v,) and c(v,) equal to v,, P, updates 
c(v4) to v, but keeps c(v,) = v,, and P, keeps c(v6) = v, and c(v,) = 0 while updating 
c(v,) = v,. The process continues until the tree (v,, v,), (v,, v,), (v,, v,),  (v,, v,), (v,, v,), 
(v,, v4), (v6, u,), (u,, 0,) is generated. This is illustrated in Fig. 10.10. 

10.7 P R O B L E M S  

10.1 Show that procedure CUBE CONNECTIVITY is not cost optimal. Can the procedure's 
cost be reduced? 

10.2 Derive a parallel algorithm to compute the connectivity matrix of an n-vertex graph in 
O(n) time on an n x n mesh-connected SIMD computer. 

10.3 Consider a CRCW SM SIMD computer with n3 processors. Simultaneous write 
operations to the same memory location are allowed provided that all the values to be 
written are the same. Give an algorithm to compute the connectivity matrix of an n- 
vertex graph on this computer in O(log n) time. 

10.4 Let A be the adjacency matrix of an n-vertex graph G. Another way of computing the 
connectivity matrix C of G sequentially is given by the following algorithm. Initially C is 
set equal to A. 

Step 1: for i = 0 to n - 1 do 
Cii + 1 

end for. 

Step 2: for k = 0 to n - 1 do 
for i = 0 to n - 1 do 

fo r j=Oton -1do  
if cik = 1 and ckj = 1 
then cij + 1 
end if 

end for 
end for 

end for. 

Derive a parallel version of this algorithm for an interconnection-network SIMD 
computer. 

10.5 Show that if the connected components of a graph are given, then its connectivity matrix 
can be obtained trivially. 

10.6 Repeat problem 10.1 for procedure CUBE COMPONENTS. 
10.7 Another approach to computing the connected components of a graph is based on the 

idea of breadth-first search. Beginning with a vertex, its neighbors (i.e., all the vertices to 
which it is connected by an edge) are visited. The neighbors of each of these vertices are 



Sec. 10.7 Problems 267 

now visited, and the process continues until no unvisited neighbor is left. This gives one 
connected component. We now pick a vertex (outside of this component) and find its 
connected component. Continuing in this fashion, all the connected components can be 
found. Derive a parallel implementation of this approach. 

10.8 Consider the following approach to computing the connected components of a graph, 
which in a sense is symmetric to the one described in problem 10.7. Here vertices are 
collapsed instead of expanded. Pairs of vertices that are connected by an edge are 
combined into supervertices. Supervertices are now themselves combined into new (and 
larger) supervertices. The process continues until all the vertices in a given connected 
component have been combined into one supervertex. Derive a parallel implementation 
of this approach. 

10.9 Establish the validity of the relation 

dz = min {d;lZ + d y )  
I 

upon which procedure CUBE SHORTEST PATHS is based. 
10.10 Repeat problem 10.1 for procedure CUBE SHORTEST PATHS. 
10.11 Modify procedure CUBE SHORTEST PATHS to provide a list of the edges on the 

shortest path from vj to v, for all 0 < j, k < n - 1. 
10.12 Derive an algorithm for the model of computation in problem 10.3 to compute all-pairs 

shortest paths in O(1og n) time. 
10.13 Let W be the weight matrix of an n-vertex graph G, with wii = 0 and wij = co if there is no 

edge from vi to vj. Consider the following sequential method for computing the all-pairs 
shortest paths matrix D. Initially, D is set equal to W 

for k = 0 to n - 1 do 
for i = 0 to n - 1 do 

for j=Oton-  1do 
dij + min{dij, dit + d,) 

end for 
end for 

end for. 

Design a parallel implementation of this algorithm on an interconnection-network 
SIMD computer. 

10.14 Discuss the feasibility of the following approach to computing the MST of a weighted 
graph G: All spanning trees of G are examined and the one with minimum weight is 
selected. 

10.15 Procedure EREW MST is cost optimal when N < n og n Can this range of optimality 
be widened? C .  

10.16 Adapt procedure EREW MST to run on an interconnection-network SIMD computer. 
10.17 Derive a parallel algorithm based on the following approach to computing the MST of a 

weighted n-vertex graph G. 

Step 1: The edges of G are sorted in order of increasing weight. 
Step 2: Then - 1 edges with smallest weight that do not include a cycle are selected 
as the edges of the MST. 
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10.18 Consider the following approach to computing the MST of an n-vertex weighted graph 
G. 

Step 1: for i = 0 to  n - 1 do 
(1.1) Determine for vertex v, its closest neighbor vj; if two or more vertices are 

equidistant from vi, then v j  is the one with the smallest index 
(1.2) The edge (ui, vj) is designated as an edge of the MST 
end for. 

Step 2: (2.1) k + number of distinct edges designated in step 1 
(2.2) Each collection of vertices and edges selected in step 1 and forming a 

connected component is called a subtree of the MST. 

Step 3: while k < n - 1 do 
(3.1) Let TI, T,, . . . , T, be the distinct subtrees formed so far 
(3.2) for i = 1 t o  m do 

(i) Using an appropriate tie-breaking rule, select for an edge of 
smallest weight connecting a vertex in to a vertex in any other 
subtree T j  

(ii) This edge is designated as an MST edge and the two subtrees it 
connects are coalesced into one subtree 

end for 
(3.3) k +- k + number of distinct edges selected in 3.2 

end while. 

Applying this approach to the weight matrix in Fig. 10.9, we get the following edges after 
step 1: (u,, v3), (u,, u,), (v,, o,), (v4, 04, (u,, v,), (v7, v,), and (us, 0,). These form two 
subtrees TI = ((vo,v3), (us, uO)) and T2 = {(v,, v4), (v,, v,), (v4, v,), (v,, v,), (v7, 0,)). Since 
k = 7, we execute step 3 and find that the edge of smallest weight connecting TI to T, is 
(u,, v,). Design a parallel algorithm based on the preceding approach for the problem of 
determining the MST and analyze its performance. 

10.19 Assume that the n vertices of an undirected weighted graph G are points in k-dimensional 
Euclidean space, k > 2, with wij = Euclidean distance separating vi and uj. The graph is 
therefore fully defined by a list of n vertices, each vertex being represented by its k 
coordinates. This means that the weight matrix is not required as part of the input since 
wij can be computed when needed. Implement the MST algorithm in section 10.6 on a 
tree-connected SIMD computer with n leaves to run in O(n log n) time. 

10.20 Show that by reducing the number of leaves in the tree-connected SIMD computer of 
problem 10.19, a cost-optimal algorithm can be obtained. 

10.21 An undirected n-vertex graph is said to be sparse if it has m edges, where m is much 
smaller than the maximum possible n(n - 1)/2 edges. Design a CREW algorithm for 
computing the MST of a weighted sparse n-vertex graph in O(m log n/N) time using N 
processors, where N < log n, and the approach described in problem 10.17. 

10.22 Can the algorithm in problem 10.21 be modified to have a cost of O(m log m)? 
10.23 Repeat problem 10.21 for the approach in problem 10.18 with N < m/log n. 

10.24 Repeat problem 10.21 for the approach in section 10.6 with N log N < (m log n)/n. 
10.25 Can the algorithms in problems 10.23 and 10.24 be modified to have a cost of O(m)? 

10.26 Repeat problems 10.21-10.25 for the EREW SM SIMD model. 
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10.27 Let G = (v E) be a directed graph. A strong component of G is a subgraph G' = (V', E') of 
G such that there is a path from every vertex in V' to every other vertex in V' along edges 
in E'. Design a parallel algorithm for decomposing a given directed graph into the 
smallest possible number of strong components. 

10.28 A weak component of a directed graph G is a subgraph G' of G where every two vertices 
are joined by a path in which the direction of each edge is ignored. Design a parallel 
algorithm for decomposing a given directed graph into the smallest number of weak 
components. 

10.29 A biconnected component of an undirected graph G = (C: E) is a connected component 
G' = (Y', E') such that the deletion of any vertex of V' does not disconnect G'. Design a 
parallel algorithm for decomposing a given undirected graph into the smallest possible 
number of biconnected components. 

10.30 Let G be an undirected graph. A bridge in G is an edge whose removal divides one 
connected component into two. Design a parallel algorithm for finding the bridges of a 
given graph. 

10.31 An articulation point of a connected undirected graph G is a vertex whose removal splits 
G into two or more connected components. Design a parallel algorithm to determine all 
the articulation points of a given graph. 

10.32 Consider the following variant of the all-pairs shortest paths problem: Given a specified 
vertex in a weighted directed graph, it is required to find the shortest path from that 
vertex to every other vertex in the graph. This is known as the single-source shortest path 
problem. Design a parallel algorithm for this problem and analyze its running time and 
cost. 

10.33 Let G be an unweighted undirected graph. It is desired to obtain a spanning tree of G. Use 
the parallel algorithm designed in problem 10.32 to solve this problem. 

10.34 Another variant of the all-pairs shortest path problem is the all-pairs longest path 
problem. Derive a parallel algorithm for this problem. 

10.35 Let G be a directed graph with no cycles. It is required to sort the vertices of G into a 
sequence v,, v , ,  . . . , v, such that (v i ,  v j )  may be an arc of G only if i < j. Suggest two 
parallel solutions to this problem known as topological sorting. One solution may be 
based on the reflexive and transitive closure of G, the other on the matrix of all-pairs 
shortest paths. 

10.36 The diameter of a weighted graph G is the length of the shortest path separating the 
farthest two vertices of G. The center of G is the vertex for which the length of the shortest 
path to the farthest vertex is smallest. This distance is called the radius of G. Show how 
the diameter, center, and radius of an n-vertex weighted graph can be obtained in 
O(logzn) time on a cube-connected computer with n3 processors. 

10.37 The median of a weighted graph is the vertex for which the sum of the shortest paths to all 
other vertices is smallest. Derive a parallel algorithm to find the median. 

10.38 Let G be a directed and weighted graph with no cycles. We assume that wi j  = 0 in the 
weight matrix W if the arc (v i ,  vj) is not present. The gain on a path from v, to u, is the 
product of the arc weights on that path. A maximum gain matrix H is such that hij equals 
the maximum gain for every i and j. Derive a parallel algorithm for computing the matrix 
H from W 

10.39 Let G be an n-vertex undirected graph, and define the length of a cycle as the number of 
edges it contains (as in section 10.2). 
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(i) Derive a parallel algorithm for determining the shortest cycle in O(n) time on an 
n x n mesh-connected SIMD computer. 

(ii) Repeat part (i) for an undirected graph. 

10.40 The cyclic index of a directed graph G is the greatest common divisor of the lengths of all 
the cycles in G. Design a parallel algorithm for computing the cyclic index. 

10.41 An undirected graph is bipartite if and only if it has no cycle of odd length. Show that it is 
possible to determine whether an n-vertex graph is bipartite in O(n) time on an n x n 
mesh-connected SIMD computer. 

10.42 Let G = ( v  E) be a connected undirected graph. Further, let H = (VH, E,) and 
K = (V,, E,) be two subgraphs of G.  The symmetric diference of H and K, written 
H @ K, is the subgraph G' = (V', E') of G where E' is the set of edges in E,  u E ,  but not 
in E ,  n E,, and V' is the set of vertices connected by edges in E'. A set of fundamental 
cycles of G is a collection F of cycles of G with the property that any cycle C of G can be 
written as C = C ,  Q C, @ . . . @ C, for some subcollection of cycles C,, C,, . . . , C, of F. 
Design a CREW algorithm for determining the set of fundamental cycles of an n-vertex 
graph in O(logzn) time using O(n3) processors. 

10.43 A matching in an undirected graph G = ( v  E) is a subset M of E such that no two edges in 
M share a vertex. A matching has maximum cardinality if no other matching in G 
contains more edges. Design a parallel algorithm for finding a maximum-cardinality 
matching. 

10.44 Repeat problem 10.43 for the case where G is bipartite. 
10.45 A matching of G = ( v  E) is said to be perfect if it includes all the vertices in i! Assume 

that G is a 2n-vertex graph that is weighted and complete (i.e., every two vertices are 
connected by an edge). Design a parallel algorithm for finding a perfect matching of G 
that has minimum weight. 

10.46 Let G be a directed and weighted graph where each edge weight is positive. Two vertices 
of G are distinguished as the source and the sink. Each edge may be thought of as a 
conduit for fluid, and the edge's weight determines how much fluid it can carry. The 
networkflow problem asks for the maximum quantity of fluid that could flow from source 
to sink. Design a parallel algorithm for this problem. 

10.47 The dead-end path problem is defined as follows: Given a graph G = (x E) and a 
distinguished vertex v, find a path starting from v that cannot be extended without going 
to a vertex that is already on the path. A greedy sequential algorithm for this problem is 
to start at v and always go to the lowest numbered unvisited neighbor. Can this 
algorithm be implemented efficiently in parallel? Is there a fast parallel algorithm that 
computes the same dead-end path as the sequential algorithm? 

10.48 Let G be a directed graph with no cycles. We say that G is layered if its nodes are laid out 
in levels, its edges going only between consecutive layers. The maximal set of disjoint paths 
problem is to find the largest set possible of paths from the first level to the last with no 
vertices in common. Describe a greedy algorithm for this problem and determine 
whether it can be implemented efficiently in parallel. 

10.49 A Hamilton cycle of an undirected graph G = ( v  E) is a cycle that includes all the 
elements of i! Design a parallel algorithm for determining whether a given graph has a 
Hamilton cycle. 

10.50 An undirected and weighted graph G is given where all the edge weights are positive 
integers. A positive integer B is also given. It is required to determine whether G possesses 
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a Hamilton cycle whose weight is no larger than B. This is known as the traveling 
salesman problem, where the vertices represent cities and the edge weights distances 
separating them. Design a parallel algorithm for solving this problem. 

10.8 BIBL IOGRAPHICAL  R E M A R K S  

Descriptions of many sequential graph algorithms can be found in [Christofides], [Deo 11, 
[Even], and [Papadimitriou]. Graph-theoretic algorithms for parallel computers are surveyed 
in [Quinn 21. Textbook treatment of parallel graph algorithms is provided in [Kronsjo], 
[Quinn 11, and [Ullman]. 

Parallel algorithms for computing the connectivity matrix are given in [Chin], [Guibas], 
[Hirschberg 11, [Hirschberg 21, [KuQra], [Levitt], and [Van Scoy]. In particular, it is shown 
in [Hirschberg 11 how an n3-processor CRCW SM SIMD computer can be used to compute 
the reflexive and transitive closure of an n-vertex graph in O(1og n) time. 

Various approaches to solving the connected-components problem in parallel are 
proposed in [Chin], [Hirschberg 11, [Hirschberg 23, [Hochschild 11, [Hochschild 23, 
[KuEera], [Lakhani], [Nassimi], ma th  11, [Nath 21, [Reghbati], and [Shiloach 11. Notably, it 
is shown in [Chin] how a CREW SM SIMD computer with O(n2/log2n) processors can be used 
to find the connected components of an n-vertex graph in O(log2n) time. 

Parallel algorithms for solving the all-pairs shortest path problem on a number of 
different models of computation are described in [Dekel 11, [Deo 21, and [Hirschberg 11. The 
algorithm in [Hirschberg 11 uses an n4-processor CRCW SM SIMD computer and runs in 
O(log n) time. The idea of procedure CUBE SHORTEST PATHS originated in [Dekel 11. 

Several approaches for computing the minimum spanning tree in parallel are described in 
[Atallah], [Bentley], [Chin], [Deo 31, [Doshi], [Gallager], [Hirschberg 11, [Hirschberg 31, 
[Hochschild 11, [Hochschild2], [KuEera], [Kwan], [Nath 11, [Nath 21, [Santoro], 
[Savage 11, and [Savage 21. In particular, it is shown in [Doshi] how the approach in problem 
10.18 can be used to compute the MST of an n-vertex weighted graph on a linear array of N 
processors, where 1 < N < n. The algorithm runs in O(n2/N) time for an optimal cost of O(n2). 
This algorithm is superior to procedure EREW MST in two respects: 

1. It achieves the same performance on a much weaker model of computation. 
2. It has a wider range of optimality. 

Procedure EREW MST is from [Akl], where a number of references to parallel MST 
algorithms are provided. 

Other graph-theoretic problems that were solved in parallel include finding bicon- 
nected components ([Hirschberg 11, [Hochschild 11, [Hochschild 23, and [Savage 2]), tri- 
connected components ([Ja'Jaq), strongly connected components ([Hochschild 23, [Kosaraju], 
and [Levitt]), and weakly connected components ([Chin]); single-source shortest paths 
([Chandy], [Crane], [Deo 21, and [Mateti]); all-pairs longest paths ([Hirschberg 11); topolog- 
ical sorting ([Er], [Hirschberg 11, and [Kukra]); constructing spanning trees and forests 
([Bhatt], [Chin], [Dekell], and [Levitt]); contracting trees ([Leiserson]); determining the 
radius, diameter, center, median, articulation points, and bridges ([Atallah], [Dekel 11, 
[Doshi], and [Savage 23); computing maximum gains ([Dekel 11); searching and traversing 
graphs ([Chang], [Kalra], [Kosaraju], [Reghbati], and [Wyllie]); testing planarity 
([Hochschild 23, and [Ja'Ja']); computing matchings ([Dekel2], and [Hembold]); finding the 
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cyclic index ([Atallah]), fundamental cycles ([Levitt] and Savage 2]), cycles of shortest length 
([Atallah]), and maximal sets of disjoint paths ([Anderson]); computing flows in networks 
([Chen I], [Chen 21, [Goldberg], and [Shiloach 21); and testing whether a graph is bipartite 
([Atallah]). 

The cellular array model of parallel computation was first proposed in [Kautz] and then 
used in [Levitt] for solving graph-theoretic problems. It consists of a large number of simple 
processors interconnected to  form a two-dimensional array. The concept of a cellular array was 
later rediscovered and renamed systolic array in [Foster]. 

The dead-end path problem and the maximal set of disjoint paths problem belong to the 
class of P-complete problems. These problems are believed not to have fast parallel solutions. 
Furthermore, if a fast parallel algorithm is found for one of these problems, then all the 
problems in the class are amenable to  fast parallel solution ([Anderson] and [Cook]). Note 
that, according to this theory, a parallel algorithm is fast if it uses O(nC) processors for some 
c >, 0 and runs in O(logkn) time for some constant k >, 0. The class of problems solved by such 
fast algorithms is nicknamed in the literature as NC ([Cook]). 

Let n be a problem of size n, where n may be the number of vertices in a graph, rows in a 
matrix, or elements of a sequence. An algorithm for solving n is said to be polynomial if its 
running time is of O(nk) for some constant k > 0. An algorithm is exponential if it runs in O(cn) 
for some constant c 2 2. The Hamilton cycle and traveling salesman problems belong to the 
class of NP-complete problems. A problem x in this class has the following characteristics: 

(i) no sequential algorithm with polynomial running time is known for solving n and, 
furthermore, it is not known whether such an algorithm exists; 

(ii) all known sequential algorithms for solving n have exponential running time and it is not 
known whether this is optimal; 

(iii) if a solution to a is given, it can be verified in polynomial time; and 
(iv) if a sequential polynomial time algorithm is found for solving TC, it can be used to solve all 

NP-complete problems in polynomial time. 

A good reference to NP-complete problems is [Garey]. Parallel algorithms for NP-complete 
problems help only a little in mitigating the exponential growth in the running time. To have a 
truly fast parallel algorithm that is based on our current state of knowledge, one needs an 
exponential number of processors. This is prohibitive, to say the least, and we must await a 
better understanding of the nature of NP-complete problems before embarking in the design of 
parallel algorithms for large-problem instances. Parallel algorithms for NP-complete graph 
problems are described in [Mead] and [Mohan]. 
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Computational Geometry 

11.1 INTRODUCTION 

Computational geometry is a branch of computer sicence concerned with the study of 
efficient algorithms for problems involving geometric objects. Examples of such 
problems include: 

1. Inclusion problems: locating a point in a planar subdivision, reporting which 
points among a given set are contained in a specified domain, and so on. 

2. Intersection problems: finding intersections of line segments, polygons, circles, 
rectangles, polyhedra, half spaces, and so on. 

3. Proximity problems: determining the closest pair among a set of given points or 
among the vertices of a polygon; computing the smallest distance from one set of 
points to another; and so on. 

4. Construction problems: identifying the convex hull of a polygon, obtaining the 
smallest box that includes a set of points, and so on. 

These problems arise naturally, not only in the obvious application areas such as 
image analysis, pattern recognition, pattern classification, computer graphics, 
computer-aided design, and robotics, but also in statistics, operations research, and 
database search. 

There is a wealth of sequential and parallel algorithms for computational 
geometry developed mainly over the last fifteen years. The overwhelming majority of 
these algorithms address well-understood problems in the Euclidean plane, that is, 
problems involving points, lines, polygons, and circles. Problems in higher dimensions 
are largely unexplored and remain as the major challenge for researchers in the field. 

In this chapter we describe a number of parallel algorithms for fundamental 
problems in computational geometry. With only one exception, all our algorithms are 
for the two-dimensional case. In section 11.2 we begin by examining the problem of 
how to determine whether a point falls inside a polygon. Our solution is then used to 
address the more general problem of locating a point in a planar subdivision. Section 
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11.3 deals with the problem of finding out whether two polygons intersect. In section 
11.4 we show how to identify the closest pair among a given set of points in d 
dimensions, where d 2 1. Finally, section 11.5 is devoted to the problem of computing 
the convex hull of a finite set of points in the plane. 

For each problem addressed in this chapter, a parallel algorithm is described 
that runs on an interconnection-network SIMD computer where the processors are 
linked to form a mesh of trees. This architecture is particularly suited to exhibit the 
parallelism inherent in geometric problems. Since the mesh of trees solutions use the 
same basic ideas, we present only the first of these in detail and give high-level 
descriptions of the remaining three. Our solutions are generally simple and fast. 
Perhaps their only disadvantage is the relatively large number of processors they 
require. Therefore, we show in section 11.5 that a more powerful model, such as the 
shared-memory SIMD computer, may be needed to achieve cost optimality and a 
sublinear running time while using only a sublinear number of processors. 

11.2 AN INCLUSION PROBLEM 

A graph is said to be planar if it can be drawn in the plane so that no two of its edges 
intersect. If the edges are drawn as straight-line segments, the resulting drawing of the 
graph is called a planar subdivision. As shown in Fig. 11.1, a planar subdivision 
consists of a collection of adjacent polygons. These polygons are said to be simple, 
meaning that no two edges of a polygon intersect, except at a vertex. The problem we 

8 
Figure 11.1 Point inside planar subdivision. 
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address in this section is the following: Given a planar subdivision and a point p, 
determine which polygon (if any) contains p; otherwise report that p falls outside the 
planar subdivision. A situation in which this problem needs to be solved is pattern 
recognition, where it is required to assign a given object to one of several classes. For 
example, a robot may wish to determine whether an object it is facing is a chair, a 
person, a dog, or a plant. Each class is described by a region in some space, and the 
points inside the region represent objects in that class. Points are given by their 
coordinates in space, each coordinate being the value of an object feature. In order to 
classify a new object, it suffices to identify the region in which the point representing 
the object falls. In Fig. 11.1 the space is two-dimensional and the regions are polygons. 

In order to solve the point location problem stated in the preceding, we begin by 
considering the more fundamental question: Given a simple polygon Q with n 2 3 
edges and a point p, does p fall inside Q? 

11.2.1 Point in Polygon 

The basic idea behind our first parallel algorithm is illustrated in Fig. 11.2. Assume 
that a vertical line is drawn through point p. Next, the intersection points between this 
line and the edges of Q are found. If the number of such intersection points above p is 
odd, then p is inside Q; otherwise it is outside Q. This test can be performed 

Figure 11.2 Test for point inclusion 
inside polygon. 
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sequentially in O(n) steps for a polygon with n edges, and this is clearly optimal since 
R(n) steps are needed to read the input. 

We can implement this test on a tree-connected SIMD computer as follows. 
Since Q has n edges, the tree consists of n processors PI, P,, . . . , P,. The processors are 
numbered beginning from the root and proceeding, level by level, from left to right. 
Thus the root is PI, its children P, and P,, and so on. Each processor stores an edge of 
Q given by the Cartesian coordinates of its two endpoints. Initially the root reads the x 
and y coordinates of p, namely, (x,, y,), and broadcasts them to all the other 
processors. When a processor Pj receives the coordinates of p, it determines whether 

(i) a vertical line through p (call it L,) intersects the edge of Q it stores (call it ej) and 
(ii) the intersection point is located above p. 

If these two conditions hold, the processor produces a 1 as output. Otherwise it 
produces a 0. The processors' outputs are now added, and if the sum is odd, p is 
declared to be inside Q. The algorithm is given in what follows as procedure POINT 
IN POLYGON. It is assumed that each processor Pj already contains ej. Two 
additional variables aj  and sj in P j  serve in computing the total number of 
intersections above p. At the end of the procedure P, produces an answer equal to 1 if 
p is inside Q and equal to 0 otherwise. 

procedure POINT IN POLYGON (x,, y,, answer) 

Step 1:  (1.1) Pl  reads (x,, y,) 
(1.2) if L, intersects el  above p 

then s ,  + 1 
else s ,  + 0 
end if 

(1.3) P 1  sends (x,, y,, s l )  to P2 and (x,, y,, 0 )  to P,.  

Step 2: for i = log(n + 1) - 2 downto 1 do 
for j = 2log(n+l)-1-i to 2log(n+l)-i - 1 do in parallel 

(2.1) P j  receives (x,, y,, s) from its parent 
(2.2) if L,  intersects e j  above p 

then sj + 1 
else sj t 0 
end if 

(2.3) P j  sends (x,, y,, s j  + s)  to PZ j  and (x,, y,, 0 )  to PZ j+  
end for 

end for. 

Step 3: for j = 210g'"+ ' to 210g(n+1) - 1 do in parallel 
(3.1) P j  receives (x,, y,, s) from its parent 
(3.2) if L,  intersects e j  above p 

then a j + s  + 1 
else a j  +- s 
end if 

end for. 
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Step 4: for i = 1 to log(n + 1)  - 1  do 
for j = 2 1 o g ( n + l ) - I - i  to 2 1 o g ( n + l ) - i  - 1  d o in parallel 

aj a,j + a,j+ 1 

end for 
end for. 

Step 5: if a, is odd 
then answer + 1 
else answer +- 0 
end if. 

Analysis. The procedure consists of two stages: the descent stage (steps 1 -3), 
where all the intersection tests are performed, and the ascent stage (steps 4 and 5), 
where the total number of intersections above p is computed. It takes a constant 
number of operations to test whether a straight line and a straight-line segment 
intersect. Given that the tree has n processors, both the descent and ascent stages 
take O(1og n) time. Since p(n) = n, c(n) = O(n1og n), which is not optimal. 

Example 11.1 

The edges of the polygon in Fig. 1 1 . 2  are stored in a tree-connected computer with seven 
processors, as shown in Fig. 11.3. For the input point p of Fig. 1 1 . 2 ,  only processors PI, 
P,, and P, produce a 1  as output, and the root declares p to be inside Q. 

Three points are worth noting: 

1. Several points p can be tested for inclusion in a polygon Q by pipelining 
procedure POINT IN POLYGON. Indeed, once a processor has performed its 
test (and sent to its left child the partial total of the number of intersections above p) 
it is free to receive the next point. It is with this pipelining in mind that the 
procedure was designed, so that partial totals never stay in a given processor 

Figure 11.3 Testing point inclusion using procedure POINT IN POLYGON. 
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but are constantly moving either downward or upward. The period is therefore 
constant. 

2. The procedure can be easily modified to handle the case where there are more 
(or fewer) processors than polygon edges. 

3. It is possible to modify the procedure to achieve optimal cost. The idea is to use 
n/log n processors each storing log n edges of Q. It takes O(log(n/log n)) time to 
broadcast the coordinates of p to all processors. Each processor now performs 
the intersection test for all logn edges it stores and adds up the number of 
intersections above p in OOog n) time. The total number of intersections above p 
is computed in O(log(nl1ogn)) time. The overall running time is O(1ogn) as 
before. However, the period is no longer constant. 

11.2.2 Point in Planar Subdivision 

We are now ready to address the more general problem of locating a point in a planar 
subdivision. Our parallel algorithm uses the mesh of trees architecture (introduced in 
problem 4.2 and first used in section 9.2.2). Assume that the planar subdivision 
consists of m polygons, each with at most n edges. We use an m x n mesh. Each of the 
m rows, numbered 1, . . . , m, is a binary tree of processors storing the edges of one 
polygon, one edge per processor. Each of the n columns, numbered 1, . . . , n, is also a 
binary tree (although in this context we shall only make use of the tree in column 1). 

The idea of the algorithm is to feed the coordinates of the query point p to the 
root processor of every row tree. This can be done using the tree connections in 
column 1. Procedure POINT IN POLYGON is now performed simultaneously by all 
rows. The procedure is slightly modified so that 

(i) when it starts, the root processor in every row already contains (x,, y,), and 
(ii) when it terminates, the root processor in row i produces the pair (1, i) as output 

if p is inside the associated polygon; otherwise it produces (0, i). 

By using the tree connections in column 1 and the logical or operation on the first 
components of the output pairs, either 

(i) the (unique) polygon containing p can be identified or 
(ii) the fact that p is not inside any of the polygons can be established. 

The algorithm is given in what follows as procedure POINT IN SUBDIVISION. The 
processor in row i and column j is denoted P(i, j ) .  The output pair for root processor 
P(i, 1) is denoted (a,, b,), where ai is either 0 or 1 and bi is a row number. 
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procedure POINT IN SUBDIVISION (x , ,  y,, a , ,  b , )  

Step 1: P ( 1 , l )  reads (x,, y,). 

Step 2: for i = log(m + 1 )  - 1 downto 1 do 
for j  = 21og(m+l)-l-i t o 2'"8("+ I ) - '  - 1 do in parallel 

P( j ,  1 )  sends (x,, y,) to P(2j, 1 )  and P(2j + 1 , l )  
end for 

end for. 

Step 3: for i  = 1 to m do in parallel 
Processors P(i, 1 )  to P(i, n) execute POINT IN POLYGON 

end for. 

Step 4: for i = 1 to log(m + 1 )  - 1 do 
for j  = 21og(m+l)-1-i to 210g(m+l)-i - 1 d o in parallel 

if aZj  = 1 
then ( a j ,  b j )  ( az j ,  hj) 
else if a,,+ , = 1 

then ( a j ,  bj) (a2,+ 1 ,  b2j+ 1 )  

end if 
end if 

end for 
end for. 

Step 5: P ( 1 , l )  produces (a , ,  b , )  as output. 

Note that when the procedure terminates, if a, = 1, then this means that the polygon 
numbered b, contains p. Otherwise a, = 0, in which case p is outside of the planar 
subdivision. 

Example 11.2 

The subdivision in Fig. 11.1 requires a 7 x 6 mesh of trees, as shown in Fig. 11.4 (where 
the tree connections are omitted for simplicity). When the coordinates of point p in Fig. 
11.1 are given as input to the mesh of trees, row 3  produces (1 ,3 )  while all other rows 
produce (0, i), i # 3. Thus ( 1 ,  3) is the mesh's output. 

Analysis. Steps 1 and 5 run in constant time. Steps 2 and 3 take O(1og m) and 
O(1og n) time, respectively. Step 4 also requires O(1og m) time. Assuming that m is O(n), 
t(n) = O(1og n). Since p(n) = n2, the procedure's cost is c(n) = O(n2 log n). This cost is 
not optimal given that a sequential algorithm that applies the O(n) polygon inclusion 
test to each of the m polygons runs in 0(n2) time. 

If k points p are queued for processing, they can be pipelined and the procedure 
would require O(k + logn) time to answer all k queries. Finally, using the same 
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Figure 11.4 Testing point inclusion using procedure POINT IN SUBDIVISION. 

approach as with procedure POINT IN POLYGON, procedure POINT IN 
SUBDIVISION can be made to have a cost of O(n2). This is illustrated in the next 
section. 

11.3 A N  INTERSECTION PROBLEM 

In many applications, it is required to determine whether a set of geometric objects 
intersect. Thus, for example, 

(i) in pattern classiJication it is necessary to determine whether different regions in 
space representing different classes have common subregions; 
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(ii) in integrated circuit design it is important to avoid crossing wires and 
overlapping components; and 

(iii) in computer graphics it is required to remove hidden lines and hidden surfaces 
from two-dimensional representations of three-dimensional scenes. 

In this section we examine one such intersection problem. 
Two polygons Q and R are said to intersect if an edge of Q crosses an edge of R. 

Note that the two polygons need not be simple, that is, two or more edges of Q (or two 
or more edges of R) may cross. Figure 11.5 illustrates two intersecting polygons. Let Q 
and R be two polygons, each given by a list of its edges. It is required to determine 
whether Q and R intersect. Our parallel solution to this problem is based on a 
straightforward approach: For each edge of Q we determine whether it crosses one of 
the edges of R. Assume that Q and R have m and n edges, respectively, each being 
given by the coordinates of its two endpoints. We use a mesh of trees with m rows and 
n/log n columns. Each processor is loaded with log n edges of R so that 

(i) the set of edges contained in a row is the set of edges of R and 
(ii) the processors in each column contain the same subset of logn edges of R. 

Loading the processors in each column is done by pipelining the log n edges assigned 
to that column through its root processor. When a processor receives an edge, it stores 
it in its own memory and sends a copy of it to each of its two children using the tree 
connections in that column. It therefore takes O(1og m) + O(1og n) time to load a 
column. If all columns are loaded simultaneously, then this would also be the time 
taken to load the entire mesh. In addition, each processor receives an edge of Q so that 

(i) the set of edges contained in a column is the set of edges of Q and 
(ii) the processors in each row contain the same edge of Q. 

Figure 11.5 Two intersecting polygons 
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The edges of Q are fed into the mesh, one edge per row, through the root processor in 
each row. When a processor in a given row receives the edge assigned to that row, it 
stores it in its own memory and sends a copy of it to each of its two children, using the 
tree connections in that row. It takes log(nllog n) steps to load a row. If all rows are 
loaded simultaneously, then this would also be the time taken to load the entire mesh. 

Now each processor tests whether the edge of Q assigned to it crosses one of the 
log n edges of R it also contains. If this is the case, it produces a 1 as output; otherwise 
it produces a 0. With all processors operating simultaneously, this step takes O(log n) 
time. 

The outputs in each row are combined level by level, beginning from the leaves 
and all the way to the row's root processor. This is accomplished by requiring each 
processor to compute the logical or of three quantities: the two inputs received from its 
children and its own output. The processor then sends the result of this operation to 
its parent. After log(n/logn) steps the root processor in each row would have 
computed the logical or of all outputs in that row, which it retains. These processors 
combine their results in the same way using the tree connections in column 1. This 
requires another log m steps. 

Assuming that m < n, the overall running time of the algorithm is 

t(n) = O(log n). 

Since An) = O(n2/log n), the algorithm's cost is O(n2). The only known lower bound on 
the number of steps required to solve this problem is the trivial one of R(n) operations 
performed while reading the input. Furthermore, it is not known whether a sequential 
algorithm exists with a smaller than quadratic running time. The algorithm's cost 
optimality is therefore an open question. 

11.4 A PROXIMITY PROBLEM 

Proximity problems arise in many applications where physical or mathematical 
objects are represented as points in space. Examples include the following: 

(i) clustering: a number of entities are grouped together if they are sufficiently close 
to one another; 

(ii) classijication: a new pattern to be classified is assigned to the class of its closest 
(classified) neighbor; and 

(iii) air-traflc control: the two airplanes that are closest are the two most in danger. 

One such proximity problem, that of finding the closest pair among a set of points, is 
addressed in this section. 

Let S be a set of n points in d-dimensional space, where each point is given by its 
d coordinates (x,, x,, . . . , xd). The distance between two points (x,, x,, . . . , xd) and (xi, 
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x;, . . . , xi) of S is defined as 
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where q is a positive integer. The value of q depends on the application. Thus, q = 2 
corresponds to the usual Euclidean distance. For a given q, it is required to determine 
the closest pair of points in S. 

A parallel solution to this problem can be modeled after the algorithm in the 
previous section. We use a mesh of trees with nllogn columns and n rows. Each 
processor holds the coordinates of logn points. All the processors in a column hold 
the same logn points. The n points held by a row of processors are equal to the set S. 
In addition, the coordinates of the ith point of S, call it pi, are fed to the processors in 
the ith row. A processor in the ith row computes the distance between pi and each of 
the log n points it was first assigned. It then reports the closest pair and the distance 
separating them. By using the row trees and then the tree in column 1, the overall 
closest pair of points are finally determined. The algorithm runs in O(log n) time. Since 
p(n) = n2/logn, c(n) = O(n2). It is not known whether the algorithm is optimal with 
arbitrary d and/or q for the same reasons given in the previous section. 

11.5 A CONSTRUCTION PROBLEM 

Given a set S = {pl, p2, . . . , p,} of points in the plane, the convex hull of S, denoted 
CH(S), is the smallest convex polygon that includes all the points of S. A set of points 
is shown in Fig. 11.6(a); its convex hull is illustrated in Fig. 11.6(b). Note that the 
vertices of CH(S) are points of S. Thus every point of S is either a vertex of CH(S) or 
lies inside CH(S). The following analogy is useful. Assume that the points of S are nails 
driven halfway into a wooden board. A rubber band is now stretched around the set of 

Figure 11.6 Set of points in plane and its convex hull. 
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nails and then released. When the band settles, it has the shape of a polygon: Those 
nails touching the band at the corners of that polygon are the vertices of the convex 
hull. 

Applications of convex hulls abound. They include: 

(i) statistics (e.g., when estimating the mean of a set of points, the convex hull of the 
set allows a robust estimate to be obtained since the vertices of the hull may 
represent outliers that can be ignored); 

(ii) picture processing (e.g., the concavities in a digitized picture are found by 
constructing the convex hull); 

(iii) pattern recognition (e.g., the convex hull of a visual pattern serves as a feature 
describing the shape of the pattern); 

(iv) classijication (e.g., the convex hull of a set of objects delineates the class to which 
these objects belong); 

(v) computer graphics (e.g., clusters of points are displayed using their convex hull); 
and 

(vi) geometric problems [e.g., the farthest two points of a set S are vertices of CH(S)]. 

In this section we are concerned with developing parallel algorithms for the 
problem of identifying the vertices of CH(S). We begin by deriving a lower bound on 
the number of steps required to solve the problem. This is followed by a brief outline 
of a sequential algorithm whose running time matches the lower bound and is 
therefore optimal. Two parallel algorithms are then presented, one for the mesh of 
trees and the other for the EREW SM SIMD computer. 

11.5.1 Lower Bound 

A powerful technique for proving lower bounds on the number of steps required to 
solve computational problems is that of problem reduction. Let A and B be two 
computational problems. A lower bound is known for B; it is required to prove a 
lower bound for A. If we can show that an algorithm for solving A-along with a 
transformation on problem instances-could be used to construct an algorithm to 
solve B, then the lower bound on B also applies to A. This is illustrated in Fig. 11.7. 

We now use problem reduction to derive a lower bound on computing the 
convex hull. Let problems A and B be defined 

A = find the convex hull CH(S) of a set S of n points in the plane; 

B = sort a sequence of n numbers in nondecreasing order. 

Note that problem A requires us to find the convex hull of S and not merely its 
vertices. More specifically, an algorithm to solve A must return a polygon, that is, a list 
of vertices in the order in which they appear on the perimeter of CH(S). 

Let CONVEX HULL be an algorithm for solving A. We also know from 
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ALGORITHM FOR A 

APPLIES TO A tion for proving lower bounds. 

f SOLVES B 

" 

example 1.10 that a lower bound on the number of steps required to solve B in the 
worst case is SZ(n log n). Now, say that the input to B is the sequence X = { x , ,  x,, . . . , 
xn} .  In order for X to become an input to CONVEX HULL, the following 
transformation is used. First, the elements of X are mapped, each in constant time, 
into the semiopen interval [O,2n) using a one-to-one function f: Thus, for i = 1,2, . . . , 
n, 0 ,  = f ( x i )  represents an angle. For every Oi a planar point is created whose polar 
coordinates are ( 1 ,  Oi) .  The resulting set of points 

A 

S = { ( I ,  611, ( 1 9  0212 . . . > (1, O n ) }  

has all its members on the circumference of a circle of unit radius, and CH(S) includes 
all the points of S, as shown in Fig. 11.8. If CONVEX HULL is applied to S, its output 

B 

Figure 11.8 Deriving lower bound on convex hull computation. 

LOWER BOUND FOR B 
Figure 11.7 Method of problem reduc- 
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would be a list of the members of S sorted on the 8,, that is, in angular order. A sorted 
sequence X can now be obtained in linear time using the inverse transformation 
xi = f -'(6,). Since sorting n numbers requires Q(n log n) steps in the worst case, we are 
forced to conclude that the same lower bound applies to computing the convex hull of 
n points. 

11.5.2 Sequential Solution 

Our purpose in this section is to show that the R(n log n) lower bound just derived is 
tight. To this purpose we briefly sketch a sequential algorithm for computing the 
convex hull of a set of n points. The algorithm runs in O(n log n) time and is therefore 
optimal. It is based on the algorithm design technique of divide and conquer. The 
algorithm is given in what follows as procedure SEQUENTIAL CONVEX HULL. 
The procedure takes S = (p,, p,, . . . , p,) as input and returns a list CH(S) containing 
the vertices of the convex hull of S. 

procedure SEQUENTIAL CONVEX HULL (S, CH(S)) 

if S contains less than four points 
then CH(S) + S 
else (1) {Divide) 

Divide S arbitrarily into two subsets S ,  and S, o f  approximately equal size 
(2) (Conquer) 

(2.1) SEQUENTIAL CONVEX HULL (S, , CH(S,)) 
(2.2) SEQUENTIAL CONVEX HULL (S,, CH(S,)) 

(3) {Merge) 
Merge CH(S,) and CH(S,) into one convex polygon to obtain CH(S) 

end if. 

The most important step in the algorithm is the merge operation. Here we have 
two convex polygons CH(S,) and CH(S,) that are to be combined into one convex 
polygon CH(S). An example is illustrated in Fig. 11.9. In this case, the two polygons 
can be merged in three steps: 

1. find an upper tangent (a, b) and a lower tangent (c, d); 
2. delete points e and f of CH(S,) and g of CH(S,); and 
3. return CH(S) as the list (i, a, b, h, d, c). 

In general, if CH(S,) and CH(S,) contain O(n) vertices in all, then CH(S) can be 
computed in O(n) time. 

We now analyze the running time t(n) of procedure SEQUENTIAL CONVEX 
HULL. Each of the conquer steps 2.1 and 2.2 is recursive, thus requiring t(n/2) time. 
Steps 1 and 3 are linear. Therefore, 

where c is a constant. It follows that t(n) = O(n log n), which is optimal. 
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Figure 11.9 Merging two convex polygons into one. 

11.5.3 Mesh of Trees Solution 

Assume that a set S = {pl,  p2,  . . . , pn} of points in the plane is given, where each point 
is represented by its Cartesian coordinates, that is, pi = ( x i ,  y,). Our first parallel 
algorithm for computing CH(S) is designed to run on a mesh of trees SIMD computer. 
In order to avoid cluttering our presentation with "hairy" details, we make the 
following two simplifying assumptions. 

(i) no two points have the same x or y coordinates and 
(ii) no three points fall on the same straight line. 

Once we have described the approach upon which our algorithm is based, it will 
become obvious how to modify it to deal with situations where the preceding 
assumptions do not hold. We begin by explaining three ideas that are central to our 
solution. 

1. Identifying Extreme Points. Assume that the extreme points, that is, 
the points with maximum x coordinate, maximum y coordinate, minimum x 
coordinate, and minimum y coordinate in S, have been determined as shown in Fig. 
11.10. Call these points XMAX, YMAX, XMIN, and YMIN, respectively. 

Three facts are obvious: 

(i) The extreme points are vertices of CH(S); 
(ii) any points falling inside the quadrilateral formed by the extreme points is 

definitely not a vertex of CH(S); and 
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Figure 11.10 Extreme points of planar set. 

(iii) the problem of identifying C H ( S )  has been reduced to finding a convex polygonal 
path joining two extreme points in each of the regions 1, 2, 3, and 4; C H ( S )  is 
obtained by linking these four paths. 

2. Identifying Hull Edges. A segment (p i ,  pi) is an edge of C H ( S )  if and 
only if all the n - 2 remaining points of S fall on the same side of an infinite straight 
line drawn through pi and p j .  This property is illustrated in Fig. 11.1 1, where (a, b) is a 
convex hull edge while (c, d) and (e,  f )  are not. Note that this allows us to conclude 
that both a and b are vertices of CH(S) .  

3. Identifying the Smallest Angle. Let pi and pj be consecutive vertices 
of C H ( S )  and assume that pi is taken as the origin of coordinates. Then, among all 
points of S, pj forms the smallest angle with pi with respect to the (either positive or 
negative) x axis. This is illustrated in Fig. 11.12. 

We are now ready to present our algorithm. Assume that a mesh of trees is 
available consisting of n rows and n columns of processors. The processor in row i and 
column j is denoted P(i ,  j). For i = 1 , 2 , .  . . , n, P( i ,  j) contains the coordinates 
( x j ,  ~ j ) .  Thus, 

(i) all the processors in a column contain the coordinates of the same point of S and 
(ii) the coordinates contained in a row form the set S = { ( x , ,  y l ) ,  (x,, y,), . . . , 

(x.9 Y">>. 



Figure 11.11 Property of convex hull 
edges. 

. Figure 11.12 Property of consecutive 
convex hull vertices. 
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The algorithm consists of the following stages. 

Stage I 

(i) The processors in rows 1, 2, 3, and 4 compute XMAX, YMAX, XMIN, and 
YMIN and store their coordinates in P(l, I), P(2, l), P(3, I), and P(4, I), 
respectively. 

(ii) Using the tree connections, first in column 1 and then in row 1, the coordinates 
of the four extreme points are made known to all processors in row 1. 

Stage 2 

(i) The four processors in row 1 corresponding to the extreme points produce a 1 as 
output [indicating these points are vertices of CH(S)]. 

(ii) All processors in row 1 corresponding to points inside the quadrilateral formed 
by the extreme points produce a 0 [indicating these points are not vertices of 
CH(S) and should therefore be removed from further consideration]. 

(iii) Each of the remaining processors P(1, j )  in row 1 identifies the region (1,2,3, or 
4) in which point pj falls and communicates this information to all processors 
P(i, j )  in column j. 

(iv) XMAX is assigned to region 1, YMAX to region 2, XMIN to region 3, and 
YMIN to region 4. 

Stage 3 

If processor P(1, i) corresponding to point pi of S produced neither a 1 nor a 0 in stage 
2, then the following steps are executed by the processors in row i: 

(i) The point pj (in the same region as pi) is found such that (pi, pj) forms the 
smallest angle with respect to 
(a) the positive x axis if pi is in regions 1 or 2 or 
(b) the negative x axis if pi is in regions 3 or 4. 

(ii) If all remaining points (in the same region as pi and pi) fall on the same side of an 
infinite straight line through pi and pj, then pi is a vertex of CH(S). 

Stage 4 

(i) If pi was identified as a vertex of CH(S) in stage 3, then P(l, i )  produces a 1 as 
output; otherwise it produces a 0. 

(ii) An arbitrary point in the plane is chosen inside the quadrilateral whose corners 
are the extreme points. This point (which need not be a point of S) is designated 
as an origin for polar coordinates. The polar angles formed by all points 
identified as vertices of CH(S1 are computed. 
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(iii) The angles computed in (ii) are sorted in increasing order using the mesh of trees 
(see problem 4.2). This gives the convex hull vertices listed in counterclockwise 
order, exactly in the sequence in which they appear along the boundary of 
CH(S). 

Analysis. Each of the four stages requires O(1ogn) operations. Thus 
t(n) = O(1og n). Since p(n) = nZ, the algorithm's cost is O(n2 log n), which is not optimal. 
As in previous sections the cost can be reduced to O(n2) by using n rows of n/logn 
processors each. This cost is still not optimal in view of the O(n1ogn) sequential 
algorithm described in section 11.5.2. 

11.5.4 Optimal Solution 

In this section we describe an optimal parallel algorithm for computing the convex 
hull. The algorithm is designed to run on an EREW SM SIMD computer with 
N = nl-' processors, 0 < z < 1. As before, each point pi of S = {p,, p2, . . . , p,)  is 
given by its Cartesian coordinates (xi, y,), and we continue to assume for clarity of 
presentation that no two points have the same x or y coordinates and that no three 
points fall on a straight line. A high-level description of the algorithm is first presented. 

Let XMIN and XMAX denote, as before, the points with minimum and 
maximum x coordinates, respectively. As Fig. 11.13 illustrates, CH(S) consists of two 
parts: an upper convex polygonal path from XMIN to XMAX (solid lines) and a lower 
one from XMAX to XMIN (broken lines). Given these two polygonal paths, they can 
be concatenated to yield CH(S). The algorithm is given in what follows as procedure 
EREW CONVEX HULL. It takes the points of S as input and returns a list CH(S) of 
the vertices of CH(S) in the order in which they appear on the convex hull of S. 

XMIN 

Figure 11.13 Upper and lower convex polygonal paths. 
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procedure EREW C O N V E X  H U L L  (S ,  C H ( S ) )  

Step 1 :  (1.1) xmin t index of XMIN in S 
(1.2) xmax t index of X M A X  in S. 

Step 2: U P ( S )  t list of vertices on the upper convex polygonal path from pxmin to pxmax. 

Step 3: LP(S)  t list of vertices on the lower convex polygonal path from pXmx to pXmi,,. 

Step 4: (4.1) LP(S)  t list LP(S)  with p,,,, and p,,, removed 
(4.2) C H ( S )  t list U P ( S )  followed by list LP(S) .  

This procedure as described is rather vague and requires a good deal of refinement. 
We can dispose immediately to steps 1 and 4. Step 1 can be implemented using 
procedure PARALLEL SELECT, which, as we know from chapter 2, uses nl-' 
processors and runs in O(n3 time. There are two operations in step 4: deleting the first 
and last elements of LP(S) and linking the remaining ones with UP(S). Both can be 
performed in constant time by a single processor. This leaves us with steps 2 and 3. 
Clearly, any algorithm for step 2 can be easily modified to carry out step 3. We 
therefore concentrate on refining step 2. 

Finding the Upper Hull. An algorithm for constructing the upper convex 
polygonal path (upper path, for short) can be obtained by making use of the following 
property: If a vertical line is drawn somewhere between p,,,, and p,,,, so that it does 
not go through a convex hull vertex, then this line crosses exactly one edge of the 
upper path. The algorithm first places a vertical line L dividing S into two sets S,,,, and 
Slight of approximately the same size. The unique edge of the upper path intersecting L 
is now determined as shown in Fig. 11.14. This edge is called a bridge (from S,,,, to 
Slight). The algorithm is then applied recursively to S,,,, and Slight.  It is interesting to 
note here that like procedure SEQUENTIAL CONVEX HULL this algorithm is 
based on the divide-and-conquer principle for algorithm design. However, while 
procedure SEQUENTIAL CONVEX HULL divides, conquers, and then merges, this 
algorithm divides (into Steft  and Slight), merges (by finding the bridge), and then 
conquers (by recursing on S,,,, and Slight). 

Ideally, in a parallel implementation of this idea, the two recursive steps should 
be executed simultaneously since each of the two subproblems S,,,, and Srigh, has the 
same structure as the original problem S.  Unfortunately, this is impossible since the 
number of available processors is not sufficient to provide a proper recursive 
execution of the algorithm. To see this, note that each of S,,,, and Slight contains 
approximately n/2 points and thus requires (n/2)'-' processors. This is larger than the 
nl-"12 processors that would be assigned to each of S,,,, and Slight if the two recursive 
steps were to be executed simultaneously. Therefore, we resort instead to a solution 
similar to the one used in the case of EREW SORT in chapter 4. Let k = 2r1/z '-1.  First, 
2k - 1 vertical lines L,, L,, . . . , L,,-,  are found that divide S into 2k subsets S i ,  i = 1 ,  
2, . . . , 2k of size n/2k each. These subsets are such that 

Sleft  = S1 u S ,  u ..- u Sk and Slight = S k + l  u S k + ,  u ..- u S Z k .  
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Figure 11.14 Bridge. 

In the next step, edge (a,, bi) of the upper path that crosses vertical line L,, i = 1 ,  
2 , .  . . , 2 k  - 1 ,  is obtained. (Here both a, and bi are elements of S; we use a and b instead 
of p to avoid multiple subscripts.) The algorithm is now applied recursively and in 
parallel to S,, S,, . . . , S, using (nl- ') /k processors per subset. The same is then done 
for S,,,, S,,,, . . . , S,,. The algorithm is given in what follows as procedure UPPER 
HULL. The procedure takes the set S and two points p, and p, as input. It produces 
the upper path from p, to p, as output. Initially, it is called from procedure EREW 
CONVEX HULL with p, = pxmin and p, = p,,,,. 

procedure UPPER HULL (S ,  p,, p,) 

if JSI ,< 2k 
then find the upper path from p, to p, using SEQUENTIAL CONVEX HULL 
else (1) find 2k- 1 vertical lines L,,  L,,. . . , L,,-, that divide S into S , ,  S,, . . . ,S , ,  

( 2 )  for i = 1 to 2 k- 1  do 
find edge (a,, b i )  of the upper path intersecting line L, 

end for 
(3) {Construct upper path for S,,,,} 

(3.1) if p, = a, 
then p, is produced as output 
else UPPER HULL (S,, p,, a,) 
end if 
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(3.2) for j = 2 to k do in parallel 
if b j - l  = aj 
then b j - ,  is produced as output 
else if a j - l  # aj 

then UPPER HULL (S j ,  b j -  l ,  aj )  
end if 

end if 
end for 

(4)  {Construct upper path for Srigbt} 
(4.1) for j = k + 1 to 2k - 1 do in parallel 

if b j - l  = aj 
then b j - ,  is produced as output 
else if a j - l  # aj 

then UPPER HULL (S j ,  b j -  l ,  aj )  
end if 

end if 
end for 

(4.2) if bZk - = p,,, 
tben b,,- ,  is produced as output 
else UPPER HULL (S,,, b,,- , ,  p,) 
end if 

end if. 

Step 1 can be implemented using procedure PARALLEL SELECT. Steps 3 and 
4 are recursive. It remains to show how step 2 is performed. The following procedure 
BRIDGE (S, A) takes a set S of n points and a real number A as input and returns two 
points ai and bi where (ai, bi) is the unique edge of the upper path intersecting the 
vertical line Li whose equation is x = A. 

procedure BRIDGE (S, A) 

Step 1: The points of S are paired up into couples (p,, p,) such that xu < xu. The ordered 
pairs define Ln/2J straight lines whose slopes are Isl, s,, . . . , s,,,,,,}. 

Step 2: Find the median K of the set { s , ,  s,, . . . , s,,,,,,}. 

Step 3: Find a straight line Q of slope K that contains at least one point of S but has no 
point of S above it. 

Step 4: if Q contains two points of S, one on each side of L, 
tben return these as (a,, b,) 
else if Q contains no points of Sright 

then for every straight line through (p,, p,) with slope larger than or equal to K 
s 4- s - {P. )  

else if Q contains no points of S,,,, 
then for every straight line through (p,, p,) with slope less than or equal to 

K 
s + s - { P " )  

end if 
end if 

end if. 

Step 5: BRIDGE (S, A). 
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We now describe how this procedure is implemented in parallel and analyze its 
running time, which we denote by B(n). Step 1 is performed in parallel by assigning 
different subsets of S of size nz to the nl-' processors, each of which creates Lnz/2J 
pairs of points (p,, p,) and computes the slopes of the straight lines they form. Step 1 
thus requires O(nz) time. Step 2 can be implemented using procedure PARALLEL 
SELECT in O(nz) time. Step 3 is executed by finding the (at most two) points 
maximizing the quantity y j  - K x j .  This quantity can be obtained for all values of j  by 
having each processor compute it for the points in its assigned subset of S. The 
maximum of these quantities is found using procedure PARALLEL SELECT. Hence 
step 3 also runs in O(nz) time. Finally, in step 4, determining whether Q contains the 
required edge can be done by one processor in constant time. Otherwise, the value of 
K is broadcast to all nl-' processors in O(lognl-") time using procedure 
BROADCAST. Each processor compares K to the Lnz/2] slopes it has computed in 
step 1 and updates S accordingly; this requires O(nz) time. Step 4 therefore runs in 
O(nz) time. Since one-quarter of the points are discarded in step 4, the complexity of 
step 5 is B(3n/4). Thus, for some constant c,, 

whose solution is B(n) = O(nz). 

Analysis. We are now in a position to analyze procedure EREW CONVEX 
HULL. As mentioned earlier, steps 1 and 4 run in O(nz) and O(1) time, respectively. 
Let h, and h, be the number of edges of the upper and lower convex polygonal paths, 
respectively. We denote the running times of steps 2 and 3 by F,(n, h,) and F,(n, h,), 
respectively. Thus, the running time of procedure EREW CONVEX HULL is given 
by 

t(n) = c2nz + F,(n, h,) + FL(n, h,) + c, 

for two constants c, and c,. From our discussion of procedure UPPER HULL, we 
have 

where h,, h,, and hj are the number of edges on the upper path associated with S,,,,, 
S,,,,,, and Sj ,  respectively, and c, is a constant. Therefore 

F,(n, h,) = O(nZ log h,), 

and similarly 

F,(n, h,) = O(nz log h,). 

It follows that t(n) = O(nZlog h), where h = h, + h,. Thus the procedure's running 
time not only adapts to the number of available processors, but is also sensitive to h, 
the number of edges on the convex hull. In the worst case, of course, h = n, and 
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t(n) = O(nzlogn). Since p(n) = nl-', the procedure has a cost of 

c(n) = O(n log n), 

which is optimal in view of the R(n log n)  lower bound derived in section 1 1.5.1. Since 
nz > log n for all z and sufficiently large n, optimality is achieved when N < n/log n. 

Example 11.3 

Assume that four processors are available on an EREW SM SIMD computer. We apply 
procedure EREW CONVEX HULL to the set of points in Fig. 11.13. Since n = 16 and 
N = 4, N = nl-" yields x = 0.5. Furthermore, k = 2r11X1- ' = 2. In step 1, pxmin and p,,,, 
are determined. In step 2, procedure UPPER HULL is invoked to find the upper path. 

Procedure UPPER HULL begins by placing 2k - 1 (i.e., three) vertical lines L,, 
L,, and L, dividing the set into four subsets S,, S,, S,, and S,, as shown in Fig. 11.15. 

The bridge crossing each vertical line is now computed by procedure BRIDGE. 
This is shown in Fig. 11.16. 

Since p,,,, # a , ,  procedure UPPER HULL is called recursively to obtain the 
upper path from p,,, to a,.  Given that IS,I < 4, the path is found sequentially (and the 
recursion terminates). Similarly, since b ,  = a,, there is no need to recurse with S,. 
Continuing in this fashion, b, is found equal to a,, and the upper path from b ,  to p.,,, is 

s, s2 s3 s4 

Figure 11.15 Dividing given planar set into four subsets. 
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Figure 11.16 Finding three bridges. 

obtained sequentially. This yields the upper path from p,,, to p,,,, depicted in Fig. 
11.13. 

In step 3, the lower convex polygonal path is found in the same way, and the two 
paths are linked to produce the convex hull as shown in Fig. 11.13. 

11.6 P R O B L E M S  

11.1 Describe formally a (constant-time) sequential algorithm for determining whether a 
straight-line segment (given by the coordinates of its endpoints) and a vertical straight 
line (through a given point) intersect. 

11.2 Procedure POINT IN POLYGON ignores the following degenerate situations: 
(i) the vertical line through point p passes through vertices of polygon Q, 

(ii) the vertical line through p coincides with edges of Q (i.e., Q has vertical edges), and 
(iii) p coincides with a vertex of Q [this is a special case of (ii)]. 
Suggest how the procedure can be modified to handle these situations. 

11.3 A planar subdivision with n polygons of O(n) edges each is given. Show that once a 
preprocessing step requiring O(n210gn) time is performed, the location of an arbitrary 
data point in the subdivision can be determined in O(log n) time. Adapt this algorithm to 
run on a parallel computer. 
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11.4 Does procedure POINT IN SUBDIVISION extend to subdivisions of spaces in 
dimensions higher than 2? What about the algorithm in problem 11.3? 

115 Describe formally a (constant-time) sequential algorithm for determining whether two 
straight-line segments (given by the coordinates of their endpoints) cross. 

11.6 Give a formal statement of the parallel algorithm in section 11.3 for determining whether 
two polygons intersect. 

11.7 Modify the algorithm in problem 11.6 so it produces one pair of crossing edges in case the 
two input polygons intersect. 

11.8 Modify the algorithm in problem 11.6 so it produces all pairs of crossing edges in case the 
two input polygons intersect. What is the running time of your algorithm? 

11.9 Two simple polygons of n edges each are said to intersect if either 
(i) one of the two contains the other or 

(ii) an edge of one crosses an edge of the other. 
Show that it is possible to determine sequentially whether two simple polygons intersect 
in O(n log n) time. 

11.10 Derive a parallel algorithm based on the approach in problem 11.9. 
11.11 Give a formal statement of the parallel algorithm in section 11.4 for determining the 

closest pair of a set. 
11.12 The algorithm in problem 11.11 uses (n2/logn) processors. Show that this number can be 

reduced to n(n - 1)/2 log n without any increase in the algorithm's running time. 
11.13 Show that if the Euclidean distance is used, then the closest pair can be determined 

sequentially in O(n log n) time. 
11.14 Derive a parallel algorithm based on the approach in problem 11.13. 
11.15 In section 11.5.2 we stated without proof that two convex polygons with a total of O(n) 

vertices can be merged sequentially into one convex polygon in O(n) time. Show how this 
can be done. 

11.16 Propose a parallel implementation of procedure SEQUENTIAL CONVEX HULL. 
11.17 Give a formal statement of the parallel algorithm in section 11.5.3 for determining the 

convex hull of a set of planar points. 
11.18 Show how to modify the algorithm in problem 11.17 to handle the following special 

cases: 
(i) two points have the same x or y coordinates and 

(ii) three or more points fall on the same straight line. 
11.19 Show how to modify the algorithm in problem 11.17 to handle the cases where there are 

fewer than four extreme points, that is, when two or more extreme points coincide (e.g., 
XMAX = YMAX). 

11.20 As stated in section 11.5.3, the algorithm for computing the convex hull relies heavily on 
the ability to measure angles. Show how to implement the algorithm so that no angle 
computation is necessary. 

11.21 The mesh of trees architecture was used to solve all problems in this chapter. One 
characteristic of this architecture is that the edges of the trees (linking the rows and the 
columns) grow in length as they move further from the root. This has two potential 
disadvantages: 
(i) The architecture is neither regular nor modular (in the sense of section 1.3.4.2). 
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(ii) If the propagation time for a datum along a wire is taken to be linearly proportional 
to the length of that wire, then our running time analyses (which assume constant 
propagation time) no longer hold. (For a similar discussion see the conclusion of 
section 5.3.2.) 

Suggest other architectures for solving the problems in sections 11.2-1 1.5 that enjoy the 
efficiency of the mesh of trees but do  not share its disadvantages. 

11.22 Given a set S of points in the plane, design a parallel algorithm for computing CH(S) 
based on the following property of convex hull vertices: A point Pi of S belongs to CH(S) 
if pi does not fall inside the triangle (pi, p,, p,) formed by any three points of S. 

11.23 Given a set S of points in the plane, design a parallel algorithm for computing CH(S) 
based on the following property of convex hull edges: A segment (pi, pj) is a convex hull 
edge if all the remaining n - 2 points fall in the same of the two half planes defined by the 
infinite straight line through pi  and pj. 

11.24 Describe in detail how the linking of UP(S) and LP(S) to obtain CH(S) is performed in 
step 4 of procedure EREW CONVEX HULL. 

11.25 Describe in detail how the 2k - 1 vertical lines L,, L,, . . . , L,,-, that divide S into S,, S,, 
. . . , S,, are obtained in step 1 of procedure UPPER HULL. 

11.26 Describe formally how procedure UPPER HULL produces its output. Specifically, show 
how UP(S) is formed. 

11.27 Modify procedure UPPER HULL to include the following refinement: Once a bridge (ai, 
b,) is found, all points falling between the two vertical lines through ai and bi can be 
discarded from further consideration as potential upper hull vertices. 

11.28 Derive a CREW SM SIMD algorithm for computing the convex hull of a set of n points 
in the plane in O(log n) time using n processors. 

11.29 Can you design an EREW SM SIMD algorithm with the same properties as the 
algorithm in problem 11.28? 

11.30 Design a parallel algorithm for computing the convex hull of a set of points in a three- 
dimensional space. 

11.31 Two sets of points in the plane are said to be linearly separable if a straight line can be 
found such that the two sets are on different sides of the line. Design a parallel algorithm 
for testing linear separability. 

11.32 Given a set S of n points, design a parallel algorithm for computing a Euclidean 
minimum spanning tree of S (i.e., a minimum spanning tree, as defined in chapter 10, 
linking the points of S with rectilinear edges such that the weight of an edge is the 
Euclidean distance between its endpoints). 

11.33 Given a set S of 2n points in the plane, design a parallel algorithm for computing a 
Euclidean minimum-weight perfect matching of S (i.e., a minimum-weight perfect 
matching, as defined in chapter 10, whose edges are straight-line segments linking pairs 
of points of S and the weight of an edge is the Euclidean distance between its endpoints). 

11.34 A simple polygon Q and two points s and d inside Q are given. The interior shortest path 
problem is to determine the shortest path from s to d that lies completely inside Q. Give a 
parallel algorithm for solving this problem. 

11.35 In problem 3.16 we defined a parallel architecture called the pyramid, which is a binary 
tree with the processors at  each level connected to form a linear array. We may refer to 
this as a one-dimensional pyramid and extend the concept to higher dimensions. For 
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Figure 11.17 Two-dimensional pyramid. 

example, a two-dimensional pyramid consists of $n - 4 processors distributed among 
1 + log,n levels, where n is a power of 4. All processors at the same level are connected to 
form a mesh. There are n processors at level 0 (also called the base) arranged in an 
nl/' x nl/* mesh. There is only one processor at level log4n (also called the apex). In 
general, at level i, 0 < i < log4n, the mesh consists of 44 '  processors. A processor at level 
i, in addition to being connected to its four neighbors at the same level, also has 
connections to 
(i) four children at level i - 1 provided i > 1 and 

(ii) one parent at level i + 1, provided i < (log4n) - 1. 
A two-dimensional pyramid for n = 16 is shown in Fig. 11.17. As described in example 
1.7, a picture can be viewed as a two-dimensional array of pixels. For example, each pixel 
may be given a value representing the color of a corresponding (small) area in the picture. 
The position of a pixel is given by its coordinates (i, j), where i and j are row and column 
numbers, respectively. A set S of pixels is said to be convex if CH(S) does not contain any 
pixel not belonging to S. Figure 11.18 shows two sets of pixels (identified by an x ); the set 
in Fig. 11.18(a) is convex, while the one in Fig. 11.18(b) is not. Design a parallel algorithm 
for the two-dimensional pyramid to determine whether a set of pixels is convex. 

11.36 This problem is about general polygons, that is, polygons two or more of whose edges 
may cross. We refer to these as polygons for short. This class includes simple polygons as 
a subclass. 
(i) Give a definition of the interior of a polygon. 

(ii) Design a test for point inclusion in a polygon. 

m . . . .  

. X X .  . 

. X X .  . 

. . X X .  . .  X X .  . . . .  . . . . . Figure 11.18 Two sets of pixels. 
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(iii) Design a test for polygon inclusion in a polygon. 
{iv) Design a test for polygon intersection (of which inclusion is a special case). 
(v) Are there efficient parallel versions of (ii)-(iv)? 
(vi) Are there applications where nonsimple polygons arise? 

11.7 B lBL lOGRAPHlCAL  R E M A R K S  

Good introductions to sequential algorithms for computational geometry are provided in 
[Lee], [Mehlhorn], and [Preparata]. Several parallel algorithms for the four problem classes 
discussed in this chapter have been proposed. They include 

(i) algorithms for inclusion problems, in [Atallah 21, [Boxer], and [Chazelle]; 
(ii) algorithms for intersection problems, in [Aggarwal], [Atallah 21, [Chazelle], [Miller 51, 

and [Shih]; 
(iii) algorithms for proximity problems in [Aggarwal], [Atallah 11, [Boxer], [Chazelle], 

[Dehne 21, [Dyer], [Miller 11, [Miller 31, and [Miller 51; and 
(iv) algorithms for construction problems, in [Aggarwal], [Akl 11, [Akl2], [Akl3], [Atallah 

23, [Boxer], [Chang], [Chazelle], [Chow 11, [Chow 21, [Dadoun], [Dehne 11, 
[EIGindy], [Miller 11, [Miller 21, [Miller 31, [Miller 51, and [Nath]. 

A branch of computer science known as pattern recognition studies how computers can 
be made to recognize visual patterns. It covers a wide range of concerns from the processing of 
digital pictures to the analysis of patterns that leads eventually to their classification. The role 
computational geometry can play in pattern recognition is recognized in [Toussaint]. Parallel 
architectures and algorithms for pattern recognition are described in [Dehne 21, [Dehne 31, 
[Holt], [Ibrahim], [Kung 11, [Kung 21, [Li], [Miller 21, [Miller 31, [Miller 41, [Preston], 
[Reeves], [Sankar], [Siegel I], [Siegel 23, [Siegel 33, [Sklansky], and [Snyder]. 
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Traversing Combinatorial 

12.1 INTRODUCTION 

Many combinatorial problems can be solved by generating and searching a special 
graph known as a state-space graph. This method, aptly called state-space traversal, 
differs from the searching algorithms discussed in chapter 5 in that the data structure 
searched is not a list but rather a graph. Furthermore, state-space traversal differs 
from the graph search techniques of chapter 10 in that the graph is generated while it is 
being searched. There are two reasons for not generating a state-space graph in full 
and then searching it. First, a state space is typically very large and there may not be 
enough memory to store it. Second, assuming we can afford it, generating a full state 
space would be wasteful (both in terms of space and time), as only a small subgraph is 
usually needed to obtain a solution to the problem. 

There are three types of nodes in a state-space graph: 

1. the origin (or start) node(s) representing the initial conditions of the problem to 
be solved; 

2. the goal (or final) node(s) representing the desired state of the problem; and 
3. intermediate nodes representing states of the problem arrived at by applying 

some transformation to the origin. 

Each edge in the graph is a transition that transforms one state of the problem to 
another. A solution to the problem is given by a path from an origin to a goal. The 
processes of generating and searching the state-space graph are governed by problem- 
dependent rules. 

Example 12.1 

A set of integers S = {s,, s,, . . . , s,) is given along with an integer B. It is required to 
determine whether a subset S' of S exists such that 
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This problem, known as the subset sum problem, can be solved by traversing a 
state-space graph. The origin represents the empty set. Intermediate nodes represent 
subsets of S. A goal node represents a subset the sum of whose elements equals B. 

For concreteness, let S = {15,7, 19,3,6} and B = 16. The state-space graph that is 
actually traversed for this instance of the subset sum problem is shown in Fig. 12.1. 
Intermediate nodes that cannot possibly lead to a goal node are marked with an x .  
There is only one goal node, marked with a G. 

Our  purpose in this chapter is to  show how a state space can be traversed in 
parallel. We choose one particular problem for illustration, namely, state spaces 

Figure 12.1 State space for instance of subset sum problem. 
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generated and searched by programs that play games with clear rules and goals, that 
is, games of strategy. In particular, we are concerned with games that 

1. are played on a board on which pieces are placed and moved; 
2. are played by exactly two players; 
3. are zero-sum games, in the sense that one player's gain equals the other player's 

loss-the outcome for a player is either a win, a loss, or a draw; 
4. involve no element of chance; 
5. are perfect-information games, in the sense that at any point during the game 

each player knows everything there is to know about the current status of both 
players and no detail is hidden. 

Examples of games satisfying these properties are checkers, chess, and go. Examples of 
games that do not satisfy one or more of these properties are backgammon (which 
violates the fourth property) and poker (which may violate all properties). In the 
remainder of this chapter we use the term game to refer to a game of strategy satisfying 
these five properties. Most computer programs that play games generate and search 
state spaces that have the characteristic of being trees. We shall refer to these as game 
trees. 

In section 12.2 a brief introduction is provided to a sequential algorithm for 
traversing game trees and the associated terminology. The basic principles used in the 
design of a parallel implementation of this algorithm are given in section 12.3. The 
parallel algorithm itself is described in section 12.4. In section 12.5 various aspects of 
the algorithm are analyzed. 

12.2 SEQUENTIAL TREE TRAVERSAL 

Assume that we want to program a computer to play a game. The computer is given 

(i) a representation of the board and pieces; 
(ii) a description of the initial configuration, that is, the locations of the various 

pieces on the board when the game begins; 

(iii) a procedure for generating all legal moves from a given position of the game; 
(iv) an algorithm for selecting one of the (possibly many) available moves; 

(v) a method for making the selected move from the current position, that is, a 
method for updating a given board configuration; and 

(vi) a way of recognizing a winning, losing, or drawing position. 

All of these ingredients of a game-playing program are usually straightforward, 
with the exception of (iv). It is the move selection algorithm that in general makes the 
difference between a program that plays well and one that plays poorly. For example, 
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a program that selects every one of its moves at random cannot possibly perform well 
in a consistent way. The better game-playing programs utilize sophisticated tech- 
niques for choosing their moves. One such technique is based on generating and 
searching a game tree, an example of which is shown in Fig. 12.2. The figure illustrates 
the game tree generated for the game of tic-tac-toe from some configuration. 

In a game tree, nodes correspond to board positions and branches correspond to 
moves. The root node represents the board position from which the program (whose 
turn it is to play) is required to make a move. A node is at ply (or depth) k if it is at a 
distance of k branches from the root. A node at ply k, which has branches leaving it 
and entering nodes at ply k + 1, is called a nonterminal node; otherwise the node is 
terminal. A nonterminal node at ply k is connected by branches to its offspring at ply 
k + 1. Thus the offspring of the root represent positions reached by moves from the 
initial board; offspring of these represent positions reached by the opponent's replies, 
offspring of these represent positions reached by replies to the replies, and so on. The 
number of branches leaving a nonterminal node is the fan-out of that node. 

A complete game tree represents all possible plays of the game. Each path from 
the root to a terminal node corresponds to a complete game with the root 
representing the initial configuration and each terminal node representing an end- 

PLY 0 

PLY 1 

PLY 2 

PLY 3 

0 WINS DRAW 0 WINS DRAW 

Figure 12.2 Game tree for game of tic-tac-toe. 
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game configuration, that is, a win for player 1, a win for player 2, or a draw. It has been 
estimated that a complete game tree of checkers, for example, contains approximately 
1040 nonterminal nodes. Assuming that a program is capable of generating lo9 such 
nodes per second, it would still require in the vicinity of loz1 centuries in order to 
generate the whole tree. Trees for chess and go would require even longer times to 
generate in full. 

The observation made in the previous paragraph is generally true, even starting 
from a position other than the initial configuration. A tree whose root represents a 
position near the middle of a chess game, for example, would have approximately 10" 
terminal nodes representing all end-game configurations. Instead, game-playing 
programs search an incomplete tree. The depth of such a tree is limited and, in 
addition, it is often the case that not all paths are explored. In an incomplete tree, 
terminal nodes are those appearing at some predefined ply k or less and do not 
necessarily represent positions for which the game ends. An evaluation function is used 
to assign a score to each of the positions represented by terminal nodes. This score is 
an estimate of the "goodness" of the position from the program's viewpoint and is 
obtained by computing and then combining a number of parameters. For most board 
games, center control and mobility of certain pieces are examples of such parameters. 

An algorithm, known as the alpha-beta algorithm, is then used to move these 
scores back up the tree. In doing so, the alpha-beta algorithm may also eliminate 
some nodes of the game tree without assigning scores to them, as explained in what 
follows. When all the offspring of the root have been assigned back-up scores, the 
program chooses the move that appears to be best (in light of this incomplete 
information). 

Once this move is made and the opponent has replied, the program generates 
and searches a new tree from the current position to determine its next move. Note 
that game trees, like all state spaces, are generated while they are searched, as 
mentioned in the beginning of this chapter. A so-called depth-jrst search is usually 
followed to traverse game trees: It starts by generating a complete path from the root 
to the leftmost terminal node; search then resumes from the latest nonterminal node 
on the path whose offspring have not all been generated or eliminated by the alpha- 
beta algorithm. Search continues (in this left-to-right manner) until all nodes-up to 
some depth k- have been either generated or eliminated. It remains to describe how 
the alpha-beta algorithm works. 

The Alpha -Beta Algorithm. The alpha-beta algorithm performs a dual 
role: 

(i) moving scores up the tree from the terminal nodes and, in doing so, 
(ii) eliminating parts of the tree by determining that they need not be generated. 

In backing up scores from terminal nodes, the minimax principle is invoked: 

(i) Nodes at even ply (corresponding to positions from which the program is to 
select a move) attempt to maximize the program's gain while 
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(ii) nodes at odd ply (corresponding to positions from which the program's 
opponent is to select a move) attempt to minimize the program's gain. 

Initially, every nonterminal node generated is assigned an initial alpha-beta 
score of -or, (+ m) if the node is at even (odd) ply. As mentioned earlier, every 
terminal node generated is assigned a static score obtained from an evaluation 
function. A temporary alpha-beta score is assigned to a nonterminal node while its 
offspring are being explored. If the node is at even (odd) ply, then its temporary score 
is equal to the maximum (minimum) of thejnal scores that have so far been assigned 
to its offspring. Final scores are defined as follows: 

1. A static score assigned to a terminal node is final and 
2. the final score of a nonterminal node is the score it receives when each of its 

offspring has either been assigned a final score or been eliminated (as explained 
in the following). 

The process of backing up scores from terminal nodes is illustrated in Fig. 12.3. The 
figure shows the portion of a game tree that has already been generated. Square and 

PLY 0 

PLY 1 

PLY 2 

PLY 3 

PLY 4 

Figure 123 Backing up scores from terminal nodes. 
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circle nodes represent positions from which the first and second players are to make a 
move, respectively. The number beside each node indicates the order in which the 
node was generated by the algorithm. Also shown inside the nodes are temporary and 
final scores. Static scores are obtained using some evaluation function. Assuming that 
the nodes at plies 1,2, and 3 have no further offspring, all scores at plies 1,2,3, and 4 
are final. The score associated with the nonterminal node at ply 0 is temporary, 
assuming that further offspring of this node need to be generated and assigned final 
scores. 

The scores are stored in a score table: Entry i of this table holds the score for a 
node under consideration at ply i. Figure 12.4 illustrates the contents of the score table 
as the tree in Fig. 12.3 is being traversed. 

By its nature, the alpha-beta algorithm makes it unnecessary to obtain scores 
for all nodes in the game tree in order to assign a final score to the root. In fact, whole 
subtrees can be removed from further consideration by means of so-called cuto$s. To 
illustrate this point, consider the two portions of game trees shown in Fig. 12.5. In 
both trees some of the nodes have received a final score (and are labeled with that 
score), whereas the remaining nodes (labeled with a letter).are still waiting for a final 
score to be assigned to them. From the preceding discussion, the final score of the root 
node in Fig. 12.5(a) is obtained from 

u = max(5, v ) ,  where v = min(4,. . . }. 
Clearly u = 5 regardless of the value of v. It follows that the remaining offspring of the 

ENTRY 0 

ENTRY 1 

ENTRY 2 

ENTRY 3 

ENTRY 4 

(a) INITIALLY (b) AFTER NODE 5 
IS SCORED 

(c) AFTER NODE 6 
IS SCORED 

(d) AFTER NODE 7 (e) AFTER NODE 9 (1) AFTER NODE 10 
IS SCORED IS SCORED IS SCORED 

Figure 12.4 Contents of score table while tree in Fig. 12.3 is traversed. 
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Figure 125 Cutoffs created by alpha-beta algorithm. 

node labeled v need not be explored any further. We say that a shallow cutof has 
occurred. A similar reasoning applies to the tree in Fig. 12.5(b), where the value of u 
can be obtained regardless of the exact value of y. Again it follows that the remaining 
offspring of the node labeled y can be ignored: This is called a deep cutoff 

When a final score is eventually assigned to the root, the search terminates. By 
definition, the score was backed up during the search from one of the root's offspring 
to the root. Thus the branch leading from the root to that offspring corresponds to the 
move chosen by the alpha-beta algorithm. Note that, upon termination of the 
traversal, the algorithm in fact determines the principal continuation, that is, the best 
sequence of moves found for both players to follow based on searching a tree of 
limited depth. 

The preceding concepts constitute the foundation upon which our parallel 
algorithm is constructed. In the following section we show how an interesting 
property of the sequential alpha-beta algorithm is used profitably in the parallel 
version. 

12.3 BASIC DESIGN PRINCIPLES 

In this section we describe the main ideas behind 

(i) the parallel algorithm, 
(ii) the model of computation to be used, 
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(iii) the objectives motivating the design, and 
(iv) the methods adopted to achieve these objectives. 

12.3.1 The Minimal Alpha -Beta Tree 

A game tree is said to be uniform if all of its nonterminal nodes have the same number 
of offspring and all of its terminal nodes are at the same distance from the root. Since 
the number of offspring is equal for all nonterminal nodes, it is referred to as the fan- 
out of the tree. Similarly, the distance of terminal nodes to the root is called the depth of 
the tree. The uniform tree of Fig. 12.6, for example, has a fan-out of 3 and a depth of 2. 

A game tree is perfectly ordered if the best move for each player from any 
position is always provided by the leftmost branch leaving the node representing that 
position. In such a tree it is guaranteed that only a subset of the nodes needs to be 
generated in order to determine the principal continuation. Consider, for example, the 
uniform tree in Fig. 12.7, which has a fan-out f equal to 3 and a depth d also equal to 3. 

In this tree, the terminal nodes shown with a score (and only these terminal 
nodes) must be examined by the alpha-beta algorithm to reach a decision about the 
best move for the player at the root. The tree shown in bold lines and called the 
minimal tree is the one actually generated by the algorithm. The remaining nodes 
and branches (drawn with thin lines) are cut off (i.e., they are not generated). Note that 
for this tree 

(i) the scores shown for nonterrninal nodes are final and 
(ii) the principal continuation is given by the sequence of branches leading from the 

root to the terminal node labeled 30. 

Figure 12.6 Uniform tree. 
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m 

Figure 12.7 Perfectly ordered game tree. 

In general, for a perfectly ordered uniform tree, the number of terminal nodes 
gecerated and assigned a score by the alpha-beta algorithm is equal to 

Thus M( f ;  d) represents a lower bound on the number of nodes scored by the alpha- 
beta algorithm for a uniform tree that is not necessarily perfectly ordered. This fact 
represents the basis of our parallel implementation of the alpha-beta algorithm: 
Assuming that the tree to be traversed is perfectly ordered, those nodes that have to be 
scored are visited first in parallel. Once all cutoffs have taken place, the remaining 
subtrees are again searched in parallel. 

12.3.2 Model of Computation 

The algorithm is designed to run on an EREW SM MIMD computer with a number 
of processors operating asynchronously. A processor can initiate another processor, 
send a message to another processor, or wait for a message from another processor. 
Apart from these interactions, all of which take place through shared memory, 
processors proceed independently. As usual, the MIMD algorithm is viewed as a 
collection of processes. A process is created for each node generated. Its job is to 
traverse the tree rooted at that node. The number of processors is independent of the 
number of processes. 
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12.3.3 Objectives and Methods 

The algorithm is designed with two objectives in mind: 

1. to minimize the running time of the search and 

2. to perform as many cutoffs as possible, thereby minimizing the cost of the search 
(total number of operations). 

In order to achieve these goals, a distinction is made among the offspring of a node. 
The leftmost offspring of a node is called the left offspring. The subtree containing the 
left offspring is called the left subtree, and the process that traverses this subtree is the 
left process. All other offspring of a node are called right ofspring and are contained in 
right subtrees that are searched by right processes. This is illustrated in Fig. 12.8, where 
L and R indicate left and right offspring, respectively. Note that the root is labeled 
with an L. 

A high-level description of the algorithm consists of two stages. 

Stage I :  The tree is traversed recursively by 

(i) traversing recursively the left subtree of the root and 

(ii) traversing the left subtree only of each right offspring of the root. 

This stage assigns 

(i) a final score to every left offspring and 
(ii) a temporary score to every right offspring (which is the final score of its left 

offspring). 

Stage 2: If the temporary score of a node cannot create a cutoff, then the right 
subtrees of this node are traversed one at a time until they all have been either 
visited or cut off. 

The preceding description is now refined by explaining the mechanism of 
process creation. We mentioned earlier that a process is associated with every node 
generated. The tree traversal and process creation proceed as follows. The process 
associated with a node z spawns a left process to traverse the left subtree of z. This 
process is associated with the left offspring of z. In turn it spawns left and right 
processes to search all of the left offspring's subtrees. This continues until a final score 
is assigned to the left offspring of z and backed up, as a temporary score, to z. 
Concurrently to the traversal of the left subtree of z ,  a temporary value is obtained for 
each of the right offspring of z. These scores are then compared to the final score of the 
left offspring and cutoffs are made where appropriate. 

The temporary score for a right offspring w is obtained as follows. The process 
associated with w spawns a process to traverse its left subtree. This new process 
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Figure 12.8 Distinction between left and right offspring of node. 

Figure 12.9 Process creation during tree traversal. 

traverses the subtree, backs up a score to w, and terminates. If after a cutoff check the 
traversal of the right subtree rooted at w is to continue, then a process is generated to 
traverse the next subtree of w. This procedure continues until either the subtree rooted 
at w is exhaustively traversed or the search is cut off. 

The foregoing description is illustrated in Fig. 12.9. Here the process associated 
with the root generates processes 1,2, and 3. Process 1 being a left process generates 
processes 1.1,1.2, and 1.3 to traverse all of the subtrees of the left offspring of the root. 
Processes 2 and 3 are right processes and therefore generate only processes to search 
the left subtrees of the right offspring of the root, namely, processes 2.1 and 3.1, 
respectively. This concludes stage 1. Only if necessary, (one or both) processes 2.2 and 
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3.2 followed by (one or both) processes 2.3 and 3.3 are created in stage 2. Note that 
after generating other processes, a process suspends itself and waits for these to back 
up a value. 

It is clear that by applying this method those nodes that must be examined by 
the alpha-beta algorithm will be visited first. This ensures that needless work is not 
done in stage 1 of the algorithm. Also, a cutoff check is performed before processes are 
generated in stage 2 to search subtrees that may be cut off. 

As mentioned earlier, game trees are typically very large, and it is reasonable to 
assume that there will be more processes created than there are processors available 
on the MIMD computer. However, let us assume for the sake of argument that there 
are more processors than processes. It may be possible in this case to reduce the 
running time of the tree traversal by generating processes to traverse the subtrees of a 
right offspring in parallel using the idle processors. This brute-force approach is not 
used since it conflicts with the other aim of our design, namely, minimizing the cost of 
the search. The cost of any tree traversal consists mainly in the cost of updating the 
board in moving from parent to offspring and in the cost of assigning a temporary or 
final value to a node. Therefore, even though our algorithm may leave some 
processors idle in this hypothetical situation, the overall cost in operations is 
minimized by not traversing subtrees that may not have to be traversed. 

Process Priority. We conclude this section by describing how processes are 
assigned priorities when deciding which is to be executed by an available processor. 
As already explained, left subtrees are searched exhaustively by the parallel algorithm, 
while initially only a single temporary value is obtained from each right subtree. In 
order to accomplish this, left processes should be given higher priority than right 
processes. Also, since scores must be obtained from terminal nodes, processes 
associated with the deepest nodes in the tree should be given preference. Any formula 

Figure 12.10 Assigning priorities to processes. 
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for labeling nodes that assigns all offspring a higher priority than their parent and left 
offspring a higher priority than their right siblings can be used. A process then adopts 
the priority of the node with which it is associated. One example of such a formula for 
uniform trees follows. It assigns a priority to a newly generated node as a function of 
the priority of its parent: 

priority(offspring) = priority(parent) - (f + 1 - i )  x 10"(d-p'y - I), 

where 
f = fan-out of the tree, 

d = depth of the tree, 

i = offspring's position among its siblings in a left-to-right order, 1 < i < f, 
ply = ply of parent, 

and a is such that 10"-' < f < 10". The priority of the root is given by 

Note that the smaller the integer returned by this formula, the higher the priority. An 
example of this priority assignment is shown in Fig. 12.10. 

12.4 THE ALGORITHM 

This section provides a formal description of the parallel alpha-beta algorithm as 
implemented on an EREW SM MIMD computer. We begin by defining three aspects 
of the implementation. 

12.4.1 Procedures and Processes 

An MIMD algorithm is a collection of procedures and processes. Syntactically, a 
process is the same as a procedure. Furthermore, both a procedure and a process can 
call other procedures and create other processes. Where the two differ is in the 
semantics. In the parallel alpha-beta algarithm, we shall distinguish between 
processes and procedures in the following way: 

(i) When a procedure is called, control is transferred from the calling context to the 
procedure. 

(ii) When a process is invoked, it is initiated to run asynchronously, and the 
invoking context continues execution. 

12.4.2 Semaphores 

Semaphores are used by the algorithm for process communication and syn- 
chronization. Here a semaphore consists of an integer value and a queue of processes. 
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When a semaphore is declared, it is initialized to have a value 0 and a null queue. 
There are two operations allowed on semaphores, denoted by U and b! 

1. Operation U examines the integer value: 
(i) If it is greater than zero, it decrements it by 1, and the process doing the U 

operation proceeds. 
(ii) If the value is zero, the process doing the U operation suspends itself and 

enters the queue. 
2. Operation V examines the queue: 

(i) If it is nonempty, it lets the first waiting process continue. 
(ii) If no processes are waiting, the integer value is incremented by 1. 

Both U and V are indivisible operations. 

12.4.3 Score Tables 

In the parallel alpha-beta algorithm, many parts of the tree are traversed simulta- 
neously. Therefore, a single global score table cannot be used as in the sequential case. 
Instead, an individual score table is assigned to each node when a process is generated 
to search the subtree rooted at that node. This table is initialized to the values in the 
score table of the node's parent. 

We are now ready to state the parallel alpha-beta algorithm. The algorithm is 
given in what follows as procedure MIMD ALPHA BETA together with the 
procedures and processes it uses. Some of the procedures are entirely game dependent 
and therefore are not fully specified. 

procedure MIMD ALPHA BETA (Board, Depth, Principal Continuation) 

{This procedure uses three variables 
Board: a description of the board configuration from which a move is to be made, 
Depth: the depth to which the tree is to be traversed, 
Root Table: the root's score table; 

and three semaphores 
RootTableFree, RootHandled, and LeftOffspringDone.) 

Step 1: (1.1) Read Board and Depth 
(1.2) Initialize RootTable 
(1.3) V(RootTab1eFree). 

Step 2: (Create a process to begin the search) 
HANDLE (Board, true, true, false, 0, RootTable, RootHandled, 

LeftOffspringDone). 

Step 3: {Has the root been assigned a final score?) 
U (RootHandled). 

Step 4: Output the Principal Continuation. 17 
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process HANDLE (Board, MyTurn, Left, ParentLeft, Ply, ParentTable, Done, 
LeftSiblingDone) 

{This process uses the following variables 
MyTurn: true if ply is even, false otherwise, 
Left: true if the process is a left process, false otherwise, 
ParentLeft: true if the parent process is a left process, false otherwise, 
Ply: the ply number, 
ParentTable: the parent's score table, 
MyTable: the score table created automatically when this process was invoked, and 
initialized to the parent's core table; 

and three semaphores 
Done, LeftSiblingDone, and MyTableFree.) 

Step 1: {If this is a terminal node, score it; otherwise, generate its offspring} 
(1.1) V(MyTab1eFree) 
(1.2) if Ply = Depth 

then SCORE (Board, MyTable) 
else GENERATE (Board) 
end if. 

Step 2: {Update parent's score table} 
UPDATE (ParentTable). 

Step 3: if Left and ParentLeft 
then V (LeftSiblingDone) 
end if. 

Step 4: V(Done). 

procedure SCORE (Board, Table) 

{This procedure evaluates the given board configuration (Board) associated with a 
terminal node and puts the resulting static score in the given score table (Table). The 
evaluation function is game dependent and is left unspecified.) 

procedure GENERATE (Board) 

{This procedure searches a subtree rooted at a nonterminal node. It calls procedure 
GENERATE MOVES to produce a list of moves from the current position. The 
moves are stored in an array Moves whose ith location is denoted Moves [i]. The 
number of moves is kept in the variable NumberMoves. OffspringDone and 
LeftOffspringDone are semaphores. Procedure APPLY is then used to apply each of 
the generated moves to the given Board thereby producing board configurations for 
its offspring. Variable NewBoard is used to store each new configuration. The 
variable Cutoff is assigned the value true if a cutoff is to occur, false otherwise.} 

Step 1: GENERATE MOVES (Board, Moves, NumberMoves). 

Step 2: {If the root of the subtree to be searched is a left node, then process 
HANDLE is invoked once for each offspring. The processes thus created 
run concurrently and procedure GENERATE waits until they all 
terminate} 
if Left 
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then (2.1) for I = 1 to NurnberMoves do 
(i) APPLY (Board, Moves[l], NewBoard) 
(ii) HANDLE (NewBoard, not MyTurn, 1 = 1, Left, Ply + 1, MyTable, 

OffspringDone, LeftOffspringDone) 
end for 

(2.2) for I = 1 to NurnberMoves do 
U (OffspringDone) 

end for 
{If the root of the subtree to be searched is a right node, then its offspring are 
searched in sequence by calling process HANDLE for one of them, waiting for it 
to complete, and performing a cutoff check before handling the next offspring) 

else (2.3) Cutoff +- false 
(2.4) I t 1  
(2.5) while (1 < NurnberMoves and not Cutoff) do 

(i) APPLY (Board, Moves[l], NewBoard) 
(ii) HANDLE (NewBoard, not MyTurn, 1 = 1, Left, Ply + 1, MyTable, 

OffspringDone, LeftOffspringDone) 
(iii) U (OffspringDone) 
(iv) {Has the leftmost sibling received a final score?} 

U (LeftSiblingDone) 
(v) V (LeftSiblingDone) 
(vi) if (Ply is odd) and (offspring's score < parent's score) 

then Cutoff t true 
else if (Ply is even) and (offspring's score parent's score) 

then Cutoff c true 
end if 

end if 
(vii) l t l +  1 
end while 

end if. 

procedure UPDATE (ParentTable) 

{This procedure waits until the parent's score table is free. Then, if the score calculated for the 
current node improves on the parent's score, it is copied into the parent's score table. The 
semaphore ParentTableFree is used. This semaphore is created and initialized simulta- 
neously with variable ParentTable.) 

Step 1: U (ParentTableFree). 

Step 2: Copy value if applicable. 

Step 3: V (ParentTableFree). 

procedure GENERATE MOVES (Board, Moves, NurnberMoves) 

(This procedure produces all the legal moves from a position given by variable 
Board, stores them in array Moves, and sets variable NumberMoves to their 
number. The procedure is game dependent and is therefore left unspecified.} C] 
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procedure APPLY (Board, Moves, NewBoard) 

{This procedure changes the current position given by variable Board by making 
the move received in variable Moves. The result is a new board configuration 
NewBoard. The procedure is game dependent and is therefore left unspecified.) 17 

12.5 ANALYSIS AND EXAMPLES 

As it is the case with most MIMD algorithms, the running time of procedure MIMD 
ALPHA BETA is best analyzed empirically. In this section we examine two other 
aspects of the procedure's performance. 

1. One of the design objectives stated in section 12.3.3 is to increase the number of 
cutoffs as much as possible. How does the parallel implementation perform in 
this respect compared with the sequential version? 

2. What amount of shared memory is needed by the algorithm? 

In answering these two questions, we also present some examples that illustrate the 
behavior of procedure MIMD ALPHA BETA. 

12.5.1 Parallel Cutoffs 

In order to answer the first question, we shall invoke the distinction made in section 
12.2 between shallow and deep cutoffs. In the following discussion we use "sequential 
search" and "parallel search" to refer to the sequential alpha-beta algorithm and 
procedure MIMD ALPHA BETA, respectively. 

Shallow Cutoffs 

1. All shallow cutoffs that would occur in a sequential search due to the 
(temporary) score backed up to a node from its left offspring are also caused by 
procedure MIMD ALPHA BETA. This is because all (temporary) scores obtained for 
the right offspring of the node are compared to the score backed up from its left 
offspring for a cutoff check before the right subtree traversal continues. An example 
illustrating this situation is shown in Fig. 12.11. During stage 1 of the parallel 
algorithm, 

(i) the left subtree of the root is searched exhaustively resulting in the root being 
assigned (temporarily) the final score of its left offspring (i.e., 8) and 

(ii) the two right subtrees are partially searched resulting in temporary scores of 3 
and 5 being assigned to the first and second right offspring of the root, 
respectively. 
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MAXIMIZING 

MINIMIZING 

Figure 12.11 Shallow cutoff detected by both sequential search and procedure 
MIMD ALPHA BETA. 

At the beginning of stage 2 it is determined that the circled sections of the two right 
subtrees are cut off in exactly the same way as in sequential traversal. 

A right subtree that is exhaustively searched during stage 2 without cutoff 
compares its final score to the temporary score of the parent and changes the parent's 
score if necessary. Consequently, any cutoff that would have occurred in other right 
subtrees due to the score originally backed up to the parent from its left offspring will 
also occur with the new score backed up to the parent from a right offspring. 

2. Some shallow cutoffs that would occur in a sequential search can be missed 
by procedure MIMD ALPHA BETA due to the way in which processes are 
generated. In the example of Fig. 12.12, a sequential search would cut off the circled 
portion of the tree. Parallel search misses the cutoff since a process is created to search 
that subtree before the right subtree of the root completes its search and updates the 
root's score to 7. 

3. Some cutoffs that are missed in a sequential search may occur in procedure 
MIMD ALPHA BETA due to the way in which processes are generated. A right 
subtree search that terminates early and causes a change in the parent's score may 
cause cutoffs in other right subtrees that would not occur in a sequential search. This 
situation is illustrated in Fig. 12.13, where both right offspring of the root compare 
their initial scores of 6 and 7, respectively, to the final score of the left offspring, that is, 
5. Neither right subtree search is cut off, so processes are generated to continue that 
search. But since the second right offspring of the root has no further offspring of its 
own to be examined, its score of 7 is final, and because 7 > 5, that score is backed up 
to the root. Now, when the terminal node labeled 8 has been scored and the process at 
the first right offspring of the root performs a cutoff check before proceeding, this time 
a cutoff occurs. The portion of the tree that is cut off is shown circled in Fig. 12.13; this 
portion is not cut off during a sequential search. 
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F-I 
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MAXIMIZING 

MINIMIZING 

Figure 12.12 Shallow cutor missed by procedure MIMD ALPHA BETA. 

Figure Shallow cutoff missed in 
sequential search and discovered by pro- 
cedure MIMD ALPHA BETA. 

Deep Cutoffs. In order for deep cutoffs to occur at a node, scores from 
searches of other parts of the tree must be available. In a sequential search the scores 
at each ply are known to every node and are stored in a single global score table. In 
procedure MIMD ALPHA BETA this is impossible, as stated in the previous section. 
We now show briefly why this is the case. Assume that a single global score table was 
used. In Fig. 12.1qa) nodes 1 and 2 are scored simultaneously. Suppose that node 2 
receives its score first, as shown in Fig. 12.1qc). This means that the right offspring of 
the root is backed up the score 9 at ply 1 and then the left offspring is backed up the 
score 6 (overwriting the score table value of 9 at ply 1). Now when node 3 is scored, the 
value 8 will not be recorded in the table at ply 1 (since 8 > 6 and we are minimizing at 
ply 1). Therefore, the value of 8 will not be backed up to the root as it would be in the 
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PLY 0 

PLY 1 

PLY 2 

PLY 0 

PLY 1 

PLY 2 

(b) INITIALLY (c) AFTER NODE (d) AFTER NODE (e) AFTER NODE 
2 IS SCORED 1 IS SCORED 3 IS SCORED 

Figure 12.14 Using single score table in parallel search leads to incorrect results. 

sequential search. As a result, the best sequence of moves from the root, namely, 
(m,, m,), is not returned; instead (m,, m,) is returned. 

We conclude from the discussion that having a single score table is impossible in 
parallel search as it would lead to incorrect results. The alternative adopted by 
procedure MIMD ALPHA BETA is to assign to each node created its own score 
table; this, however, means that the information necessary for a deep cutoff to occur is 
not available in general, as shown in the following example. 

Example 12.2 

Figure 12.15 illustrates a deep cutoff occurring in a sequential search: The circled portion 
is cut off due to the score of the root's left subtree being available in the score table, while 
the root's right subtree is searched. 

This deep cutoff cannot occur in procedure MIMD ALPHA BETA, as shown in 
Fig. 12.16: Each node of the right subtree has a score table initialized to the score table of 
its parent and not containing the score of the root's left offspring. 
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PLY 0 

PLY 1 

PLY 2 

PLY 3 

PLY 4 

(b) INITIALLY AFTER NODE 
IS SCORED 

AFTER NODE 
IS SCORED 

Figure 12.15 Deep cutoff in sequential search. 

12.5.2 Storage Requirements 

This section presents an analysis of the storage requirements of procedure MIMD 
ALPHA BETA. We begin by deriving an upper bound on the amount of storage 
needed by the procedure under the assumption that an infinite number of processors 
is available. A more realistic estimate of the storage requirements is then derived by 
fixing the number of processors used during the search. 

Unlimited Processors. Recall that the procedure makes a crucial dist- 
inction between the leftmost offspring of a node and the remaining offspring of that 
node. During stage 1, knowledge about the behavior of the sequential version is used 
to explore several paths in parallel. During each iteration of stage 2, several subtrees 
are searched in parallel, each subtree, however, being searched sequentially. This is 
illustrated in Figs. 12.17 and 12.18. 

In Fig. 12.17 a uniform tree is shown whose depth and fan-out are both equal to 
3. The paths explored in parallel during stage 1 are indicated by bold lines. Calling the 





Figure 12.17 Subtrees traversed during stage 1 and first iteration of stage 2. 

Figure 12.18 Subtrees traversed during second iteration of stage 2. 
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root a left node, it is clear that left ofspring and their right ofspring are given priority 
by the procedure. Nodes explored during stage 1 will therefore be known as primary 
nodes, that is, nodes at which a process is created during stage 1 to do the search. 
Formally: 

1. The root is a primary left offspring, 
2. a primary left offspring at ply k is the left offspring of a primary (left or right) 

offspring at ply k - 1, and 
3. a primary right offspring at ply k is a right offspring of a primary left offspring at 

ply k - 1. 

Following stage 1, the temporary score backed up at node 1 is compared with 
the ones at nodes 2 and 3; if the former is smaller, then the unexplored portions of the 
subtrees rooted at 2 and 3 need not be considered at all. Otherwise, one or both of 
these two portions, shown circled in Fig. 12.17, are searched simultaneously (each 
sequentially) during the first iteration of stage 2. 

When the subtrees rooted at nodes 2 and 3 have been fully searched, the final 
score backed up at node 1 is compared with the temporary scores at nodes 4 and 5 for 
a cutoff. If the former is larger, the cutoff check is successful and the unexplored 
subtrees of 4 and 5 need not be considered. Otherwise, one or both of the subtrees 
shown circled in Fig. 12.18 are searched simultaneously (each sequentially) during the 
second iteration of stage 2, and so on. 

To study the storage requirements of the procedure, we note that for every node 
being explored during the search at least one storage location is needed to hold the 
temporary score of that node. When an explored node is discarded from further 
consideration, its storage locations are reallocated to another unexplored node that 
the procedure decides to examine. Therefore, in order to determine how much storage 
is needed, it is necessary to derive the maximum number of nodes simultaneously 
explored at any time during the search. This number is precisely the number of 
primary nodes (during stage 1 where the maximum degree of parallelism occurs). 

To see this, note that any tree searched sequentially during stage 2 is rooted at a 
node that was primary, that is, explored during stage 1. This subtree is isomorphic to 
the leftmost subtree rooted at the same primary node. The leftmost subtree has at least 
as many primary nodes as a subtree searched in stage 2. Therefore, the number of 
nodes searched in parallel during stage 2 cannot exceed the number of primary nodes. 

This latter number is now derived (keeping in mind that an infinite number of 
processors is available and therefore no bound exists on the number of processes to be 
created). Let 

L(k) = number of primary left offspring at ply k 

and 

R(k) = number of primary right offspring at ply k. 
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In Fig. 12.16, L(3) = 5 and R(3) = 6. From our definition of primary nodes it follows 
that for a uniform tree with fan-out f we have 

Uk) = L(k - 1) + R(k - I), k 2 1, 

R(k) = L(k - 1) x (f - I), k 2 1, 

L(O) = 1 and R(0) = 0. 

For a uniform tree of depth d, the total number of primary nodes is therefore given by 
d 

and the storage requirements of the algorithm are clearly of O(S). 
Solving the preceding recurrence, we get 

and 

where 

x = [I + q f - 1)11'2. 

Limited Processors. It is already clear that our assumption about the 
availability of an unlimited number of processors can now be somewhat relaxed. 
Indeed, the maximum number of processors the algorithm will ever need to search a 
uniform tree of depth d will be 

In Fig. 12.16, P( f ,  d) = 11. Even though P( f ,  d) establishes an upper bound on the 
number of processors that will ever be needed by the algorithm to search a uniform 
tree, it is still a very large number of order f as one should have expected. In 
practice, however, only a small number of processors is available and we are led to 
reconsider our definition of primary nodes. The actual number of primary nodes is in 
fact determined by the number of processors available. If N  processors are used to 
search a uniform tree of fan-out f, then the actual number of primary nodes at level k 
is equal to 

min{L(k) + R(k), N } ,  

and the total number of primary nodes for a tree of depth d is given by the function 

min{L(k) + R(k), N } .  
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Under these conditions the storage requirements of the algorithm are clearly of 
O(s(N)). Note that S = s(P(f; d) ) ,  and that for N < f we have 

s(N)  = 1 + Nd. 

12.6 P R O B L E M S  

12.1 The state-space graph in Fig. 12.1 contains twenty-three nodes. Graphs for other values 
of B may contain more or less nodes. In the worst case, 2" nodes may have to be 
generated to solve the subset sum problem, where n is the number of elements of S. A 
sequential algorithm for traversing such a state-space graph requires exponential time in 
n in the worst case. Derive a parallel algorithm for the subset sum problem. What is the 
running time of your algorithm? 

12.2 Prove the equality 

M(  f, 6) = f ld i21 + f ld121 - 1 

of section 12.3.1. 
12.3 Discuss the following straightforward approach to implementing the alpha-beta 

algorithm in parallel: A process is created for each offspring of the root whose purpose is 
to search that offspring's subtree using the alpha-beta algorithm. If enough processors 
are available, then all processes are carried out simultaneously. 

12.4 In procedure MIMD ALPHA BETA, an individual score table is assigned to each node 
when a process is generated to search the subtree containing that node. This table is 
initialized to the values in the score table of the node's parent. As a result, the information 
necessary for a deep cutoff to occur is not available in general. In practice, however, a 
node is not given a complete score table but rather just a small table containing the 
scores for the two previous plies and the node itself. This means that the complete score 
table for a node is actually distributed throughout the tree along the path from the root 
to the node. With this structure it would be possible to obtain deep cutoffs as follows. 
Suppose that during a search of the tree in Fig. 12.16 the following sequence occurs: 
(a) the search of the left subtree of the root begins, 
(b) the search of the right subtree begins, and 
(c) the search of the left subtree completes, backing up a temporary score to the root. 

At this point searching along some paths in the right subtree could be cut off, the 
information indicating this being available in the score table of the root node. However, 
in order to effect this deep cutoff, the information must be propagated down the right 
subtree. Extend procedure MIMD ALPHA BETA to deal with this circumstance. 

12.5 The alpha-beta algorithm owes its name to the fact that at any point during the tree 
search the final value of the root lies between two values that are continually updated. 
These two values are arbitrarily called alpha and beta. Consequently, the problem of 
finding the principal continuation can be viewed as the problem of locating the root of a 
monotonic function over some interval. This leads to the following alternative parallel 
implementation of the alpha-beta algorithm. The interval (-  co, + co) is divided into a 
number of disjoint subintervals. A process is created for each subinterval whose purpose 
is to search the game tree for the solution over its associated subinterval. If enough 
processors are available, then each process can be assigned to a processor, and hence all 
processes can be carried out independently and in parallel. Describe this algorithm 
formally. 
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12.6 Discuss the merits of each of the following approaches to speed up game tree search: 
(i) Computing the terminal node evaluation function in parallel. 
(ii) Storing the scores of some terminal nodes in a special hash table to avoid having to 

recompute them should these positions reoccur. 
(iii) Storing moves that created cutoffs in a special table: If any of these moves occurs at a 

later stage of the game, it is given priority by the search algorithm over other moves 
from the same node. 

12.7 Can you think of other models of parallel computation, besides the SM MIMD 
computer, that can be used profitably to implement the alpha-beta algorithm in 
parallel? For example, how can a tree of processors be used to search a game tree? 

12.8 Assume that a sequential algorithm can traverse a game tree up to a depth d. Argue for or 
against each of the following statements: 
(i) A parallel algorithm allows that tree to be traversed in a shorter amount of time. 
(ii) A parallel algorithm allows a tree of depth larger than d to be traversed in the same 

amount of time. 
12.9 The subset sum problem of example 12.1 is a representative of the class of decision 

problems, where it is required to determine whether a solution satisfying a number of 
constraints exists. Another example is the traveling salesman problem of problem 10.50. 
Decision problems can sometimes be turned into optimization problems. The optimiza- 
tion version of the traveling salesman problem calls for finding the Hamilton cycle of 
smallest weight in a given weighted graph. Propose a parallel algorithm for solving this 
problem based on the branch-and-bound approach (problem 1.13). 

12.10 Suggest other problems that can be solved through state-space traversal and design 
parallel algorithms for their solution. 

12.7 B l B L l O G R A P H l C A L  R E M A R K S  

State-space traversal has been used to solve decision and optimization problems. Both kinds of 
problems arise in a branch of computer science known as artijcial intelligence (AI). This is a 
field of study concerned with programming computers to perform tasks normally requiring 
human "intelligence." Since our understanding of the essence of intelligence is at best vague, A1 
is largely defined by the kind of problems researchers and practitioners in that field choose to 
work on. Examples of such problems include making computers understand natural languages, 
prove mathematical theorems, play games of strategy, solve puzzles, and learn from previous 
experience ([Shapiro]). Parallel algorithms for A1 problems are described in [Deering], 
[Feldman], [Fennell], [Forgy], [Miura], [Reddy], [Rumelhart], [Stanfill], [Uhr], [Ullman], 
and [Wah 11. 

Programming computers to play games was one of the earliest areas of AI. As it did in the 
past, this activity continues today to attract researchers for a number of reasons. The first and 
most obvious of these is that the ability to play complex games appears to be the province of the 
human intellect. It is therefore challenging to write programs that match or surpass the skills 
humans have in planning, reasoning, and choosing among several options in order to reach 
their goal. Another motivation for this research is that the techniques developed while 
programming computers to play games may be used to solve other complex problems in real 
life, for which games serve as models. Finally, games provide researchers in A1 in particular and 
computer scientists in general with a medium for testing their theories on various topics ranging 
from knowledge representation and the process of learning to searching algorithms and parallel 
processing. Procedure MIMD ALPHA BETA is from [Akl 1). A number of parallel algorithms 
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for traversing game trees, along with their empirical analyses, are described in [Akl 11, [Akl2], 
[Baudet], [Finkel 11, [Finkel 23, [Fishburn], [Marsland I], [Marsland 21, and [Stockman]. 

Various parallel implementations of the branch-and-bound approach to solving optimi- 
zation problems and analyses of the properties of these implementations can be found in 
[Imai], [Kindervater], [Kumar], [Lai], [Li I], [Li 21, [Li 31, [Mohan], [Quinn], [Wah 21, 
[Wah 33, and [Wah 41. 
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Decision and Optimization 

13.1 INTRODUCTION 

In the previous chapter we saw how state-space traversal techniques can be used to 
solve various decision and optimization problems. Recall that a decision problem asks 
whether a solution satisfying some constraints exists. Also, given an objective 
function, an optimization problem calls for finding an optimal solution, that is, one 
that maximizes or minimizes the objective function. Our purpose in this chapter is to 
present other ways to approach such problems. For illustration we use the problems 
of job sequencing with deadlines and the knapsack problem. Our parallel solutions to 
these problems rely on the ability to efficiently sort a sequence and compute its preJix 
sums. The first of these operations was covered in detail in chapter 4. We devote a 
large part of this chapter to a thorough study of the second operation first 
encountered in chapter 2. 

In section 13.2 it is shown how a number of different models can be used to 
compute the prefix sums of a sequence. A decision problem bob sequencing with 
deadlines) and an optimization problem (the knapsack problem) are addressed in 
section 13.3. 

13.2 COMPUTING PREFIX SUMS 

A sequence of n numbers X = {x , ,  x , ,  . . . , xn- ,), where n 2 1, is given. We assume 
throughout this chapter that n is a power of 2; in case it is not, then the sequence can 
be padded with elements equal to zero in order to bring its size to a power of 2. 
It is required to compute all n initial sums S = { so ,  s , ,  . . . , sn - , } ,  where 
si = x ,  + x, + - . -  + xi for i = 0, 1,. . . , n - 1. These sums are often referred to as 
the preJix sums of X .  Indeed, if the elements of X are thought of as forming a 
string w = x,x,  . . . xn- ,, then each si is the sum of those elements forming a prejix of 
length i .  
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Sequentially, the n prefix sums can be computed in O(n) time by the following 
procedure. 

procedure SEQUENTIAL SUMS (X, S) 

Step 1: so +- x,. 

Step 2: for i = 1 to n - 1 do 
s i t S i - l  + X i  

end for. 

This running time is optimal since R(n) steps are needed simply to read the input, 
By contrast, when several processors are available, each capable of performing 

the addition operation, it is possible to obtain the sequence S = (so, s,, . . . , s,- 
significantly faster. Procedure PARALLEL SUMS shows how this is done. 

procedure PARALLEL SUMS (X, S) 

Step 1: for i = 0 to n - 1 do in parallel 
Si  + X i  

end for. 

Step 2: for j = 0 to (log n) - 1 do 
for i = 2' to n - 1 do in parallel 

s i t  S i - 2 ,  + Si 

end for 
end for. 

This procedure uses a scheme known as recursive doubling. In chapter 2 we saw how 
this scheme can be implemented on a shared-memory SIMD computer. Procedure 
ALLSUMS of section 2.5.2 requires n processors Po, P I ,  . . . , P,- ,. Initially, Pi holds 
x i ;  when the procedure terminates, Pi holds si. The procedure runs in O(1og n) time for 
a cost of O(n log n). This cost is not optimal in view of the O(n) sequential operations 
sufficient to compute the prefix sums. 

13.2.1 A Specialized Network 

The first question that comes to mind is: Do we really need the power of the shared- 
memory model to implement procedure PARALLEL SUMS? A partial answer to this 
question is provided in section 2.8. There it is suggested that recursive doubling can be 
implemented on a special-purpose network of processors, as illustrated in Fig. 13.1 for 
n = 8. Here each square represents a processor. There are 1 + log n rows, each with n 
processors, that is, n + n log n processors in all. Assume that the processors in each 
row are numbered from 0 to n - 1 and that the rows are numbered from 0 to log n. 
Processor i in row j + 1 receives input from 

(i) processor i in row j, and 
(ii) processor i - 2' in row j, if i > 2'. 
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Figure 13.1 Recursive doubling implemented by special-purpose network. 

Each processor is capable of computing the sum of its two inputs and of sending the 
result to the next row of processors using the connections indicated. A processor 
receiving only one input simply passes that input to the next row. The elements of X 
enter the network from one end (one element per processor), and the outputs are 
received at the other end. All prefix sums are computed in O(1og n) time. This running 
time is the best possible in view of the R(1og n) lower bound derived in section 7.3.2. 
The network's cost is O(n log2n). In other words, a model of computation weaker than 
the shared memory is capable of achieving the same running time as procedure 
ALLSUMS using a larger number of processors. 

13.2.2 Using the Unshuffle Connection 

It is possible to reduce the number of processors in the network to O(n) while 
preserving the O(log n) running time. The idea, hinted at in problem 2.2, is to use a 
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Figure 13.2 UnshufAe connection for computing prefix sums. 

parallel computer with one row of processors and have it simulate the network of Fig. 
13.1. All processors operate synchronously. At each step, the results of the com- 
putation are fed back to the processors as input. Depending on the value of a mask 
variable computed locally, a processor may produce as output the sum of its two 
inputs (if mask = 1) or simply propagate one of them unchanged (if mask = 0). Such a 
scheme is illustrated in Fig. 13.2, again for n = 8. 

There are two kinds of nodes in Fig. 13.2: 

(i) the square nodes represent processors Po,  P I , .  . . , P,- , capable of computing 
the mask variable and the addition operation and 

(ii) the circle nodes represent very simple processors capable of producing as output 
two copies of their input; we denote the contents of these processors by yo, y,, 
. . . , yn-1. 

The square processors send their outputs to the circle processors via a perfect unshufle 
interconnection. (The latter is obtained by reversing the orientation of the arrows in a 
perfect shuffle mapping, as explained in problem 2.2.) Initially, yi = xi for i = 0, 1,. . . , 
n - 1 .  During each iteration Pi receives yi and y i p ,  as input, except for Po, which 
receives yo only. Now Pi computes the value of mask to determine whether to produce 
yi + y i - ,  or yi as output. Referring to Fig. 13.2, mask = 1 during the first iteration for 
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all Pi ,  except Po,  for which mask = 0. Once the Pi produce their outputs, the new 
values of the yi are as follows: 

Y4 = xo + x1 

Y, = x2 + x3 

y6 = X4  + X 5  

y ,  = X 6  + X,. 

During the second iteration, mask = 1 for all Pi except where i is a multiple of 4 and 
the new values of the yi are 

y, = x4 + x ,  + x, + x,. 

During the third and final iteration, mask = 0 for those Pi where i is a multiple of 2 
and mask = 1 for the rest. Following the computation by the Pi ,  yi = si for all i. All 
prefix sums are therefore computed in O(1og n) time using O(n) processors for a cost of 
O(n log n), which is not optimal. 

It should be noted that the parallel computer just described is clearly weaker 
than one with a shared memory. The comparison with the network of section 13.2.1, 
however, is more difficult: 

1. On the one hand, the present model may be considered weaker since the 
interconnection it uses is not as specialized as the one in Fig. 13.1. 

2. On the other hand, it may be considered stronger as it comprises more powerful 
processors, having to compute the mask variable locally at each iteration and 
behave according to its value. 
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13.2.3 Prefix Sums on a Tree 

We now describe a parallel algorithm for computing the prefix sums that combines 
the advantages of those in the previous two sections without their disadvantages. 
First, the algorithm is designed to run on a (binary) tree of processors operating 
synchronously: A tree is not only less specialized than the network in section 13.2.1, 
but in addition is a simpler interconnection than the perfect unshuffle. Second, the 
algorithm involves no mask computation and hence requires very simple processors. 

Let the inputs x,, x,, . . . , xn-, reside in the n leaf processors Po, P,, . . . , Pn-, of 
a binary tree, one input to a leaf. When the algorithm terminates, it is required that Pi 
hold si. During the algorithm, the root, intermediate, and leaf processors are required 
to perform very simple operations. These are described for each processor type. 

Root Processor 

(1) if an input is received from the left child 
then send it to the right child 
end if. 

(2) if an input is received from the right child 
then discard it 
end if. 

Intermediate Processor 

(1) if an input is received from the left and right children 
then (i) send the sum of the two inputs to the parent 

(ii) send the left input to the right child 
end if. 

(2) if an input is received from the parent 
then send it to the left and right children 
end if. 

Leaf Processor Pi 

(1) s i  + xi. 
(2) send the value of xi to the parent. 
(3) if an input is received from the parent 

then add it to si 
end if. 

Note that the root and intermediate processors are triggered to action when they 
receive an input. Similarly, after having assigned xi to si and sent si to its parent, a leaf 
processor is also triggered to action by an input received from its parent. After the 
rightmost leaf processor has received log n inputs, the values of so, s,, . . . , sn-, are the 
prefix sums of x,, x,, . . . , xn- ,. 
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Example 13.1 

The algorithm is illustrated in Fig. 13.3 for the input sequence X = (1, 2, 3 , 4 ) .  

Analysis. The number of steps required by the algorithm is the distance 
between the leftmost and rightmost leaves, which is 2 log n. Thus t(n) = O(1og n). Since 
p(n) = 2n - 1, c(n) = O(n log n). This cost is not optimal. It is not difficult, however, to 
obtain a cost-optimal algorithm by increasing the capabilities of the leaf processors. 

Let a processor tree with N leaves Po, P,, . . . , PN-, be available, where n 2 N. 
We assume for simplicity that n is a multiple of N ,  although the algorithm can 
easily be adapted to work for all values of n. Given the input sequence 
X = {xO, x,, . . . , xn- ,), leaf processor Pi initially contains the elements 
Xi(nlN) + ,, . . . , +(n,N, - The root and intermediate processors behave exactly as 
before, whereas the leaves now execute the steps given in the next procedure. In what 
follows, vi denotes the number of 1 bits in the binary representation of i, that is, 

v0 = 0 

and m = n/N. 

Leaf Processor Pi 

(1) Compute all prefix sums of xi,,,, xi,,,+,, . . . , store the results in sin, 
sim+ l r . .  . , sim + m- and send s ~ , + ~ - ,  to the parent processor. 

(2) Set a temporary sum ri to zero. 
(3) if an input is received from the parent 

then add it to ri 
end if. 

(4) if ri is the sum of exactly vi inputs received from the parent 
then add ri to each of simr sin + I ,  . . . , sim + m - 1 

end if. 

In order to understand the termination condition in 4, note that vi is precisely the 
number of roots of subtrees to the left of Pi that will send input to Pi. 

Analysis. The number of data that are required by the algorithm to travel up 
and down the tree is independent of the number of elements stored in each leaf 
processor. It follows that the running time of the algorithm is the sum of 

1. the time required by leaf Pi to compute sim, sim+ ,, . . . , sim+,,,- , and then send 
si,+,-, to its parent [i.e., O(n/N) time] since all leaves execute this step 
simultaneously; 

2. the time required by the rightmost leaf PN-, to receive its final input [i.e., 
O(1og N) time]; and 

3. the time required by the rightmost leaf PN-, (the last processor to terminate) to 
add rN-, to each of the sums it contains [i.e., O(n /N)  time]. 
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Figure 13.3 Computing prefix sums on tree of processors. 

Thus t(n) = O(n/N) + O(1og N). Since p(n) = 2N - 1, c(n) = O(n + N log N). It fol- 
lows that the algorithm is cost optimal if N log N = O(n). For example, 
N = O(n/log n) will suffice to achieve cost optimality. 

It should be noted here that the algorithm's cost optimality is due primarily to 
the fact that the time taken by computations within the leaves dominates the time 
required by the processors to communicate among themselves. This was achieved by 
partitioning the prefix sum problem into disjoint subproblems that require only a 
small amount of communication. As a result, the model's limited communication 
ability (subtrees are connected only through their roots) is overcome. 
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13.2.4 Prefix Sums on a Mesh 

We conclude this section by showing how the prefix sums of a sequence can be 
computed on a mesh-connected array of processors. Our motivation to study a 
parallel algorithm to solve the problem on this model is due to two reasons: 

1. As shown in the conclusion of section 5.3.2, when the time taken by a signal to 
travel along a wire is proportional to the length of that wire, the mesh is 
preferable to the tree for solving a number of problems. These problems are 
characterized by the fact that their solution time is proportional to the distance 
(i) from root to leaf in the tree and (ii) from top row to bottom row in the mesh. 
The problem of computing the prefix sums of an input sequence is one such 
problem. 

2. As indicated in section 4.8, a mesh with n processors can sort a sequence of n 
inputs faster than a tree with n leaves regardless of any assumptions we make 
about the signal propagation time along the wires. This is particularly relevant 
since sorting is an important component of our solution to the problems 
described in the next section. 

For ease of presentation, we assume in what follows that n is a perfect square 
and let m = n1I2. The prefix sums of X = {x,, x , ,  . . . , x,- ,} can be computed on an 
m x m mesh-connected computer as follows. Let the n processors Po, P,, . . . , P,-, be 
arranged in row-major order. Initially, Pi contains xi. When the algorithm terminates, 
Pi contains si. The algorithm consists of three steps. In the first step, with all rows 
operating in parallel, the prefix sums for the elements in each row are computed 
sequentially: Each processor adds to its contents the contents of its left neighbor. In 
the second step, the prefix sums of the contents in the rightmost column are computed. 
Finally, again with all rows operating in parallel, the contents of the rightmost 
processor in row k - 1 are added to those of all the processors in row k (except the 
rightmost). The algorithm is given in what follows as procedure MESH PREFIX 
SUMS. In it we denote the contents of the processor in row k and column j by ukj ,  
whereO<k<m- 1 a n d O < j < m -  1. 

procedure MESH PREFIX SUMS (X, S )  

Step 1: for k = 0 to m - 1 do in parallel 
f o r j = l t o m - 1 d o  

"hj "hj + " k , j -  1 

end for 
end for. 

Step 2: for k = 1 to m - 1 do 
" k ,m-1  + "k ,m-1  + U k - 1 . m - 1  

end for. 
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Step 3: for k = 1 to m - 1 do in parallel 
for j = m - 2 downto 0 do 

ukj + uk j  + U k -  1.m- I 

end for 
end for. 

Note that in step 3, u,- ,,,-, is propagated along row k from the processor in 
column m - 1 to that in column 0, each processor adding it to its contents and passing 
it to its left neighbor. 

Analysis. Each step requires O(m) time. Therefore, t(n) = O(n1I2). Since 
p(n) = n, c(n) = O(n3I2), which is not optimal. 

Example 13.2 

Let n = 16. The behavior of procedure MESH PREFIX SUMS is illustrated in Fig. 13.4. 
In the figure, Aij = xi + xi+ + . . . + xj. 

Now assume that an N1I2 x N1IZ mesh of processors is available, where N < n. 
To compute the prefix sums of X = { x o , x , , .  . . , x , - , ) ,  each processor initially 
receives n/N elements from X and computes their prefix sums. Procedure MESH 

(a) INITIALLY (b) AFTER STEP 1 

(c) AFTER STEP 2 (d) AFTER STEP 3 

Figure 13.4 Computing prefix sums using procedure MESH PREFIX SUMS. 
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PREFIX SUMS can now be modified, in the same way as the tree algorithm in the 
previous section, so that when it terminates, each processor contains n/N prefix sums 
of X. The modified procedure has a running time of O(n/N) + O(N1I2) and a cost of 
O(n) + O(N3I2). This cost is optimal when N = O(n2I3). 

13.3 APPLICATIONS 

In this section we show how an efficient algorithm for computing the prefix sums of a 
sequence can be used to solve decision and optimization problems. Two problems are 
chosen for illustration: a decision problem, namely, job sequencing with deadlines, and 
an optimization problem, namely, the knapsack problem. For each of these problems 
we give an algorithm that runs on a tree-connected parallel computer. A crucial step 
in both algorithms is the computation of the prefix sums of a sequence as described in 
section 13.2.3. We conclude this section by showing that despite their simplicity the 
tree solutions to the two optimization problems are not as efficient as their mesh 
counterparts. 

13.3.1 Job Sequencing with Deadlines 

A set of n jobs J = {j,, j,, . . . , jn- ,} is given to be processed on a single machine. The 
machine can execute one job at a time, and when it is assigned a job, it must complete 
it before the next job can be processed. With each job ji is associated 

(i) a processing time ti and 
(ii) a deadline di by which it must be completed. 

A schedule is a permutation of the jobs in J that determines the order of their 
execution. A schedule is said to be feasible if each job finishes by its deadline. The 
question is: Given n jobs {j,, j,, . . . , jn- ,}, with processing times {to, t,, . . . , tn- I )  and 
deadlines {do, dl,. . . , dn- ,}, does a feasible schedule exist? It turns out that this 
question can be answered in the affirmative if and only if any schedule where the jobs 
are executed in nondecreasing order of deadlines is feasible. Therefore, to solve the 
problem, it suffices to arrange the jobs in order of nondecreasing deadlines and test 
whether this yields a feasible schedule. In case it does, we know that the answer to the 
question is yes, otherwise the answer is no. Sequentially, this algorithm requires 
O(n log n) time to sort the jobs and then O(n) time to test whether each job can be 
completed by its deadline. 

We are now ready to present our parallel algorithm for solving the sequencing 
problem based on the preceding idea. The algorithm runs on a tree-connected parallel 
computer with leaf processors Po, P, ,  . . . , Pn- ,. We assume for notational simplicity 
that in the original statement of the problem, the jobs are already arranged in order of 
nondecreasing deadlines; in other words, 
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Initially, leaf processor Pi  contains t i  and d,. The algorithm is given as procedure 
TREE SEQUENCING. 

procedure TREE SEQUENCING (J, answer) 

Step 1: Compute so, s , ,  . . . ,s,- ,, the prefix sums of t,, t , ,  . . . , t,_,. 

Step 2: (i) leaf processor Pi 
if si < di 
then send "yes" to parent 
else send "no" to parent 
end if 

(ii) intermediate processor 
if inputs from both children are "yes" 
then send "yes" to parent 
else send "no" to parent 
end if 

(iii) root processor 
if inputs from both children are "yes" 
then answer t "feasible schedule exists" 
else answer t "no feasible schedule" 
end if. 

Example 13.3 

Let n = 4 with { to ,  t , ,  t , ,  t , }  = ( 1 ,  3, 3, 4 )  and {d, ,  d l ,  d, ,  d3 j  = (3, 5, 7 ,  9 ) .  Thus 
{ S O ,  ~ 1 ,  ~ 2 ,  ~ 3 )  = { 1 ,4 ,7 ,11 } .  We have so < do, s, < d l ,  and s ,  < d, ;  however, s3 > d,  and 
a feasible schedule does not exist for this problem. 

Analysis. Both steps 1 and 2 require O(1ogn) operations. However, the 
running time of the algorithm is dominated by the time taken to initially sort the jobs 
in the leaves in order of nondecreasing deadlines. This time is known from section 4.8 
to be R(n). 

13.3.2 The Knapsack Problem 

We are given a knapsack that can carry a maximum weight of Wand a set of n objects 
A = (a, ,  a , ,  . . . , an- ,) whose respective weights are {w,, w , ,  . . . , w n -  Associated 
with each object is a profit, the set of profits being denoted by { p , ,  p , ,  . . . , p,- ,}. If we 
place in the knapsack a fraction zi of the object whose weight is w i ,  where 0 < zi < 1,  
then a profit of zipi is gained. Our purpose is to fill the knapsack with objects (or 
fractions thereof) such that 

(i) the total weight of the selected objects does not exceed W and 
(ii) the total profit gained is as large as possible. 
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Formally, given 2n + 1 positive numbers w,, w,, . . . , wn-,, p,, p,, . . . , pn- ,, it is 
required to maximize the quantity 

subject to the two conditions 

1. 0 < zi < 1 for all i and 
2. 1;:; zi X Wi < w 

An optimal solution is a sequence Z = {z,, z,, . . . , zn- ,} that maximizes Q while 
satisfying conditions 1 and 2. Such a solution is obtained if the objects are examined in 
nonincreasing order of the ratios pi/wi. If an object whose turn has come to be 
considered fits in the remaining portion of the knapsack, then the object is included; 
otherwise only a fraction of the object is placed in the knapsack. Sequentially, this 
requires O(n log n) time to sort the profits and weights and then O(n) time to examine 
all the objects one at a time. 

Our parallel algorithm for finding the optimal sequence {z,, z,, . . . , zn- ,) uses 
this approach. It runs on a tree-connected parallel computer with leaf processors Po, 
PI, .  . . , Pn-, . We assume for notational simplicity that in the original statement of the 
problem, the objects are already sorted in order of nonincreasing profit to weight 
ratios, in other words, 

Initially, leaf processor Pi contains wi, pi, and W The algorithm is given in what 
follows as procedure TREE KNAPSACK. When the procedure terminates, the 
solution {z,, z,, . . . ,z,-,) resides in the leaves. Let s-, = 2W 

procedure TREE KNAPSACK (A, W! 2) 

Step 1: (1.1) Compute so, s,, . . . , sn- ,, the prefix sums of w,, w , ,  . . . , wn-, 
(1.2) for i = 1 to n - 1 do in parallel 

Pi computes si- 
end for. 

Step 2: for i = 0 to n - 1 do in parallel 
if si < W 
then z i t  1 
else if si > W and si- < W 

then zi + (W - si- ,)/wi 
else zi + 0 
end if 

end if 
end for. [7 
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Note that the total profit Q may be computed at the root as follows: 

(i) Each leaf processor Pi computes 

profit, t zi x pi 

and sends profit, to its parent. 
(ii) Each intermediate processor adds the two inputs received from its children and 

sends the result to its parent. 
(iii) The root adds the two inputs received from its children; this is Q. 

Example 13.4 

Let n = 4 with {w, ,  w , ,  w,, w,}  = {5 ,  9, 2, 41, {p, ,  p,, p,, p,} = (100, 135, 26, 201, and 
W =  15. Thus (so, s,, s,, s,) = ( 5 ,  14, 16, 20). Since so < W and s ,  < W, z o = z l  = 1 .  Also 
s, > Wand therefore z ,  = (15 - 14112 = 0.5. Finally, s ,  > W and hence z ,  = 0. 

Analysis. Steps 1 and 2 require O(1ogn) and O(1) steps, respectively. 
However, the running time of the algorithm is dominated by the time taken to initially 
sort the profits and weights in the leaves in order of their nonincreasing ratios. This 
time is known from section 4.8 to be R(n). 

13.3.3 Mesh Solutions 

As we saw in the previous two sections, the tree solutions require at least R(n) time if 
the input sequences are not properly sorted. Our purpose here is to briefly show that 
in these circumstances a mesh-connected parallel computer is a more attractive model 
for solving these decision and optimization problems. 

Assume that the inputs to the job sequencing and knapsack problems are not 
sorted initially, as required by procedures TREE SEQUENCING and TREE 
KNAPSACK, respectively. If an n'IZ x n1I2 mesh-connected computer is available, 
then 

(i) an input sequence with n elements can be sorted on the mesh in O(n'i2) time as 
indicated in section 4.8 and 

(ii) each of the two procedures TREE SEQUENCING and TREE KNAPSACK 
can be easily modified to run on the mesh in O(n1I2) time. 

It follows that the overall running time required to solve each of the job sequencing 
and knapsack problems is 

This is significantly faster than the time that would be required by the corresponding 
tree algorithms. Since p(n) = n, it follows that c(n) = O(n3I2). This cost is not optimal 
in view of the O(n1ogn) running time sufficient to solve these two problems 
sequentially. 
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Assume now that an N'I2 x N1J2 mesh is available, where N < log2n. We know 
from section 4.8 that a mesh with this many processors can sort an n-element sequence 
with optimal cost O(n log n). Since log2n < n2I3 for sufficiently large n, we also have 
from section 13.2.4 that the prefix sums of an n-element sequence can be computed on 
this N1I2 x N~~~ mesh with an optimal cost of O(n). These two operations, namely, 
sorting and computing the prefix sums, dominate all others in solving the job 
sequencing and knapsack problems. It follows that these two problems can be solved 
optimally on a mesh of processors. 

13.4 PROBLEMS 

13.1 Are the "circle" processors in Fig. 13.2 really needed? 
13.2 Do the computers described in sections 13.2 and 13.3 belong to the SIMD or MIMD 

class? 
133 State formally the modified procedure MESH PREFIX SUMS described at the end of 

section 13.2.4 and whose cost is optimal. 
13.4 A number so and two sequences of numbers {a, ,  a,, . . . , a,} and (b, ,  b,, . . . , b,} are given. 

It is required to compute the sequence {s,, s,, . . . , s,) from the recurrence 

Sequentially, this can be done in O(n) time. Show how procedure PARALLEL SUMS 
can be modified to produce the desired sequence in O(logn) time on an n-processor 
parallel computer. Define your model of computation. 

135 Repeat problem 13.4 for the following computations: 
(a) si = si-,  x a, 
(b) si = min(si- ,, ai) 
(c) si = max(si- ,, ai) 
(d) si = aisi-, + bisi-, 
(e) si = (aisi- + bi)/(cisi - , + di) 
(f) si = (sk , + a y 2  

13.6 Let so and {a, ,  a,,. . . ,a , )  be logical variables taking the value true or false. Repeat 
problem 13.4 for the following computations: 
(a) si = si - , and ai 
(b) si = st - , or ai 
(c) si = s ~ - ~  xor ai 

13.7 Prove that a feasible schedule exists if and only if any schedule where the jobs are 
executed in nondecreasing order of deadlines is feasible. 

13.8 Modify procedure TREE SEQUENCING for the case where N = log n processors are 
available to perform both the initial sorting as well as steps 1 and 2. Analyze the resulting 
procedure and discuss its cost optimality. 

13.9 Consider the following variant of the job sequencing with deadlines problem. With each 
job j i  is associated a profit pi > 0. Profit pi is earned if and only ifjob ji is completed by its 
deadline. It is required to find a subset of the jobs satisfying the following two conditions: 
(i) all jobs in the subset can be processed and completed by their deadlines and 
(ii) the sum of the profits earned is as large as possible. 
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Assuming that t i  = 1 for all i, describe a parallel algorithm for finding an optimal 
solution. 

13.10 Prove that an optimal solution to the knapsack problem is obtained if the objects are 
examined in nonincreasing order of the profit-to-weight ratios. 

13.11 Repeat problem 13.8 for procedure TREE KNAPSACK. 
13.12 In a variant of the knapsack problem, the condition that 0 ,< z i  ,< 1 is replaced with 

z i  = 1 or zi = 0, that is, the ith object is either included in the knapsack or not included. 
Derive a parallel algorithm for this variant known as the 0-1 knapsack problem. 

13.13 Consider the problem of maximizing the function of n variables 

where gi(0) = 0 and gi (x i )  3 0 subject to the conditions 
(i) CI=, x i  = x and 

(ii) x i  2 0 for all i. 
One method for solving this problem is dynamic programming. In it the sequence f l (x ) ,  
f i (x),  . . . , f , ( x )  is constructed from 

where f,(x) = 0. The sequence x, (x) ,  x2(x), . . . , xn(x)  is obtained in this way, where x i (x )  is 
the value that maximized gi (x i )  + J -  ,(x - xi) .  Computationally, x i (x )  is found by 
probing the range [0, x] at equal subintervals. Derive a parallel version of this algorithm. 

13.5 BlBL lOGRAPHlCAL R E M A R K S  

As mentioned in chapter 2, the problem of computing in parallel the prefix sums of a sequence 
has received considerable attention due to its many applications. The parallel computer in Fig. 
13.2 was proposed in [Stone]. Other algorithms for a variety of models and their applications 
are described in [Akl 11, [Akl2], [Dekel], [Fich], [Goldberg], [Kogge 11, [Kogge 21, 
[Kruskal 11, [Kruskal 23, [Ladner], [Meijer 11, [Reif], [Schwartz], and [Wagner]. The tree- 
based algorithm of section 13.2.3 is from [Meijer 21. 

All these algorithms exploit the associativity of the addition operation in order to 
compute the prefix sums. It is shown in [Kogge 21 that given two sequences of inputs 
{a , ,  a , ,  . . . , a , -  ,) and (b,, b,, . . . , b,- ,), a recursive doubling algorithm can be used to 
compute, in logarithmic parallel time, outputs {so, s,, . . . , s,- ,} of the form 

Here f and g are functions that have to satisfy the following restrictions: 

1. f  is associative, that is, f  ( x ,  f ( y ,  z ) )  = f  u ( x ,  y), z ) ;  
2. g distributes over f; that is, g(x, f ( y ,  z ) )  = f (g (x ,  y), g(x, z)); and 
3. g is semiassociative, that is, there exists a function h such that g(x, g(y, z)) = g(h(x, y), 2). 
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For example, if f is addition and g is multiplication, the algorithm computes the first-order 
recurrences 

If a, = 1 for all i, the sis thus computed are the prefix sums of {b,, b,, . . . , b,- ,}. The results in 
section 13.2 imply that all recurrences with functions f and g as described in the preceding can 
also be computed in O(1og n) time on an n-leaf tree and O(nl'') time on an nl/' x n1I2 mesh. In 
particular, any binary associative operation such as multiplication, computing the maximum, 
computing the minimum, and, or, xor, and so on, can replace addition in these algorithms. 
Several other examples are provided in [Stone]. 

The need to compute the sis for various functions f and g arises in many applications. 
Two such applications are described in [Meijer 21, on which section 13.3 is partly based. Other 
applications are mentioned in [Fich], [Kogge 11, [Kogge 21, [Kruskal 11, [Ladner], [Reif], 
and [Stone]. They include the evaluations of polynomials, general Horner expressions, and 
general arithmetic formulas; the solution of linear recurrences; carry look-ahead adder circuits; 
transforming sequential circuits into combinatorial circuits; the construction of fast Fourier 
transform circuits; ranking and packing problems; scheduling problems; and a number of 
graph-theoretic problems such as finding spanning forests, connected components, biconnected 
components, and minimum-weight spanning trees. Also of interest is the related work on 
computing the logical or of n bits ([Cook]), general arithmetic expressions ([Brent] and 
[Winograd]), linear recurrences ([Hyafil]), and rational expressions ([Kung]). 

Decision and optimization problems are treated in [Horowitz], [Lawler], and [Papadi- 
mitriou]. Most decision problems such as the traveling salesman problem (problem 10.50) and 
the subset sum problem (example 12.1) are NP-complete. Their optimization counterparts 
(problems 12.9 and 13.12) are said to be NP-hard. We mentioned in section 10.8 that all known 
sequential algorithms for these problems run in exponential time, and all known parallel 
algorithms have exponential cost; see, for example [Karnin], [Kindervater], [Mead], and 
[Mohan]. However, because of their many applications, solutions to these problems are needed 
in practice. Fast approximation algorithms are therefore used in these cases, as illustrated in 
problem 1.14 and in [Horowitz] and [Papadimitriou]. There are many kinds of approximation 
algorithms. For example, an approximation algorithm may provide a solution that is 
guaranteed to be very close to the optimal solution. Alternatively, the solution may be 
guaranteed to be optimal with a certain probability. Or the solution may combine the 
preceding two properties, that is, contain at most a certain amount of error with a known 
probability. Parallel approximation algorithms are described in [Cole], [Felten], and [Peters]. 
Parallel implementations of dynamic programming are proposed in [Gilmore] and 
[Kindervater]. 
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The Bit Complexity 
of Parallel Computations 

14.1 INTRODUCTION 

The theoretical models of computation commonly used to design and analyze 
algorithms, whether sequential or parallel, are usually based on two important 
assumptions. 

1. The first of these assumptions is that the size of the smallest addressable unit in 
memory, or word, is fixed. On a binary computer, for example, each word has 
length b bits for some constant b. 

2. The second assumption is that the entire word is available at once. Again for a 
binary computer, this means that all b bits are accessible when needed. 

As a result of these two assumptions, all fundamental operations on pairs of words, 
such as comparison, addition, and multiplication, take a constant amount of time 
on conventional models of computation. All previous chapters make assumptions 1 
and 2. 

The most obvious reason (and indeed a good one) for including these 
assumptions in the theoretical models is that they are a faithful reflection of reality. 
Existing digital computers have a fixed-size word, and all digits of a word can be 
reached simultaneously. This is not to say that there are no situations where the 
preceding two assumptions do not hold. For many applications, we may want to 
make the size of a word variable, and/or the digits forming a word may not all be 
available at the same time. In these cases, the theoretical models need to be modified 
to count digit operations, while in practice software is used to enhance the existing 
fixed-size hardware. The net effect-in both theory and practice-is that the time 
required by operations on pairs of words is no longer a constant but rather a function 
that grows at least linearly with the word size. 

The purpose of this concluding chapter is to describe a number of architectures 
that are specifically designed to handle those situations where the conventional 
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assumptions do not hold, that is, where 

1. the word size is variable and/or 
2. the digits forming a word arrive serially, that is, one digit every time unit. 

Although the concepts presented henceforth are applicable to all data types and 
numbering systems, we shall assume for concreteness that the data are integers 
expressed as strings of bits, and we shall take operations on bits as the basic 
operations. 

The following problems are considered: 

1. adding n b-bit integers; 
2. multiplying two b-bit integers; 
3. computing the prefix sums of a sequence of n b-bit integers; 
4. multiplying two n x n matrices of b-bit integers; 
5. determining the kth smallest of a sequence of n b-bit integers; and 
6. sorting n b-bit integers into nondecreasing order. 

The solutions to these problems are all based on the concept of "on-the-fly" use of the 
input and intermediate bits. To be specific, for each problem we describe a special- 
purpose architecture, or network, that processes bits as they arrive at the interface with 
the outside world. The concept is also applied within the network through pipelining 
until the output is produced. This is illustrated in Fig. 14.1. The networks are obtained 
by interconnecting a collection of simple devices known as gates. A gate receives two 
bits as input, computes a function of these two bits, and produces a single bit as 
output. This output may be one of another gate's two inputs. In analyzing these 
networks, we use the following measures: 

1.  Number of processors used: This is equal to the number of gates used to build 
the network. 

2. Solution time: This is the time required by a network to produce its output, that 
is, the time elapsed from the moment the first input bit enters the network to the 
moment the last output bit leaves the network. The unit of time used in our 
analysis is the time required by a gate to produce its output. 

3. Cost: This is the product of the previous two measures. 

From the preceding description, it is clear that we view these networks as parallel 
algorithms. These algorithms receive their input words in parallel, each word being 
presented one bit every time unit (i.e., bit serially), hence the title of this chapter. 

The remainder of this chapter is organized as follows. We begin in section 14.2 
by describing a basic network that serves as a building block for most subsequent 
networks. Each of the following sections is devoted to one of the problems listed in the 
preceding. 
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INPUT WORD 1 1 1001 01 

INPUT WORD 2 1001 001 

INPUT WORD n 10001 01 

101 01 OUTPUT WORD 1 

0001 0 OUTPUT WORD 2 

11 010 OUTPUT WORD rn 

Figure 14.1 Network for processing variable-size input words arriving bit serially. 

14.2 ADDING TWO INTEGERS 

Assume that we want to add two b-bit integers x and y whose binary representations 
are 

~ ( b  - 1) x(b - 2). . . x(0) and y(b - 1) y(b - 2). . .YO,  
respectively. The addition can be performed by a network known as a serial adder 
(SA). This network consists of a number of gates that perform on pairs of bits the 
operations and, or, and xor defined as follows (the first two of these operations on bits 
were defined in chapters 5 and 10): 

0 and 0 = 0, 0 and 1 = 0, 1 and 0 = 0, 1 and 1 = 1, 

OorO=O, O o r l = l ,  - l o r O = l ,  1 or 1 = 1, 

0 xor 0 = 0, 0 xor 1 = 1, 1 xor 0 = 1, 1 xor 1 = 0. 

The behavior of the serial adder network is explained with the help of Fig. 14.2. 
Integers x and y are fed into the network bit serially, least significant bit first. 
Denoting the bits available at time i at inputs u, v, and c and outputs s and r by ui, vi, 
ci, si, and ri, respectively, we have 

ui = x(i) for i 2 0, 

vi = y(i) for i 2 0, 

si = (ui-, xor vi-l) xor c ~ - ~  for i 2 1, 

ri = (ui- , and vi- ,) or ((ui-, or vi- ,) and ci- ,) for i 2 1, 

ci = ri for i 2 1, 

Co = 0. 

The network of Fig. 14.2 therefore behaves as required: The sum of x and y is 
produced one bit at a time at output s, starting with the least significant bit at time 
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Figure 14.2 Serial adder. 

Figure 14.3 An SA-box. 

i = 1. The network has the following properties: 

1. It can be built using a constant number of gates. 
2. Each gate has a fixed fan-out, that is, the number of other gates to which it needs 

to send an output signal is a constant. 
3. The integers x and y can be arbitrarily large. 
4. The bits of x and y arrive serially, and the sum of x and y is produced bit serially. 
5. The sum is produced in O(b) time. 
6. Given that the running time is O(b) and the number of processors is 0(1), the 

network's cost is O(b). This cost is optimal since R(b) operations are needed to 
receive the input. 

For simplicity, we shall represent the serial adder of Fig. 14.2 as shown in Fig. 14.3 (i.e., 
we omit input c and output r and the feedback line connecting them) and refer to it as 
an SA-box. 

14.3 ADDING n INTEGERS 

Suppose now that we want to compute the sum of n b-bit integers a,, a ,,.. . ,a,- ,. 
Two solutions to this problem are described. Both solutions assume that b is a 
variable and that each of the integers arrives bit serially. 

14.3.1 Addition Tree 

The sum can be computed using a tree of SA-boxes with n/2 leaves (and log n levels), 
as shown in Fig. 14.4 for n = 8. 

We call this network the addition tree. Starting at time i = 0, each one of the 
integers to be added is fed one bit every time unit, least significant bit first, into the u or 
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v input of a leaf. The sum of the n integers is produced on the s output of the root, 
beginning with the least significant bit at time i = log n. Since each of the n integers 
has b bits, the time required by the addition tree to compute the sum is a function of 
both n and b and is given by 

Also, since the tree consists of n - 1 SA-boxes, each with a fixed number of gates, the 
number of processors, also a function of n and b, is given by 

Finally, the tree's cost is 

c(n, b) = O(n log n + nb). 

For b 2 log n, this cost is optimal since Q(nb) operations are needed to receive the 
input. 

The foregoing analysis of the addition tree assumes that the time it takes a bit to 
propagate along a wire from one SA-box to the next is constant. If, on the other hand, 
the propagation time is assumed to be an increasing function of the length of the wire, 
then the preceding expression describing the addition time, namely, O(1og n) + O(b), is 
no longer valid. Indeed, as pointed out in the conclusion of section 5.3.2, in any planar 
circuit layout of the addition tree, the edges in consecutive levels and hence the 
propagation time for a signal grow in length exponentially with the level number. In 
this case, a more regular structure is preferred where wires have constant length. Such 
a structure is provided by the mesh connection. 

SUM 

Figure 14.4 Addition tree. 
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14.3.2 Addition Mesh 

An addition mesh consisting of SA-boxes is illustrated in Fig. 14.5 for adding twenty- 
six b-bit integers bit serially. The starting time for each SA-box, that is, the time i at 
which the box begins computing, is indicated below the box in the figure. Note that all 
wires have the same length regardless of the size of the mesh, and therefore the 
propagation time from one SA-box to the next is constant. It is easy to see that in 
general 

p(n, b) = O(n), 

c(n, b) = O(n3I2 + nb). 

For b 2 n'I2, this cost is optimal in view of the R(nb) lower bound derived in the 
previous section. Furthermore, the period of the network (i.e., the time separating the 
last output bit of one input sequence and the first output bit of the following sequence) 
is constant. Therefore, the addition mesh represents a definite improvement over the 
addition tree assuming that the propagation time of a signal is an increasing function 
of the distance traveled. 

14.4 MULTIPLYING TWO INTEGERS 

We now turn to the problem of multiplying two b-bit integers 

x = x(b - 1) x(b - 2). .. x(0) and y = y(b - 1) y(b - 2). .. y(0). 

By the definition of multiplication, the product is obtained as follows: 

~ ( b  - 1) ~ ( b  - 2) . . . . . . . . .  42)  41)  40)  
X 

y(b - 1) y(b - 2) . . . . . . . . .  ~ ( 2 )  ~ ( 1 )  ~ ( 0 )  



Figure 145 Addition mesh. 
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where zij = y(i) x xG). In other words x x y = CP=,'ri, where r i  is a binary number 
given by 

Note that ri has exactly i zeros to the right of zio. 
Since the product is expressed as the sum of a collection of binary integers, we 

can use our addition tree or addition mesh to perform the multiplication. 

14.4.1 Multiplication Tree 

We begin by considering the network in Fig. 14.6. For input integers arriving bit 
serially at a and g, the network behaves as follows: 

di = hi-l and gi-l ,  

This means that bit d at time i is the result of computing the and of two bits (h  and g) 
available at time i - 1. One of these two bits (bit g) propagates down (as e) while the 
other (bit h) cycles back (as f). The or of a and f is now computed to produce a new 
value for h. If input a is 0 at all times, except for a single time unit where it is 1, then the 
left-hand side of the network serves to capture that 1 bit and maintain it as input to 
the right-hand side as long as needed. For simplicity, we represent the network of Fig. 
14.6 as shown in Fig. 14.7 and refer to it as the A-box. 

A multiplication tree for computing x x y consists of an array of A-boxes A,, 

Figure 14.6 Special-purpose network for capturing I-bit input. 



Sec. 14.4 Multiplying Two Integers 

Figure 14.7 An A-box. 

A , ,  . . . , A, - ,  followed by an addition tree with b/2 leaves. This is illustrated in Fig. 
14.8 for b = 8. 

Initially, all inputs are set to zero. Integer x is now fed into the g input of the top 
A-box, one bit per time unit; thus, bit x(i) is made available to box A, at time i. 
Similarly, integer y is fed into the a inputs of all A-boxes one bit per box such that y(i) 
is made available to Ai at time i. The first bit of the product emerges from the root 
after 1 + log b time units. Therefore, for the multiplication tree we have 

14.4.2 Multiplication Mesh 

Given that the two integers x and y to be multiplied arrive bit serially, we must ensure 
(as we did for the tree) that the strings ri, whose sum gives the product, are properly 
formed and fed into the mesh at correct times. Let us reexamine the addition mesh. In 
Fig. 14.5, SA-boxes with the same starting time fall on the same diagonal. We can say 
that on diagonal j, the numbers to be added have to be fed into the network at time j. 
Now recall that 

If ri is the input to an SA-box on diagonal j, then bit zio must arrive at time i + j (since 
ri has i zeros to the right of zi,). In Fig. 14.9, the pair of indices (i, m) below the SA- 
boxes are interpreted as follows: bit zio of ri must arrive at SA-box (i, m) on diagonal j 
at time m = i + j. 

We are now ready to describe the multiplication mesh. It uses the A-box 
presented in the previous section as well as a delay network shown in Fig. 14.10. This 
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Figure 14.9 Transforming addition mesh into multiplication mesh. 

a - - - - - - - - - - - - - -+ g 
Figure 14.10 A D-box. 

network, which we call a D-box, has the following behavior: 

that is, the output at time i is equal to the input at time i - 1. A D-box may be built 
using an and gate (or an or gate) both of whose inputs equal the bit to be delayed. 

A multiplication mesh for b = 21 is shown in Fig. 14.11. It consists of the 
addition mesh of Fig. 14.5 augmented with A- and D-boxes. The bits of x are fed, least 
significant bit first, into the top left corner. They circulate around the mesh in a 
snakelike fashion along the dashed lines. Bit y( i )  of y, on the other hand, is given as 
input to the A-box associated with SA-box (i, m) at time m - 1 [i.e., when x(0) reaches 
that box]. For the network of Fig. 14.1 1, both t(b) and p(b) are O(b). This means that 
the multiplication mesh has exactly the same requirements as the multiplication tree 
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under the constant wire delay assumption. The multiplication mesh is, of course, faster 
when the signal propagation time along a wire grows as a function of the wire length. 

We conclude this section by pointing out that the assumption made at the outset 
regarding the number of bits of x is really unnecessary. A b-bit multiplication tree or 
mesh will operate correctly for an x with any bit size provided y has b bits. Thus, if x 
has 1 bits, then 

t(b, 1) = O(b) + O(l) and p(b, 1) = O(b) 

for both multipliers. 

14.5 COMPUTING PREFIX SUMS 

Given a sequence A = {a,, a,, . . . , a,- ,) of n b-bit integers, it is required to com- 
pute the prefix sums so, s,, . . . , s,- ,, where si = a, + a, + . . . + a,. Solutions to 
this problem were described in chapters 2 and 13, assuming that b is a constant and all 
b bits of each integer ai are available simultaneously. We now show how a collection 
of SA-boxes can be used to obtain all sums when the integers a,, a,, . . . , a,-, have a 
variable size and arrive bit serially. Two solutions are described: The first uses variable 
fan-out gates; the second uses gates whose fan-out is constant. Both solutions are 
recursive in nature. 

14.5.1 Variable Fan -out 

The first solution is illustrated in Fig. 14.12 for n = 8. 
In general, a network for n = 2" consists of two networks for n = 2"-' followed 

by n/2 D-boxes and n/2 SA-boxes. When n = 2, one D-box and one SA-box suffice. 
Let us define the depth d(n) of a network with inputs as the longest path from input to 
output. For the network in Fig. 14.12, 

that is, d(n) = log n. Therefore, the time requirement of the network in Fig. 14.12 is 

The number of processors used is 

= O(n log n). 

The fan-out of the gates used is 1 + 42.  This can be seen from Fig. 14.12, where the 
value of s, has to be sent to one D-box and four SA-boxes. 
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RECURSIVE 
B 

SOLUTION 

Figure 14.12 Computing prefix sums on network with variable fan-out. 

14.5.2 Constant Fan -out 

S A --qJ- s4 

-q-J- SA s5 

S A '6 

a 4  m 

a5  P 

m 

The second solution is illustrated in Fig. 14.13 for n = 8. 
As mentioned in example 7.2 and section 13.2.2, the perfect shuffle connection 

(and its inverse, the perfect unshuffle) may be regarded as a mapping from a set of 
processors to itself or from a set of processors to another set of processors. The latter 
of these connections is used to construct the network in Fig. 14.13. As with the 
network in Fig. 14.12, 

RECURSIVE 

SOLUTION 

d(n) = log n, 

a7 I 

p(n, b) = O(n log n). 

SA s7 

It is clear from Fig. 14.13 that the gate fan-out is 2. 

14.6 MATRIX MULTIPLICATION 

It is required to compute the product of two n x n matrices of b-bit integers. We begin 
by showing how the networks of the previous sections can be used for the 
computation of the inner product of two vectors of integers. A matrix multiplier is then 
viewed as a collection of networks for inner-product computation. 
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PERFECT PERFECT 
[JNSHUFFLE SHUFFLE 

Figure 14.13 Computing prefix sums on network with constant fan-out. 

Let u = (u,, u,, . . . , un-,) and v = (v,, v,,  . . . , v,-,)  be two vectors of b-bit 
integers whose inner product, that is, 

is to be computed. The n products uivi ,  for i = 0, 1,. . . , n - 1, can be computed in 
parallel using n multiplication trees. This requires O(b) time and O(nb) processors. 
These n products are now fed into an addition tree with n/2 leaves to obtain the final 
sum. This second stage runs in O(1og n) + O(b) time on O(n) processors. Consequently, 
the inner product requires O(log n) + O(b) time and O(nb) processors. The inner- 
product network is illustrated in Fig. 14.14, where the small triangles represent 
multiplication trees and the large triangle an addition tree. 

The product of two n x n matrices consists of n2 inner vector products (each row 
of the first matrix is multiplied by each column of the second). Suppose that we have a 
multiplier for vectors that multiplies two vectors in q time units using p processors. 
Then n2 copies of this multiplier can be used to multiply two n x n matrices in q time 
units using n2p processors. In general, na copies, where 0 d a d 2, will do the job in 
n2-"q time units and use nap processors. 

Our vector multiplier of Fig. 14.14 has 
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Figure 14.14 Inner-product network. 

Thus nu copies of this multiplier will compute the matrix product in time 

t(n, b)  = O(n2-"(log n + b)) 

using p(n, b) = O(nl+"b) processors. 

14.7 SELECTION 

Given a randomly ordered sequence A = {a,, a,, . . . , a,) of n b-bit integers and an 
integer k, where 1 < k < n, it is required to determine the kth smallest element of A. In 
chapter 2 we called this the selection problem and presented a parallel algorithm for its 
solution that runs on the EREW SM SIMD model, namely, procedure PARALLEL 
SELECT. Assuming that each integer fits in a word of fixed size b, the procedure uses 
n 1  -" processors, where 0 < x < 1, and runs in O(nx)  time, when counting operations 

on words. When bit operations are counted, the procedure requires O(bnx) time for a 
cost of O(bn). This cost is optimal in view of the SZ(bn) operations required to simply 
read the input. 

We now describe an algorithm for the selection problem with the following 
properties: 

1. The algorithm operates on b-bit integers where b is a variable, and the bits of 
each word arrive one every time unit. 

2. It runs on a tree-connected parallel computer, which is significantly weaker than 
the SM SIMD model. 

3. It matches the performance of procedure PARALLEL SELECT while being 
conceptually much simpler. 

We begin by describing a simple version of the algorithm whose cost is not optimal. It 
is based on the following observation. If a set M consisting of the m largest members of 
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A can be found, then either 

(i) the kth smallest is included in M, in which case we discard from further 
consideration those elements of A that are not in M, thus reducing the length of 
the sequence by n - m, or 

(ii) the kth smallest is not in M, in which case the m elements of M are removed from 
A. 

In order to determine M, we look at the most significant bit of the elements of A. If the 
binary representation of element ai of A, where 1 < i < n, is 

then ai is in M if ai(b - 1) = 1; otherwise ai is not in M [i.e., when ai(b - 1) = 01. If 
this process is repeated, by considering successive bits and rejecting a portion of the 
original sequence each time, the kth smallest will be left. (Of course more than one 
integer may be left if all the elements of A are not distinct.) 

For ease of presentation, we assume that n, the size of the input sequence, is a 
power of 2. The algorithm runs on a tree-connected network of simple processors with 
n leaves PI, P,,  . . . , P,. Leaf processor Pi can 

(i) receive the bits of ai serially, most significant bit first, from some input medium; 
(ii) send the bits of ai to its parent serially; 

(iii) send its own index i to its parent, if requested; and 
(iv) switch itself "off ' if told to do so. 

Initially, all leaf processors are "on." Once a leaf has been switched off, it is excluded 
from the remainder of the algorithm's execution: It stops reading input and no longer 
sends or receives messages to and from its parent. 

Each of the n - 2 intermediate processors can 

(i) relay messages of fixed size from its two children to its parent and vice versa; 
(ii) behave as an SA-box; and 

(iii) compare two O(1og n)-bit values. 

Finally, the root processor can 

(i) send and receive messages of fixed size to and from its two children; 
(ii) compare two O(log n)-bit values; 

(iii) behave as an SA-box; and 
(iv) store and update three O(log n)-bit values. 

The algorithm is given in what follows as procedure TREE SELECTION. 
When the procedure terminates, the index of the kth smallest element of A is 
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contained in the root. If several elements of A qualify for being the kth smallest, the 
one with the smallest index is selected. 

procedure TREE SELECTION (A, k) 

Step 1: {Initialization) 
(1.1) The root processor reads n and k 
(1.2) 1 + n {I is the length of the sequence remaining) 
(1.3) q + k {the 9th smallest element is to be selected) 
(1.4) finished t false. 

Step 2: while not finished do 
(2.1) for i = 1 to n do in parallel 

Pi reads the next bit of ai 
end for 

(2.2) The sum s of the n bits just read is computed by the intermediate and root 
processors acting as an addition tree 

(2.3) if 1 - q - s 3 0 
then (9th not in M} 
(i) 1 - 1  - s  
(ii) the intermediate processors relay to all leaves the root's message: 

if latest bit read was 1 
then switch "off 
end if 

e l s e i f l - q - s =  - 1 a n d s = 1  
then (9th element found) 

(i) the intermediate processors relay to all leaves the root's message: 
if latest bit read was 1 
then send index to root 
end if 

(ii) the intermediate processors relay to the root the index of the leaf 
containing the 9th smallest element 

(iii) finished t true 
else (9th in M) 

(9 4+4-(l-s) 
(ii) l+s 
(iii) the intermediate processors relay to all leaves the root's message: 

if latest bit read was 0 
then switch "off 
end if 

end if 
end if 

(2.4) if 1 = 1 
then (i) the intermediate processors relay to all leaves the root's message: 

if still "on" 
then send index to root 
end if 



(ii) the intermediate processors relay to the root the index of 
the only remaining integer 

(iii) finished c true 
end if 

(2.5) if (there are no more input bits) and (not finished) 
then (i) the intermediate processors relay to all leaves the root's message: 

if still "on" 
then send index to root 
end if 

(ii) the intermediate processors relay to the root the index of the 
smallest-numbered leaf that is still "on" 

(iii) finished c true 
end if 

end while. IJ 

Note that none of the processors (root, intermediate, or leaf) is required at any 
stage of the algorithm's execution to store all b bits of an input integer. Therefore, the 
network's storage requirements are independent of b. 

Example 14.1 

Assume that we want to find the fourth smallest value in (10, 15, 12, 1; 3, 7, 6, 13). 
Initially, 1 = 8 and q = 4. During the first iteration of step 2, the most significant bit of 
each input integer is read by one leaf, as shown in Fig. 14.15(a). The sum of these bits, 
s = 4, is computed at the root. Since 1 - q - s = 0, leaf processors PI, P,, P,, and P ,  are 
switched off, and 1 = 4. 

During the second iteration, the second most significant bits are read by the 
processors that are still on. This is shown in Fig. 14.15(b), where the processors that were 
switched off are marked with an x . Since s = 2 , l -  q - s = -2, and processors P,  and 
P ,  are switched off. Now 1 = 2 and q = 2. 

In'the third iteration, the sum of the third most significant bits, read by P, and P,, 
is s = 2. Since 1 - q - s = -2 and both input bits were 1, no processor is switched OK 
Again, 1 = 2 and q = 2. 

In the fourth (and last) iteration, s = 1 and 1 - q - s = - 1: The index of processor 
P,  is sent to the root, signifying that the fourth smallest value in the input sequence is 
7. 

Analysis. Step 1 takes constant time. There are at most b iterations of step 2. 
During each iteration the sum s of n bits read by the leaves can be obtained by the root 
in O(1og n) time by letting the n - 2 intermediate nodes and root simulate an addition 
tree with n one-bit numbers as input. Unlike the root of the addition tree, however, the 
root processor here retains the log n bits of the sum. Thus the time required is 
O(b log n). Since the number of processors is 2n - 1, the algorithm's cost is O(bn log n), 
which is not optimal. 

An algorithm with optimal cost can be obtained as follows. Let N be a power of 
2 such that N log n < n, and assume that 2N - 1 processors are available to select the 



Figure 14.15 Selecting fourth smallest in sequence of eight numbers. 
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kth smallest element. These processors are arranged in a tree with N leaves. The leaf 
processors are required to be more powerful than the ones used by procedure TREE 
SELECTION: They should be able to compute the sum of n/N bits. Each leaf 
processor is "in charge" of n/N elements of the sequence A. These n/N integers arrive 
on n/N input media that the leaf examines sequentially. The parallel algorithm 
consists of b iterations. For j = b - 1, b - 2, . . . ,0, iteration j consists of three stages. 

(i) Every leaf processor finds the sum of the jth bits of (at most) n/N integers. 
(ii) These sums are added by the remaining processors, and the root indicates which 

elements must be discarded. 
(iii) Every leaf processor "marks" the discarded inputs. 

Stages (i) and (iii) require O(n/N) operations. There are O(1og n) operations 
involved in stage (ii) to go up and down the tree. The time per iteration is O(n/N), for a 
total running time of 

Since p(n) = 2N - 1, we have 

and this is optimal. 

14.8 SORTING 

Given a sequence of n b-bit integers A = {a,, a,, . . . , a,), it is required to sort A in 
nondecreasing order. We assume that b is a variable and that the bits of each integer 
arrive one every time unit. The sequence can be sorted by adapting the odd-even 
sorting network of Fig. 4.1. The adapted network has two features: 

1. Each integer ai is fed into the network most signijicant bit first. 

2. Bit comparators replace the word comparators in Fig. 4.1. A bit comparator 
has the same function as a word comparator: It compares two integers, producing the 
smaller on the top output line and the larger on the bottom output line. The only 
difference is that bit comparators perform their task bit serially. A bit comparator 
receives two bits as input and produces two bits as output in the following way. As 
long as the two input bits are equal, they are produced on the two output lines 
unchanged. As soon as the two input bits differ, 

(i) the 0 bit, and all subsequent bits of that integer, are produced as output on the 
top output line of the comparator and 

(ii) the 1 bit, and all subsequent bits of that integer, are produced as output on the 
bottom output line of the comparator. 
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As the odd-even network consists of O(log2n) stages, the modified network requires 

t(n, b) = O(log2n) + O(b) 

time and 

processors. 

14.9 P R O B L E M S  

14.1 Let x and y be two b-bit integers, where b is a variable. Design a network for computing 
X - y. 

14.2 A full adder for bits is a device that takes three bits as input and returns their sum as a 
two-bit binary number. A collection of full adders (arranged side by side) can take three 
b-bit integers x, y, and z as input and return two binary integers u and v as output such 
that x + y + z = u + v. Assume that b is a constant and all bits of x,  y, and z are available 
at once. Each full adder receives one bit from each of x, y, and z and returns one bit of 
each of u and v. Thus u and v can be obtained from x, y, and z in constant time. Let us call 
this device a (3, Ztadder. Show that a network of (3,2)-adders reduces the problem of 
adding n numbers to the problem of adding two numbers. Analyze the running time, 
number of processors, and complexity of this network. 

14.3 Discuss the cost optimality of the networks described in section 14.4. 
14.4 Let x and y be two b-bit integers, where b is a power of 2. A divide-and-conquer algorithm 

can be used to multiply x and y. We first split each of x and y into two equal parts of b/2 
bits each and write 

Now x x y is computed from 

where the products uw, uz, vw, and vz are obtained by the same algorithm recursively. Let 
q(b) be the number of bit operations required to compute x x y by the preceding 
algorithm. Since the algorithm involves four multiplications of two (b/2)-bit integers, 
three additions of integers with at most 2b bits, and two shifts (multiplications by 2b and 
2b'2), we have 

q(b) = 4q(b/2) + cb, 

for some constant c. It follows that q(b) = O(b2). 
(a) Can the algorithm be implemented in parallel? Can it be used in a setting where b is a 

variable and the bits of x and y arrive serially? 
(b) Consider now the following modification to the algorithm. The quantity uz + vw is 

obtained from (u + v)(w + z)  - uw - uz. Only three multiplications of (b/2)-bit 
integers are now required, four additions, two subtractions, and two shifts. 



Sec. 14.9 Problems 

Consequently, 

for some constant c. It follows that q(b) = O(b'0g23) = O(b1.s9). Repeat part (a) for this 
new version. 

145 Let x and y be b-bit integers. Design a network to compute the quotient and remainder of 
x divided by y. 

14.6 Which of the two networks described in section 14.5 for computing the prefix sums of a 
sequence relies on the commutativity of the addition operation, that is, a + b = b + a? 

14.7 The networks of section 14.5 have a cost of O(n logZn + bn log n). This cost is clearly not 
optimal since a single SA-box can compute all prefix sums in O(bn) time. Can a cost- 
optimal solution be obtained for the bit-serial version of the prefix sums problem? 

14.8 The networks of section 14.5 produce, as one of their outputs, the sum of their n inputs. 
Compare this method of computing the sum of n integers to the one described in section 
14.3. 

14.9 Repeat problem 13.4 for the bit-serial case. 
14.10 Repeat problem 13.5 for the bit-serial case. 
14.11 Repeat problem 13.6 for the bit-serial case. 
14.12 Discuss the cost of the matrix multiplier of section 14.6. 
14.13 Describe formally the algorithm given at the end of section 14.7. 

14.14 Adapt procedure TREE SELECTION to run on an n1I2 x n1I2 meshconnected 
computer and analyze its running time. 

14.15 Can the cost of the algorithm derived in 14.14 be made optimal? 

14.16 Consider a linear array of processors PI ,  P,, . . . , P, and the following algorithm for 
sorting a sequence of n b-bit integers that arrive one at a time at PI .  At every step, the 
contents of the entire array of processors are shifted to the right making room in P, for a 
new input item. This is followed by a comparison-exchange: For all odd i, the items in Pi 
and Pi+,  are compared, with the smaller going to Pi and the larger to Pi+,. After n 
repetitions of these two steps, input is complete and output can start. The contents of the 
array are shifted left producing as output from P, the current smallest element in the 
array. This is followed by a comparison-exchange. After n repetitions of the preceding 
two steps output is complete. When several sequences are queued for sorting, this sorter 
has period 2n. The period can be reduced to n by allowing both P, and P, to handle input 
and output. While P, is producing output, P, can receive input and conversely. Sorted 
sequences are produced alternately in ascending order (through P,) and in descending 
order (through P,). Thus m sequences of n integers each are sorted in (m + 1)n instead of 
2mn steps. Obviously the time to compare two b-bit integers x and y, when b is not fixed, 
is a linear function of b. Thus, the preceding times are in reality (m + 1)nb and 2mnb. It is 
of course possible to compare two b-bit integers in fewer than b steps by using additional 
circuitry in each processor. This circuitry is in the form of a complete binary tree with b 
leaves. Assume that bit-parallel input is allowed, that is, all b bits of an integer arrive 
simultaneously. Each leaf compares one bit of x with the corresponding bit of y and sends 
the result upward. These results propagate up the tree, and in log b steps the larger of x 
and y is determined. This would make the running time (m + 1)n log b and 2mn log b. 
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Show that a network derived from the linear array whose processors use no special 
circuitry and operate at the bit level can sort in (1 + m/2)n + b time. This would represent 
a significant improvement over the preceding approach. 

14.17 Consider the following algorithm for sorting the sequence A = {a,, a,, . . . , a,) of b-bit 
integers. Two arrays of n entries each are created in memory. These two arrays are called 
bucket 0 and bucket I. The algorithm consists of b iterations. At the beginning of each 
iteration, all positions of both buckets contain zeros. During iteration j, each element ai 
of A, where 

ai = ai(b - 1) ai(b - 2). . . ai(0), 

is examined: A 1 is placed in position i of either bucket 0 or bucket 1 depending on 
whether ai(j) is 0 or 1, respectively. The values in bucket 0, followed by those in bucket 1, 
form a sequence of 0's and 1's of length 2n. The prefix sums {s,, s,, . . . , s,,) of this 
sequence are now computed. Finally element ai is placed in position si or si+, of A 
(depending on whether bucket 0 or bucket 1 contains a 1 in position i), concluding this 
iteration. Show how this algorithm can be implemented in parallel and analyze its 
running time and cost. 

14.18 The networks in sections 14.2-14.6 receive their inputs and produce their outputs least 
signijicant bit jrst. By contrast, the networks in sections 14.7 and 14.8 receive their inputs 
and produce their output's most signijcant bit jrst. This may be a problem if the output 
of one network (of the first type) is to serve as the input to another network (of the second 
type), or vice versa. Suggest ways to overcome this difficulty. 

14.19 Let us define 
(i) clock cycle as the time elapsed from the moment one input bit arrives at a network to 

the moment the following bit arrives and 
(ii) gate delay as the time taken by a gate to produce its output. 
Show that, for the networks in this chapter to operate properly, it is important that 

clock cycle > gate delay. 

14.20 Argue that the running time analyses in this chapter are correct provided that the ratio 
of clock cycle to gate delay is constant. 

14.21 Show that the process of computing the majority of fundamental statistical quantities, 
such as the mean, standard deviation, and moment, can be speeded up using the networks 
described in this chapter. 

14.22 Design a network for computing the greatest common divisor of two b-bit integers. 

14.10 B lBL lOGRAPHlCAL  R E M A R K S  

As mentioned in the introduction, most models of computation assume that the word size of the 
input data is fixed and that each data word is available in its entirety when needed; see, for 
example, [Aho], [Akl 11, [Horowitz], and [Knuth 11. In this section, we briefly review some of 
the algorithms that were designed to solve the problems addressed in sections 14.2-14.8 based 
on these two assumptions. When comparing those algorithms to the networks of this chapter, 
one should keep in mind that the latter do  not make the preceding two assumptions and can 
therefore be used (if needed) in situations where these assumptions apply (as well as in situations 
where they d o  not). 
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The fastest known algorithm for adding two b-bit integers is the carry-look-ahead adder 
[Kuck]. It runs in O(1og b) time and uses O(b log b) gates with arbitrarily large fan-out. The 
algorithm's cost is therefore O(b log2b). This is to be contrasted with the O(b) cost of the SA-box 
(CBaerl). 

The sum of n b-bit integers can be computed by a tree of carry-look-ahead adders 
[Ullman]. This requires O((logn)(log b)) time and O(nblogb) gates for a cost of 
O((n log n)(b log2b)). By comparison, the tree of SA-boxes described in section 14.3 uses fewer 
gates, has a lower cost, and is faster for b = O(1og n). Another algorithm superior to the tree of 
carry-look-ahead adders is described in problem 14.2. 

Two solutions are given in [Kuck] to the problem of multiplying two b-bit integers. The 
first one uses carry-look-ahead adders and requires O(log2b) time and O(b210g b) gates. The 
second and more elaborate solution is based on a combination of carry-save and carry-look- 
ahead adders. It uses O(b2) gates and runs in O(log2b) time (when the fan-out of the gates is 
constant) and O(log b) time (when the fan-out is equal to b) for costs of O(b210g2b) and 
O(b210g b), respectively. Both of these costs are larger than the O(b2) cost of the multiplication 
tree and multiplication mesh of section 14.4. 

If carry-look-ahead adders are used in section 13.2.3 for computing the prefix sums of a 
sequence of n integers, then the tree algorithm described therein would require O((1og n)(log b)) 
time and O(nb log b) gates for a cost of O((n log nub log2b)). Assume for concreteness that 
b = O(log n). Then the preceding expressions describing the running time, number of gates, and 
cost become O((1og n)(log log n)), O((n log n)(log log n)), and O((n log2n)(log210g n)), respectively. 
The corresponding expressions for the networks of section 14.5 are O(1og n), O(n log n), and 
O(n log2n). 

Procedure CUBE MATRIX MULTIPLICATION of section 7.3.2 uses n3 processors 
and runs in O(log n) time. If the processors are based on the integer multiplier given in [Kuck] 
and whose gate and time requirements are O(b2) and O(log2b), respectively, then the product of 
two n x n matrices of b-bit integers can be obtained in O((1og n)(log2b)) time using O(n3b2) gates. 
This yields a cost of O((n310g n)(b210g2b)). Again, let b = OOog n). The cost of procedure CUBE 
MATRIX MULTIPLICATION in this case is O(n310g3n log210gn). This is larger than the 
O(n310g2n) cost of the network described in section 14.6. Note also that the product of the 
solution time by the number of gates used for any sequential matrix multiplication algorithm of 
the type described, for example, in [Coppersmith] and [Gonnet], can be improved from 
O(nxb210g2b) where x < 3 (using the integer multiplier in [Kuck]) to O(nxb2) (using the 
multiplication tree or mesh of section 14.4). 

Many tree algorithms exist for selecting the kth smallest element of a sequence of n b-bit 
integers (assuming that all bits are available simultaneously). Some of these are reviewed in 
[Aggarwal 11. The best such algorithm uses O(n) processors and runs in O(log2n) time. Counting 
bit operations, this running time becomes O(b log2n). Unlike (the modified) procedure TREE 
SELECTION described in section 14.7, this algorithm is not cost optimal. 

A cost-optimal algorithm for sorting n b-bit integers is described in [Leighton]. It uses 
O(n) processors and runs in O(b log n) time (counting bit operations), for an optimal cost of 
O(bn log n). Using the bit comparators described in section 14.8 and in [Knuth 21, sorting can 
be performed in O(b + log n) time with O(n) gates. 

The networks in this chapter are mostly from [Akl 23, [Cooper], and [Meijer]. Other 
algorithms concerned with bit operations are described in [Aggarwal 21, [Akl 31, [Batcher], 
[Bini], [Brent], [Kannan], [Luk], [Reeves], [Siegel], and [Yu] for a variety of computational 
problems. 
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Local neighborhood search, 32 
Loosely coupled machines, 17 
Lower bound, 22 
LU-decomposition, 221 

Maintenance, 125 
Matching, 270, 304 
Matrix, 170 
MATRIX MULTIPLICATION, 179 
Matrix multiplier, 374 
MAXIMUM, 152 
Mean, 384 
Median, 40, 75, 269 
Median pair, 74 
MERGE SPLIT, 92 
Merging, 59 
Merging network, 60, 87 
Mesh, 14, 24, 53, 54, 78, 105, 128, 135, 171, 

179, 193, 213, 222, 224, 239, 243, 266, 270, 
349, 354, 355, 366, 369, 383 

MESH MATRIX MULTIPLICATION, 180 
Mesh of trees, 103, 193,235,283,286,288,292, 

303 
MESH PDE, 214 
MESH FFT, 239 
MESH PREFIX SUMS, 349 
MESH SEARCH, 129 
MESH TRANSPOSE, 172 
MIMD ALPHA BETA, 324 
MIMD computer, 3, 17, 19, 107,194,203,209, 

222, 223, 319, 336, 355 
MIMD MODIFIED GS, 204 
MIMD ROOT SEARCH, 21 1 
Minimax principle, 314 
MINIMUM, 151 
Minimum spanning tree, 261, 304 
MISD computer, 3,4 
Mixed radix integer, 145 
Model of computation, 3 
Model Problem, 212 
Modular architecture, 28 
Moment, 384 
Most significant bit, 377, 381, 384 
Multicomputer, 17 
MULTIPLE BROADCAST, 70 
Multiple broadcasting, 10 
MULTIPLE STORE, 82 
Multiple storing, 10 
Multiplication mesh, 369 
Multiplication tree, 368 
Multiplying two integers, 366 
Multiprocessor, 17 
Multistage network, 164 



NC, 272 
Nearest neighbor, 53 
Network, 362 
Network flow problem, 270 
Newton's method, 209 
NEXT COMBINATION, 147 
NEXT PERMUTATION, 144 
Node of a graph, 251 
NP-complete problems, 272 
NP-hard, 357 
Number of processors, 25 
Numbering combinations, 148 
Numbering permutations, 145 
Numerical analysis, 200 
Numerical errors, 200 
Numerical integration, 225 
Numerically unstable, 221 

Oblivious of input, 64, 87 
Odd-even merging network, 61 
Odd-even sorting network, 87, 381 
ODD-EVEN TRANSPOSITION, 90 
Office automation, 135 
Offspring, 3 13 
Omega network, 194 
Optimal, 23 
Optimization problem, 337 
Or, 29, 122, 254, 363 
ORDER, 149 
Order statistics, 54 
ORDERINV, 150 
Orthogonal matrix, 222 
Overflow, 125 

P-complete problems, 272 
Parallel algorithm, 3 
PARALLEL COMBINATIONS, 159 
Parallel computer, 2 
PARALLEL PERMUTATIONS, 152 
Parallel pipelined computer, 136 
PARALLEL SCAN, 152 
PARALLEL SELECT, 49 
PARALLEL SUMS, 342 
Parallelism, 2 
Partial differential equation, 212 
Partition, 165 
Path in a graph, 253 
Pattern recognition, 280 

Perfect shuffle, 14, 28, 53, 106, 175, 193, 194, 
374 

Perfect unshuffle, 53, 343, 344, 374 
Perfectly ordered game tree, 318 
Period, 28, 128 
Permutation, 141 
Permutation network, 164, 166 
Picture element, 20 
Pipelining, 17, 122, 282, 362 
Pivoting, 221 
Pixel, 20, 305 
Planar subdivision, 279 
Plane rotation, 218 
Plus-minus 2', 31 
Ply, 313 
POINT IN POLYGON, 28 1 
POINT IN SUBDIVISION, 284 
Poisson's equation, 212 
Poker, 312 
Polygon, 278, 279 
Polynomial multiplication, 232 
Polynomial time algorithm, 272 
Position, 124 
Positive definite matrix, 221 
PRAM model, 7 
Predecessor, 135 
Prefix sums, 47, 341, 362, 373 
Primality testing, 5 
Primitive root of unity, 194, 231 
Probalistic algorithm, 55 
Problem reduction, 289 
Process, 19 
Processor, 2, 19 
PROPAGATE, 235 
Proximity problems, 278 
Pyramid, 80, 106, 304, 305 

QR-factorization, 222 
Quadratic convergence, 210 
Querying, 121, 128 
Queue, 20, 122 
QUICKSORT, 85 

Radius, 269 
Rank, 40, 125 
RANKC, 149 
RANKCINV, 150 
RANKP, 146 
RANKPINV, 146 



Recursive doubling, 342 
Regula faisi, 223 . 
Regular architecture, 28 
Resolution, 20 
Routing step, 22, 240 
Row-major order, 78, 183, 219,238 
Running time, 2 1 

SA-box, 364 
SCORE, 325 
Score table, 324 
Searching, 1 12 
Selection, 39, 40, 99, 376 
Semaphore, 205, 323 
Sequential algorithm, 4 
SEQUENTIAL COMBINATIONS, 147 
SEQUENTIAL CONVEX HULL, 291 
SEQUENTIAL FFT, 232 
SEQUENTIAL MERGE, 65 
SEQUENTIAL PERMUTATIONS, 143 
SEQUENTIAL SEARCH, 112 
SEQUENTIAL SELECT, 41 
SEQUENTIAL SUMS, 342 
Serial adder, 363 
Serial algorithm, 4 
Shared memory, 6,7,17,54,119,164,221,342 
Shortest path, 257 
SHUFFLE TRANSPOSE, 176 
Shuffle-exchange, 14, 245 
Shuffled row-major order, 105 
SIMD computer, 3, 5, 355 
SIMD DFT, 237 
SIMD GAUSS JORDAN, 201 
SIMD ROOT SEARCH, 209 
Single-source shortest paths, 269, 304 
Single-stage network, 164 
SISD computer, 3 
SM SEARCH, 120 
Snakelike row-major order, 105 
Sorting, 23, 24, 26, 85, 381 
Sorting by bucketing, 107 
Sorting by enumeration, 94 
Sorting network, 87, 163 
Sparse graph, 268 
Special-purpose architecture, 20, 54, 342 
Speedup, 24 
Standard deviation, 384 
Staran flip, 195 

State-space graph, 310 
State-space traversal, 310 
Step, 22 
Storage and retrieval, 135 
STORE, 54 
Storing, 10 
Strong component of a graph, 269 
Subgraph, 253 
Subset sum problem, 3 1 1, 337 
Successive over-relaxation, 212 
Successor, 135 
SUM, 236 
Sum, 4, 15, 24, 25, 46 
Supercomputer, 1 
Supervertex, 267 
SW-banyan, 195 
Symmetric difference of two graphs, 270 
Symmetric matrix, 221 
Synchronous operation, 6 
Systolic array, 272 

Terminal node, 3 13 
Tic-tac-toe, 3 13 
Tightly coupled machines, 17 
Topological sorting, 269 
TRANSPOSE, 171 
Trapezoidal rule, 225 
Traveling salesman problem, 271, 337 
Tree, 14, 16, 25, 26, 28, 53, 80, 106, 121, 135, 

190, 194, 268, 281, 337, 346, 351, 353, 355, 
356, 364, 368, 375, 377, 383 

TREE KNAPSACK, 353 
TREE MV MULTIPLICATION, 190 
TREE SELECTION, 378 
TREE SEQUENCING, 352 
Triconnected components of a graph, 271 
Two-dimensional array, 13 
TWO-SEQUENCE MEDIAN, 75 

Undirected graph, 252 
Unfolding, 128 
UPDATE, 326 
Update, 126 
Upper bound, 22, 23 
UPPER HULL, 298 

Vector, 188 
Vertex of a graph, 251 
VLSI, 27 



Weak component of a graph, 269 
Weighted graph, 252 
Wire delay, 127, 304, 349, 365 
Wire length, 28, 128 
Word, 361 
Worst-case analysis, 55 

Wraparound connections, 193, 246 
Write conflict, 7, 93, 187 

Xor, 29, 363 

Zero matrix, 202 
Zero of a function, 206 


