
The Design and Analysis
of Parallel Algorithms

Selim G. Akl
Queen's U nioersity

Kingston, Ontario, Canada

Prentice Hall, Englewood Cliffs, New Jersey 07632

LIBRARY ff C O h K i E S S
L ibrary of C0ngres.s Cataloging - in - Publ icat ion Data

' I,

Ak l . S e l i m G.
T h e d e s i g n a n d a n a l y s l s o f p a r a l l e l a l g o r i t h m s / by S e l l m G. A k l .

p. cm.
B i b l i o g r a p h y : p.
I n c l u d e s Index .
I S B N 0-13-200056-3
1 . P a r a l l e l p r o g r a m m i n g (C o m p u t e r s c i e n c e) 2. A l g o r i t h m s .

I . T i t l e .
OA76.6.A38 1989
004'.35--dci9 88-250 19

C I P

Editorial/production supervision,
Ann Mohan

Cover design: Lundgren Graphics Ltd.
Manufacturing buyer: Mary Noonan

0 1989 by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
1 0 9 8 7 6 5 4 3 2 1

ISBN 0-33-23005b-3

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brazil, Ltda., Rio de Janeiro

To Theo,
For making it worthwhile.

Contents

PREFACE xi
1 INTRODUCTION 1

1 .I The Need for Parallel Computers, 1
1.2 Models of Computation, 3

1.2.1 SISD Computers, 3
1.2.2 MISD Computers, 4
1.2.3 SIMD Computers, 5

1.2.3.1 Shared-Memory (SM) SIMD Computers, 7
1.2.3.2 Interconnection-Network SIMD Computers, 12

1.2.4 MIMD Computers, 17
1.2.4.1 Programming MIMD Computers, 19
1.2.4.2 Special-Purpose Architectures, 20

1.3 Analyzing Algorithms, 21
1.3.1 Running Time, 21

1.3.1.1 Counting Steps, 22
1.3.1.2 Lower and Upper Bounds, 22
1.3.1.3 Speedup, 24

1.3.2 Number of Processors, 25
1.3.3 Cost, 26
1.3.4 Other Measures, 27

1.3.4.1 Area, 27
1.3.4.2 Length, 28
1.3.4.3 Period, 28

1.4 Expressing Algorithms, 29
1.5 Oranization of the Book, 30
1.6 Problems, 30
1.7 Bibliographical Remarks, 33
1.8 References, 33

vi Contents

2 SELECTION 39

2.1 Introduction, 39
2.2 The Problem and a Lower Bound, 39

2.2.1 Linear Order, 39
2.2.2 Rank, 40
2.2.3 Selection, 40
2.2.4 Complexity, 40

2.3 A Sequential Algorithm, 41
2.4 Desirable Properties for Parallel Algorithms, 43

2.4.1 Number of Processors, 43
2.4.2 Running Time, 44
2.4.3 Cost, 44

2.5 Two Useful Procedures, 45
2.5.1 Broadcasting a Datum, 45
2.5.2 Computing All Sums, 46

2.6 An Algorithm for Parallel Selection, 49
2.7 Problems, 53
2.8 Bibliographical Remarks, 54
2.9 References, 56

3 MERGING 59

3.1 Introduction, 59
3.2 A Network for Merging, 60
3.3 Merging on the CREW Model, 64

3.3.1 Sequential Merging, 64
3.3.2 Parallel Merging, 65

3.4 Merging on the EREW Model, 69
3.5 A better Algorithm for the EREW Model, 73

3.5.1 Finding the Median of Two Sorted Sequences, 74
3.5.2 Fast Merging on the EREW Model, 76

3.6 Problems, 78
3.7 Bibliographical Remarks, 82
3.8 References, 82

4 SORTING 85

4.1 Introduction, 85
4.2 A network for Sorting, 87
4.3 Sorting on a Linear Array, 89
4.4 Sorting on the CRCW Model, 93
4.5 Sorting on the CREW Model, 96
4.6 Sorting on the EREW Model, 98

4.6.1 Simulating Procedure CREW SORT, 98
4.6.2 Sorting by Conflict-Free Merging, 99
4.6.3 Sorting by Selection, 99

Contents

4.7 Problems, 103
4.8 Bibliographical Remarks, 107
4.9 References, 108

5 SEARCHING 11 2

5.1 Introduction, 1 1 2
5.2 Searching a Sorted Sequence, 11 3

5.2.1 EREW Searching, 113
5.2.2 CREW Searching, 114
5.2.3 CRCW Searching, 118

5.3 Searching a Random Sequence, 11 9
5.3.1 Searching on SM SIMD Computers, 119

5.3.1.1 EREW 120
5.3.1.2 ERCW 120
5.3.1.3 CREW 120
5.3.1.4 CRCW 120

5.3.2 Searching on a Tree, 121
5.3.2.1 Querying, 121
5.3.2.2 Maintenance, 125

5.3.3 Searching on a Mesh, 128
5.3.3.1 Querying, 128
5.3.3.2 Maintenance, 132

5.4 Problems, 132
5.5 Bibliographical Remarks, 135
5.6 References, 136

6 GENERATING PERMUTATIONS AND COMBINATIONS 141

6.1 Introduction, 141
6.2 Sequential Algorithms, 142

6.2.1 Generating Permutations Lexicographically, 143
6.2.2 Numbering Permutations, 145
6.2.3 Generating Combinations Lexicographically, 147
6.2.4 Numbering Combinations, 148

6.3 Generating Permutations In Parallel, 150
6.3.1 Adapting a Sequential Algorithm, 150
6.3.2 An Adaptive Permutation Generator, 156
6.3.3 Parallel Permutation Generator for Few Processors, 157

6.4 Generating Combinations In Parallel, 158
6.4.1 A Fast Combination Generator, 158
6.4.2 An Adaptive Combination Generator, 162

6.5 Problems, 163
6.6 Bibliographical Remarks, 166
6.7 References, 167

viii

7 MATRIX OPERATIONS 170

Contents

7.1 Introduction, 170
7.2 Transposition, 170

7.2.1 Mesh Transpose, 171
7.2.2 Shuffle Transpose, 175
7.2.3 EREW Transpose, 177

7.3 Matrix-by-Matrix Multiplication, 178
7.3.1 Mesh Multiplication, 179
7.3.2 Cube Multiplication, 181
7.3.3 CRCW Multiplication, 187

7.4 Matrix-by-Vector Multiplication, 188
7.4.1 Linear Array Multiplication, 188
7.4.2 Tree Multiplication, 190
7.4.3 Convolution, 191

7.5 Problems, 193
7.6 Bibliographical Remarks, 194
7.7 References, 195

8 NUMERICAL PROBLEMS 200

8.1 Introduction, 200
8.2 Solving Systems of Linear Equations, 201

8.2.1 An SIMD Algorithm, 201
8.2.2 An MIMD Algorithm, 203

8.3 Finding Roots of Nonlinear Equations, 206
8.3.1 An SIMD Algorithm, 206
8.3.2 An MIMD Algorithm, 209

8.4 Solving Partial Differential Equations, 21 2
8.5 Computing Eigenvalues, 21 5
8.6 Problems, 221
8.7 Bibliographical Remarks, 225
8.8 References, 226

9 COMPUTING FOURIER TRANSFORMS 231
9.1 Introduction, 231

9.1.1 The Fast Fourier Transform, 231
9.1.2 An Application of the FFT, 232
9.1.3 Computing the DFT In Parallel, 233

9.2 Direct Computation of the DFT, 233
9.2.1 Computing the Matrix W 234
9.2.2 Computing the DFT, 235

9.3 A Parallel FFT Algorithm, 238
9.4 Problems, 242
9.5 Bibliographical Remarks, 246
9.6 References, 246

Contents

10 GRAPHTHEORY 251

10.1 Introduction, 251
10.2 Definitions, 251
10.3 Computing the Connectivity Matrix, 254
10.4 Finding Connected Components, 256
10.5 All-Pairs Shortest Paths, 257
10.6 Computing the Minimum Spanning Tree, 261
10.7 Problems, 266
10.8 Bibliographical Remarks, 271
10.9 References, 272

11 COMPUTATIONAL GEOMETRY 278

1 1 .I Introduction, 278
11.2 An Inclusion Problem, 279

11.2.1 Point in Polygon, 280
11.2.2 Point in Planar Subdivision, 283

11.3 An Intersection Problem, 285
11.4 A Proximity Problem, 287
11.5 A Construction Problem, 288

11.5.1 Lower Bound, 289
11.5.2 Sequential Solution, 291
11.5.3 Mesh of Trees Solution, 292
11.5.4 Optimal Solution, 296

11.6 Problems, 302
11.7 Bibliographical Remarks, 306
11.8 References, 306

12 TRAVERSING COMBINATORIAL SPACES 310

12.1 Introduction, 31 0
12.2 Sequential Tree Traversal, 31 2
12.3 Basic Design Principles, 31 7

12.3.1 The Minimal Alpha-Beta Tree, 318
12.3.2 Model of Computation, 319
12.3.3 Objectives and Methods, 320

12.4 The Algorithm, 323
12.4.1 Procedures and Processes, 323
12.4.2 Semaphores, 323
12.4.3 Score Tables, 324

12.5 Analysis and Examples, 327
12.5.1 Parallel Cutoffs, 327
12.5.2 Storage Requirements, 33 1

12.6 Problems, 336
12.7 Bibliographical Remarks, 337
12.8 References, 338

Contents

13 DECISION A N D OPTIMIZATION 341

13.1 Introduction, 341
13.2 Computing Prefix Sums, 341

13.2.1 A Specialized Network, 342
13.2.2 Using the Unshuffle Connection, 343
13.2.3 Prefix Sums on a Tree, 346
13.2.4 Prefix Sums on a Mesh, 349

13.3 Applications, 351
13.3.1 Job Sequencing with Deadlines, 35 1
13.3.2 The Knapsack Problem, 352
13.3.3 Mesh Solutions, 354

13.4 Problems, 355
13.5 Bibliographical Remarks, 356
13.6 References, 357

14 THE BIT COMPLEXITY OF PARALLEL COMPUTATIONS 361

14.1 Introduction, 361
14.2 Adding Two Integers, 363
14.3 Adding n Integers, 364

14.3.1 Addition Tree, 364
14.3.2 Addition Mesh, 366

14.4 Multiplying Two Integers, 366
14.4.1 Multiplication Tree, 368
14.4.2 Multiplication Mesh, 369

14.5 Computing Prefix Sums, 373
14.5.1 Variable Fan-out, 373
14.5.2 Constant Fan-out, 374

14.6 Matrix Multiplication, 374
14.7 Selection, 376
14.8 Sorting, 381
14.9 Problems, 382
14.1 0 Bibliographical Remarks, 384
14.1 1 References, 386

AUTHOR INDEX 389

SUBJECT INDEX 396

Preface

The need for ever faster computers has not ceased since the beginning of the computer
era. Every new application seems to push existing computers to their limit. So far,
computer manufacturers have kept up with the demand admirably well. In 1948, the
electronic components used to build computers could switch from one state to
another about 10,000 times every second. The switching time of this year's compo-
nents is approximately 1/10,000,000,000th of a second. These figures mean that the
number of operations a computer can do in one second has doubled, roughly every
two years, over the past forty years. This is very impressive, but how long can it last? It
is generally believed that the trend will remain until the end of this century. It may
even be possible to maintain it a little longer by using optically based or even
biologically based components. What happens after that?

If the current and contemplated applications of computers are any indication,
our requirements in terms of computing speed will continue, at least at the same rate
as in the past, well beyond the year 2000. Already, computers faster than any available
today are needed to perform the enormous number of calculations involved in
developing cures to mysterious diseases. They are essential to applications where the
human ability to recognize complex visual and auditory patterns is to be simulated in
real time. And they are indispensable if we are to realize many of humanity's dreams,
ranging from reliable long-term weather forecasting to interplanetary travel and outer
space exploration. It appears now that parallel processing is the way to achieve these
desired computing speeds.

The overwhelming majority of computers in existence today, from the simplest
to the most powerful, are conceptually very similar to one another. Their architecture
and mode of operation follow, more or less, the same basic design principles
formulated in the late 1940s and attributed to John von Neumann. The ingenious
scenario is very simple and essentially goes as follows: A control unit fetches an
instruction and its operands from a memory unit and sends them to a processing unit;
there the instruction is executed and the result sent back to memory. This sequence of
events is repeated for each instruction. There is only one unit of each kind, and only
one instruction can be executed at a time.

xii Preface

With parallel processing the situation is entirely different. A parallel computer is
one that consists of a collection of processing units, or processors, that cooperate to
solve a problem by working simultaneously on different parts of that problem. The
number of processors used can range from a few tens to several millions. As a result,
the time required to solve the problem by a traditional uniprocessor computer is
significantly reduced. This approach is attractive for a number of reasons. First, for
many computational problems, the natural solution is a parallel one. Second, the cost
and size of computer components have declined so sharply in recent years that
parallel computers with a large number of processors have become feasible. And,
third, it is possible in parallel processing to select the parallel architecture that is best
suited to solve the problem or class of problems under consideration. Indeed,
architects of parallel computers have the freedom to decide how many processors are
to be used, how powerful these should be, what interconnection network links them to
one another, whether they share a common memory, to what extent their operations
are to be carried out synchronously, and a host of other issues. This wide range of
choices has been reflected by the many theoretical models of parallel computation
proposed as well as by the several parallel computers that were actually built.

Parallelism is sure to change the way we think about and use computers. It
promises to put within our reach solutions to problems and frontiers of knowledge
never dreamed of before. The rich variety of architectures will lead to the discovery of
novel and more efficient solutions to both old and new problems. It is important
therefore to ask: How do we solve problems on a parallel computer? The primary
ingredient in solving a computational problem on any computer is the solution
method, or algorithm. This book is about algorithms for parallel computers. It describes
how to go about designing algorithms that exploit both the parallelism inherent in the
problem and that available on the computer. It also shows how to analyze these
algorithms in order to evaluate their speed and cost.

The computational problems studied in this book are grouped into three classes:
(1) sorting, searching, and related problems; (2) combinatorial and numerical
problems; and (3) problems arising in a number of application areas.These problems
were chosen due to their fundamental nature. It is shown how a parallel algorithm is
designed and analyzed to solve each problem. In some cases, several algorithms are
presented that perform the same job, each on a different model of parallel com-
putation. Examples are used as often as possible to illustrate the algorithms. Where
necessary, a sequential algorithm is outlined for the problem at hand. Additional
algorithms are briefly described in the Problems and Bibliographical Remarks
sections. A list of references to other publications, where related problems and
algorithms are treated, is provided at the end of each chapter.

The book may serve as a text for a graduate course on parallel algorithms. It was
used at Queen's University for that purpose during the fall term of 1987. The class met
for four hours every week over a period of twelve weeks. One of the four hours was
devoted to student presentations of additional material, reference to which was found
in the Bibliographical Remarks sections. The book should also be useful to computer
scientists, engineers, and mathematicians who would like to learn about parallel

Preface ...
Xl l l

models of computation and the design and analysis of parallel algorithms. It is
assumed that the reader possesses the background normally provided by an
undergraduate introductory course on the design and analysis of algorithms.

The most pleasant part of writing a book is when one finally gets a chance to
thank those who helped make the task an enjoyable one. Four people deserve special
credit: Ms. Irene LaFleche prepared the electronic version of the manuscript with her
natural cheerfulness and unmistakable talent. The diagrams are the result of Mr.
Mark Attisha's expertise, enthusiasm, and skill. Dr. Bruce Chalmers offered numerous
trenchant and insightful comments on an early draft. Advice and assistance on matters
big and small were provided generously by Mr. Thomas Bradshaw. I also wish to
acknowledge the several helpful suggestions made by the students in my CISC-867
class at Queen's. The support provided by the staff of Prentice Hall at every stage is
greatly appreciated

Finally, I am indebted to my wife, Karolina, and to my two children, Sophia and
Theo, who participated in this project in more ways than I can mention. Theo, in
particular, spent the first year of his life examining, from a vantage point, each word as
it appeared on my writing pad.

Selim G. Akl
Kingston, Ontario

Introduction

1.1 THE NEED FOR PARALLEL COMPUTERS

A battery of satellites in outer space are collecting data at the rate of 101° bits per
second. The data represent information on the earth's weather, pollution, agriculture,
and natural resources. In order for this information to be used in a timely fashion, it
needs to be processed at a speed of at least 1013 operations per second.

Back on earth, a team of surgeons wish to view on a special display a
reconstructed three-dimensional image of a patient's body in preparation for surgery.
They need to be able to rotate the image at will, obtain a cross-sectional view of an
organ, observe it in living detail, and then perform a simulated surgery while watching
its effect, all without touching the patient. A minimum processing speed of 1015
operations per second would make this approach worthwhile.

The preceding two examples are representative of applications where trem-
endously fast computers are needed to process vast amounts of data or to perform a
large number of calculations quickly (or at least within a reasonable length of time).
Other such applications include aircraft testing, the development of new drugs, oil
exploration, modeling fusion reactors, economic planning, cryptanalysis, managing
large databases, astronomy, biomedical analysis, real-time speech recognition, robo-
tics, and the solution of large systems of partial differential equations arising from
numerical simulations in disciplines as diverse as seismology, aerodynamics, and
atomic, nuclear, and plasma physics. No computer exists today that can deliver the
processing speeds required by these applications. Even the so-called supercomputers
peak at a few billion operations per second.

Over the past forty years dramatic increases in computing speed were achieved.
Most of these were largely due to the use of inherently faster electronic components by
computer manufacturers. As we went from relays to vacuum tubes to transistors and
from smaH to medium to large and then to very large scale integration, we witnessed-
often in amazement-the growth in size and range of the computational problems
that we could solve.

Unfortunately, it is evident that this trend will soon come to an end. The limiting
factor is a simple law of physics that gives the speed of light in vacuum. This speed is

2 Introduction Chap. 1

approximately equal to 3 x lo8 meters per second. Now, assume that an electronic
device can perform 1012 operations per second. Then it takes longer for a signal to
travel between two such devices one-half of a millimeter apart than it takes for either
of them to process it. In other words, all the gains in speed obtained by building
superfast electronic components are lost while one component is waiting to receive
some input from another one. Why then (one is compelled to ask) not put the two
communicating components even closer together? Again, physics tells us that the
reduction of distance between electronic devices reaches a point beyond which they
begin to interact, thus reducing not only their speed but also their reliability.

It appears that the only way around this problem is to use parallelism. The idea
here is that if several operations are performed simultaneously, then the time taken by
a computation can be significantly reduced. This is a fairly intuitive notion, and one to
which we are accustomed in any organized society. We know that several people of
comparable skills can usually finish a job in a fraction of the time taken by one
individual. From mail distribution to harvesting and from office to factory work, our
everyday life offers numerous examples of parallelism through task sharing.

Even in the field of computing, the idea of parallelism is not entirely new and has
taken many forms. Since the early days of information processing, people realized that
it is greatly advantageous to have the various components of a computer do different
things at the same time. Typically, while the central processing unit is doing
calculations, input can be read from a magnetic tape and output produced on a line
printer. In more advanced machines, there are several simple processors each
specializing in a given computational task, such as operations on floating-point
numbers, for example. Some of today's most powerful computers contain two or more
processing units that share among themselves the jobs submitted for processing.

In each of the examples just mentioned, parallelism is exploited profitably, but
nowhere near its promised power. Strictly speaking, none of the machines discussed is
truly a parallel computer. In the modern paradigm that we are about to describe,
however, the idea of parallel computing can realize its full potential. Here, our
computational tool is a parallel computer, that is, a computer with many processing
units, or processors. Given a problem to be solved, it is broken into a number of
subproblems. All of these subproblems are now solved simultaneously, each on a
different processor. The results are then combined to produce an answer to the
original problem. This is a radical departure from the model of computation adopted
for the past forty years in building computers-namely, the sequential uniprocessor
machine.

Only during the last ten years has parallelism become truly attractive and a
viable approach to the attainment of very high computational speeds. The declining
cost of computer hardware has made it possible to assemble parallel machines with
millions of processors. Inspired by the challenge, computer scientists began to study
parallel computers both in theory and in practice. Empirical evidence provided by
homegrown prototypes often came to support a large body of theoretical studies. And
very recently, a number of commercial parallel computers have made their ap-
pearance on the market.

Sec. 1.2 Models of Computation 3

With the availability of the hardware, the most pressing question in parallel
computing today is: How to program parallel computers to solve problems efficiently
and in a practical and economically feasible way? As is the case in the sequential
world, parallel computing requires algorithms, programming languages and com-
pilers, as well as operating systems in order to actually perform a computation on the
parallel hardware. All these ingredients of parallel computing are currently receiving a
good deal of well-deserved attention from researchers.

This book is about one (and perhaps the most fundamental) aspect of
parallelism, namely, parallel algorithms. A parallel algorithm is a solution method for
a given problem destined to be performed on a parallel computer. In order to properly
design such algorithms, one needs to have a clear understanding of the model of
computation underlying the parallel computer.

1.2 MODELS OF COMPUTATION

Any computer, whether sequential or parallel, operates by executing instructions on
data. A stream of instructions (the algorithm) tells the computer what to do at each
step. A stream of data (the input to the algorithm) is affected by these instructions.
Depending on whether there is one or several of these streams, we can distinguish
among four classes of computers:

1. Single Instruction stream, Single Data stream (SISD)
2. Multiple Instruction stream, Single Data stream (MISD)
3. Single Instruction stream, Multiple Data stream (SIMD)
4. Multiple Instruction stream, Multiple Data stream (MIMD).

We now examine each of these classes in some detail. In the discussion that follows we
shall not be concerned with input, output, or peripheral units that are available on
every computer.

1.2.1 SISD Computers

A computer in this class consists of a single processing unit receiving a single stream of
instructions that operate on a single stream of data, as shown in Fig. 1.1. At each step
during the computation the control unit emits one instruction that operates on a
datum obtained from the memory unit. Such an instruction may tell the processor, for

Figure 1.1 SISD computer.

MEMORY

-
DATA

STREAM
PROCESSOR, CONTROL -,

STREAM

4 Introduction Chap. 1

example, to perform some arithmetic or logic operation on the datum and then put it
back in memory.

The overwhelming majority of computers today adhere to this model invented
by John von Neumann and his collaborators in the late 1940s. An algorithm for a
computer in this class is said to be sequential (or serial).

Example 1.1

In order to compute the sum of n numbers, the processor needs to gain access to the
memory n consecutive times and each time receive one number. There are also n - 1
additions involved that are executed in sequence. Therefore, this computation requires on
the order of n operations in total.

This example shows that algorithms for SISD computers do not contain any
parallelism. The reason is obvious, there is only one processor! In order to obtain
from a computer the kind of parallel operation defined earlier, it will need to have
several processors. This is provided by the next three classes of computers, the classes
of interest in this book. In each of these classes, a computer possesses N processors,
where N > 1.

1.2.2 MISD Computers

Here, N processors each with its own control unit share a common memory unit
where data reside, as shown in Fig. 1.2. There are N streams of instructions and one
stream of data. At each step, one datum received from memory is operated upon by all
the processors simultaneously, each according to the instruction it receives from its
control. Thus, parallelism is achieved by letting the processors do different things at
the same time on the same datum. This class of computers lends itself naturally to
those computations requiring an input to be subjected to several operations, each
receiving the input in its original form. Two such computations are now illustrated.

Figure 1.2 MISD computer.

PROCESSOR

1

INSTRUCTION
STREAM 1

CONTROL
1

CONTROL

2
INSTRUCTION

MEMORY
STREAM 2

DATA
STREAM

PROCESSOR

N
INSTRUCTION

STREAM N

CONTROL

N

Sec. 1.2 Models of Computation

Example 1.2

It is required to determine whether a given positive integer z has no divisors except 1 and
itself. The obvious solution to this problem is to try all possible divisors of z: If none of
these succeeds in dividing z, then z is said to be prime; otherwise z is said to be composite.

We can implement this solution as a parallel algorithm on an MISD computer.
The idea is to split the job of testing potential divisors among processors. Assume that
there are as many processors on the parallel computer as there are potential divisors of z.
All processors take z as input, then each tries to divide it by its associated potential
divisor and issues an appropriate output based on the result. Thus it is possible to
determine in one step whether z is prime. More realistically, if there are fewer processors
than potential divisors, then each processor can be given the job of testing a different
subset of these divisors. In either case, a substantial speedup is obtained over a purely
sequential implementation.

Although more efficient solutions to the problem of primality testing exist, we have
chosen the simple one as it illustrates the point without the need for much mathematical
sophistication.

Example 1.3

In many applications, we often need to determine to which of a number of classes does a
given object belong. The object may be a mathematical one, where it is required to
associate a number with one of several sets, each with its own properties. Or it may be a
physical one: A robot scanning the deep-sea bed "sees" different objects that it has to
recognize in order to distinguish among fish, rocks, algae, and so on. Typically,
membership of the object is determined by subjecting it to a number of different tests.

The classification process can be done very quickly on an MISD computer with as
many processors as there are classes. Each processor is associated with a class and can
recognize members of that class through a computational test. Given an object to be
classified, it is sent simultaneously to all processors where it is tested in parallel. The
object belongs to the class associated with that processor that reports the success of its
test. (Of course, it may be that the object does not belong to any of the classes tested for,
in which case all processors report failure.) As in example 1.2, when fewer processors than
classes are available, several tests are performed by each processor; here, however, in
reporting success, a processor must also provide the class to which the object
belongs.

The preceding examples show that the class of MISD computers could be
extremely useful in many applications. I t is also apparent that the kind of com-
putations that can be carried out efficiently on these computers are of a rather
specialized nature. For most applications, MISD computers would be rather
awkward to use. Parallel computers that are more flexible, and hence suitable for a
wide range of problems, are described in the next two sections.

1.2.3 SlM D Computers

In this class, a parallel computer consists of N identical processors, as shown in Fig.
1.3.

Each of the N processors possesses its own local memory where it can store both

Introduction Chap. 1

STREAM I
PROCESSOR 1

SHARED MEMORY

0 R

INTERCONNECTION NETWORK

STREAM

PROCESSOR

INSTRUCTION
STREAM I

CONTROL

Figure 1.3 SIMD computer.

programs and data. All processors operate under the control of a single instruction
stream issued by a central control unit. Equivalently, the N processors may be
assumed to hold identical copies of a single program, each processor's copy being
stored in its local memory. There are N data streams, one per processor.

The processors operate synchronously: At each step, all processors execute the
same instruction, each on a different datum. The instruction could be a simple one
(such as adding or comparing two numbers) or a complex one (such as merging two
lists of numbers). Similarly, the datum may be simple (one number) or complex (several
numbers). Sometimes, it may be necessary to have only a subset of the processors
execute an instruction. This information can be encoded in the instruction itself,
thereby telling a processor whether it should be active (and execute the instruction) or
inactive (and wait for the next instruction). There is a mechanism, such as a global
clock, that ensures lock-step operation. Thus processors that are inactive during an
instruction or those that complete execution of the instruction before others may stay
idle until the next instruction is issued. The time interval between two instructions
may be fixed or may depend on the instruction being executed.

In most interesting problems that we wish to solve on an SIMD computer, it is
desirable for the processors to be able to communicate among themselves during the
computation in order to exchange data or intermediate results. This can be achieved
in two ways, giving rise to two subclasses: SIMD computers where communication is
through a shared memory and those where it is done via an interconnection network.

Sec. 1.2 Models of Computation 7

1.2.3.1 Shared -Memory (SM) SIMD Computers. This class is also
known in the literature as the Parallel Random-Access Machine (PRAM) model.
Here, the N processors share a common memory that they use in the same way a
group of people may use a bulletin board. When two processors wish to communicate,
they do so through the shared memory. Say processor i wishes to pass a number to
processor j. This is done in two steps. First, processor i writes the number in the
shared memory at a given location known to processor j. Then, processor j reads the
number from that location.

During the execution of a parallel algorithm, the N processors gain access to the
shared memory for reading input data, for reading or writing intermediate results, and
for writing final results. The basic model allows all processors to gain access to the
shared memory simultaneously if the memory locations they are trying to read from
or write into are different. However, the class of shared-memory SIMD computers can
be further divided into four subclasses, according to whether two or more processors
can gain access to the same memory location simultaneously:

(i) Exclusive-Read, Exclusive-Write (EREW) SM SIMD Computers. Access
to memory locations is exclusive. In other words, no two processors are allowed
simultaneously to read from or write into the same memory location.

(ii) Concurrent-Read, Exclusive-Write (CREW) SM SIMD Computers.
Multiple processors are allowed to read from the same memory location but the right
to write is still exclusive: No two processors are allowed to write into the same
location simultaneously.

(iii) Exclusive-Read, Concurrent-Write (ERCW) SM SIMD Computers.
Multiple processors are allowed to write into the same memory location but read
accesses remain exclusive.

(iv) Concurrent-Read, Concurrent-Write (CRCW) SM SIMD Computers.
Both multiple-read and multiple-write privileges are granted.

Allowing multiple-read accesses to the same address in memory should in
principle pose no problems (except perhaps some technological ones to be discussed
later). Conceptually, each of the several processors reading from that location makes a
copy of the location's contents and stores it in its own local memory.

With multiple-write accesses, however, difficulties arise. If several processors are
attempting simultaneously to store (potentially different) data at a given address,
which of them should succeed? In other words, there should be a deterministic way of
specifying the contents of that address after the write operation. Several policies have
been proposed to resolve such write conflicts, thus further subdividing classes (iii) and
(iv). Some of these policies are

(a) the smallest-numbered processor is allowed to write, and access is denied to all
other processors;

(b) all processors are allowed to write provided that the quantities they are
attempting to store are equal, otherwise access is denied to all processors; and

(c) the sum of all quantities that the processors are attempting to write is stored.

8 Introduction Chap. 1

A typical representative of the class of problems that can be solved o n parallel
computers of the SM SIMD family is given in the following example.

Example 1.4

Consider a very large computer file consisting of n distinct entries. We shall assume for
simplicity that the file is not sorted in any order. (In fact, it may be the case that keeping
the file sorted at all times is impossible or simply inefficient.) Now suppose that it is
required to determine whether a given item x is present in the file in order to perform a
standard database operation, such as read, update, or delete. On a conventional (i.e.,
SISD) computer, retrieving x requires n steps in the worst case where each step is a
comparison between x and a file entry. The worst case clearly occurs when x is either
equal to the last entry or not equal to any entry. On the average, of course, we expect to
do a little better: If the file entries are distributed uniformly over a given range, then half
as many steps are required to retrieve x.

The job can be done a lot faster on an EREW SM SIMD computer with N
processors, where N < n. Let us denote the processors by P I , P,, . . . , P,.' T o begin with,
we need to let all the processors know the value of x. This can be done using an operation
known as broadcasting:

1. P , reads x and communicates it to P,.

2. Simultaneously, P , and P , communicate x to P, and P,, respectively.
3. Simultaneously, P I , P,, P,, and P, communicate x to P,, P,, P,, and P,,

respectively,
and so on.

The process continues until all processors obtain x. As the number of processors that
receive x doubles at each stage, broadcasting x to all N processors requires log N steps2
A formal statement of the broadcasting process is given in section 2.5.1.

Now the file to be searched for x is subdivided into subfiles that are searched
simultaneously by the processors: P , searches the first n/N elements, P, searches the
second n/N elements, and so on. Since all subfiles are of the same size, n/N steps are
needed in the worst case to answer the query about x. In total, therefore, this parallel
algorithm requires log N + n/N steps in the worst case. On the average, we can do better
than that (as was done with the SISD computer): A location F holding a Boolean value
can be set aside in the shared memory to signal that one of the processors has found the
item searched for and, consequently, that all other processors should terminate their
search. Initially, F is set to false. When a processor finds x in its subfile, it sets F to true.
At every step of the search all processors check F to see if it is true and stop if this is the
case. Unfortunately, this modification of the algorithm does not come for free: log N steps
are needed to broadcast the value of F each time the processors need it. This leads to a
total of log N + (n/N)log N steps in the worst case. It is possible to improve this behavior
by having the processors either check the value of F at every (log N)th step, or broadcast
it (once true) concurrently with the search process.

'Note that the indexing schemes used for processors in this chapter are for illustration only. Thus,
for example, in subsequent chapters a set of N processors may be numbered 1 to N, or 0 to N - 1,
whichever is more convenient.

2All logarithms in this book are to the base 2, unless otherwise indicated. If N is not a power of 2,
then log N is always rounded to the next higher integer. Similarly, and unless otherwise stated, we shall
assume that all real quantities-such as those arising from computing square roots and ratios-are
rounded appropriately.

Sec. 1.2 Models of Computation 9

In order to truly exploit this early termination trick without increasing the worst-
case running time, we need to use a more powerful model, namely, a CREW SM SIMD
computer. Since concurrent-read operations are allowed, it takes one step for all
processors to obtain x initially and one step for them to read F each time it is needed.
This leads to a worst case of n/N steps.

Finally we note that an even more powerful model is needed if we remove the
assumption made at the outset of this example that all entries in the file are distinct.
Typically, the file may represent a textual database with hundreds of thousands of
articles, each containing several thousand words; It may be necessary to search such a file
for a given word x. In this case, more than one entry may be equal to x, and hence more
than one processor may need to report success at the same time. This means that two or
more processors will attempt to write into location F simultaneously, a situation that can
only be handled by a CRCW SM SIMD computer.

Simulating Multiple Accesses on an EREW Computer. The EREW
SM SIMD model of a parallel computer is unquestionably the weakest of the four
subclasses of the shared-memory approach, as it restricts its access to a given address
to one processor at a time. An algorithm for such a computer must be specifically
designed to exclude any attempt by more than one processor to read from or write
into the same location simultaneously. The model is sufficiently flexible, however, to
allow the simulation of multiple accesses at the cost of either increasing the space
and/or the time requirements of an algorithm.

Such a simulation may be desirable for one of two reasons:

1. The parallel computer available belongs to the EREW class and thus the only
way to execute a CREW, ERCW, or CRCW algorithm is through simulation or

2. parallel computers of the CREW, ERCW, and CRCW models with a very large
number of processors are technologically impossible to build at all. Indeed, the
number of processors that can be simultaneously connected to a memory
location is limited

(i) not only by the physical size of the device used for that location,
(ii) but also by the device's physical properties (such as voltage).

Therefore concurrent access to memory by an arbitrary number of processors may not
be realizable in practice. Again in this case simulation is the only resort to implement
an algorithm developed in theory to include multiple accesses.

(i) N Multiple Accesses. Suppose that we want to run a parallel algorithm
involving multiple accesses on an EREW SM SIMD computer with N processors
PI, P,, . . . , P,. Suppose further that every multiple access means that all N processors
are attempting to read from or write into the same memory location A. We can '

simulate multiple-read operations on an EREW computer using a broadcast pro-
cedure as explained in example 1.4. This way, A can be distributed to all processors in
log N steps. Similarly, a procedure symmetrical to broadcasting can be used to handle
multiple-write operations. Assume that the N processors are allowed to write in A
simultaneously only if they are all attempting to store the same value. Let the value
that Pi is attempting to write be denoted by a,, 1 < i < N. The procedure to store in A
works as follows:

10 Introduction Chap. 1

1. For 1 < i < N/2, if a, and ai+,/, are equal, then Pi sets a secondary variable bi to
true; otherwise b, is set to false.

2. For 1 < i < N/4, if bi and b,+,/, are both true and a, = a,+Ni4, then Pi sets bi to
true; otherwise bi is set to false.

And so on. After log N steps, PI knows whether all the ai are equal. If they are, it
proceeds to store a , in A; otherwise no writing is allowed to take place. This store
procedure is the subject of problem 2.13.

The preceding discussion indicates that multiple-read and multiple-write
operations by all processors can be simulated on the EREW model. If every step of an
algorithm involves multiple accesses of this sort, then in the worst case such a
simulation increases the number of steps the algorithm requires by a factor of log N.

(ii) m out of N Multiple Accesses. We now turn to the more general case
where a multiple read from or a multiple write into a memory location does not
necessarily implicate all processors. In a typical algorithm, arbitrary subsets of
processors may be each attempting to gain access to different locations, one location
per subset. Clearly the procedures for broadcasting and storing described in (i) no
longer work in this case. Another approach is needed in order to simulate such an
algorithm on the EREW model with N processors. Say that the algorithm requires a
total of M locations of shared memory. The idea here is to associate with each of the
M locations another 2N - 2 locations. Each of the M locations is thought of as the
root of a binary tree with N leaves (the tree has depth log N and a total of 2N - 1
nodes). The leaves of each tree are numbered 1 through N and each is associated with
the processor with the same number.

When m processors, m < N, need to gain access to location A, they can put their
requests at the leaves of the tree rooted at A. For a multiple read from location A, the
requests trickle (along with the processors) up the tree until one processor reaches the
root and reads from A. The value of A is then sent down the tree to all the processors
that need it. Similarly, for a multiple-write operation, the processors "carry" the
requests up the tree in the manner described in (i) for the store procedure. After log N
steps one processor reaches the root and makes a decision about writing. Going up
and down the tree of memory locations requires 2 log N steps. The formal description
of these simulations, known as multiple broadcasting and multiple storing, respectively,
is the subject of section 3.4 and problem 3.33.

Therefore, the price paid for running a parallel algorithm with arbitrary multiple
accesses is a (2N - 2)-fold increase in memory requirements. Furthermore, the
number of steps is augmented by a factor on the order of log N in the worst case.

Feasibility of the Shared -Memory Model. The SM SIMD computer
is a fairly powerful model of computation, even in its weakest manifestation, the
EREW subclass. Indeed, the model allows all available processors to gain access to
the shared memory simultaneously. It is sometimes said that the model is unrealistic
and no parallel computer based on that model can be built. The argument goes as
follows. When one processor needs to gain access to a datum in memory, some

Sec. 1.2 Models of Computation 11

circuitry is needed to create a path from that processor to the location in memory
holding that datum. The cost of such circuitry is usually expressed as the number of
logical gates required to decode the address provided by the processor. If the memory
consists of M locations, then the cost of the decoding circuitry may be expressed as
f (M) for some cost function f: If N processors share that memory as in the SM SIMD
model, then the cost of the decoding circuitry climbs to N x f (M). For large N and M
this may lead to prohibitively large and expensive decoding circuitry between the
processors and the memory.

There are many ways to mitigate this difficulty. All approaches inevitably lead to
models weaker than the SM SIMD computer. Of course, any algorithm for the latter
may be simulated on a weaker model at the cost of more space and/or computational
steps. By contrast, any algorithm for a weaker model runs on the SM SIMD machine
at no additional cost.

One way to reduce the cost of the decoding circuitry is to divide the shared
memory into R blocks, say, of M/R locations each. There are N + R two-way lines
that allow any processor to gain access to any memory block at any time. However, no
more than one processor can read from or write into a block simultaneously. This
arrangement is shown in Fig. 1.4 for N = 5 and R = 3. The circles at the intersections
of horizontal and vertical lines represent small (relatively inexpensive) switches. When

Figure 1.4 Dividing a shared memory into blocks.

PROCESSOR
1

a a
v -

PROCESSOR

9

A. A.
2

4

A. 4

A. .. 4b

4. 4

.. 1

b .I

A L
.I

PROCESSOR
3

A. ..

PROCESSOR
4

A. ..

PROCESSOR
5 ..

12 Introduction Chap. 1

the ith processor wishes to gain access to the jth memory block, it sends its request
along the ith horizontal line to the jth switch, which then routes it down the jth
vertical line to the jth memory block. Each memory block possesses one decoder
circuit to determine which of the MIR locations is needed. Therefore, the total cost of
decoding circuitry is R x f (MIR). To this we must add of course the cost of the N x R
switches. Another approach to obtaining a weaker version of the SM SIMD is
described in the next section.

1.2.3.2 Interconnection -Network S IM D Computers. We concluded
section 1.2.3.1 by showing how the SM SIMD model can be made more feasible by
dividing the memory into blocks and making access to these blocks exclusive. It is
natural to think of extending this idea to obtain a slightly more powerful model. Here
the M locations of the shared memory are distributed among the N processors, each
receiving MIN locations. In addition every pair of processors are connected by a two-
way line. This arrangement is shown in Fig. 1.5 for N = 5. At any step during the
computation, processor Pi can receive a datum from P j and send another one to P, (or
to Pj). Consequently, each processor must contain

(i) a circuit of cost f (N - 1) capable of decoding a log(N - 1)-bit address-this
allows the processor to select one of the other N - 1 processors for communi-
cating; and

(ii) a circuit of cost f (M IN) capable of decoding a log(M/N)-bit address provided
by another processor.

This model is therefore more powerful than the R-block shared memory, as it allows
instantaneous communication between any pair of processors. Several pairs can thus
communicate simultaneously (provided, of course, no more than one processor
attempts to send data to or expects to receive data from another processor). Thus,

I PROCESSOR 1 I

Figure 1.5
processors.

Fully interconnected set of

Sec. 1.2 Models of Computation 13

potentially all processors can be busy communicating all the time, something that is
not possible in the R-block shared memory when N > R. We now discuss a number of
features of this model.

(i) Price. The first question to ask is: What is the price paid to fully
interconnect N processors? There are N - 1 lines leaving each processor for a total of
N(N - 1)/2 lines. Clearly, such a network is too expensive, especially for large values
of N. This is particularly true if we note that with N processors the best we can hope
for is an N-fold reduction in the number of steps required by a sequential algorithm, as
shown in section 1.3.1.3.

(ii) Feasibility. Even if we could afford such a high price, the model is
unrealistic in practice, again for large values of N. Indeed, there is a limit on the
number of lines that can be connected to a processor, and that limit is dictated by the
actual physical size of the processor itself.

(iii) Relation to SM SIMD. Finally, it should be noted that the fully
interconnected model as described is weaker than a shared-memory computer for the
same reason as the R-block shared memory: No more than one processor can gain
access simultaneously to the memory block associated with another processor.
Allowing the latter would yield a cost of NZ x f (MIN), which is about the same as for
the SM SIMD (not counting the quadratic cost of the two-way lines): This clearly
would defeat our original purpose of getting a more feasible machine!

Simple Networks for SZMD Computers. It is fortunate that in most appli-
cations a small subset of all pairwise connections is usually sufficient to obtain a good
performance. The most popular of these networks are briefly outlined in what follows.
Keep in mind that since two processors can communicate in a constant number of
steps on a SM SIMD computer, any algorithm for an interconnection-network SIMD
computer can be simulated on the former model in no more steps than required to
execute it by the latter.

(i) Linear Array. The simplest way to interconnect N processors is in the form
of a one-dimensional array, as shown in Fig. 1.6 for N = 6. Here, processor Pi is linked
to its two neighbors Pi-, and Pi+, through a two-way communication line. Each of
the end processors, namely, P, and P,, has only one neighbor.

(ii) Two-Dimensional Array. A two-dimensional network is obtained by
arranging the N processors into an m x m array, where m = Nli2, as shown in Fig. 1.7
for m = 4. The processor in row j and column k is denoted by P(j, k), where
0 < j < m - 1 and 0 < k < m - 1. A two-way communication line links P(j, k) to its
neighbors P (j + 1, k), P (j - 1, k), P(j, k + I), and P(j, k - 1). Processors on the

Figure 1.6 Linear array connection.

Introduction Chap. 1

COLUMN
NUMBER 0 1 2 3

ROW 0
NUMBER

Figure 1.7 Two-dimensional array (or
mesh) connection.

boundary rows and columns have fewer than four neighbors and hence fewer
connections. This network is also known as the mesh.

Both the one- and two-dimensional arrays possess an interesting property: All
the lines in the network have the same length. The importance of this feature, not
enjoyed by other interconnections studied in this book, will become apparent when
we analyze the time required by a network to solve a problem (see section 1.3.4.2).

(iii) Tree Connection. In this network, the processors form a complete binary
tree. Such a tree has d levels, numbered 0 to d - 1, and N = 2* - 1 nodes each of
which is a processor, as shown in Fig. 1.8 for d = 4. Each processor at level i is
connected by a two-way line to its parent at level i + 1 and to its two children at level
i - 1. The root processor (at level d - 1) has no parent and the leaves (all of which are
at level 0) have no children. In this book, the terms tree connection (or tree-connected
computer) are used to refer to such a tree of processors.

(iv) Perfect Shuffle Connection. Let N processors Po, PI , . . . , P, - , be
available where N is a power of 2. In the perfect shufle interconnection a one-way line
links Pi to Pi, where

for 0 < i < N / 2 - 1, ' = {:: + 1 - N for N/2 < i < N - 1,

as shown in Fig. 1.9 for N = 8. Equivalently, the binary representation of j is obtained
by cyclically shifting that of i one position to the left.

In addition to these shufle links, two-way lines connecting every even-numbered
processor to its successor are sometimes added to the network. These connections,
called the exchange links, are shown as broken lines in Fig. 1.9. In this case, the
network is known as the shufle-exchange connection.

Sec. 1.2 Models of Computation 15

LEVEL 3

LEVEL 2

LEVEL 1

LEAVES

Figure 1.8 Tree connection.

LEVEL 0

Figure 1.9 Perfect shuffle connection.

(v) Cube Connection. Assume that N = 2q for some q 2 1 and let N pro-
cessors be available Po, p , , . . . , P,- ,. A q-dimensional cube (or hypercube) is obtained
by connecting each processor to q neighbors. The q neighbors P j of Pi are defined as
follows: The binary representation of j is obtained from that of i by complementing a
single bit. This is illustrated in Fig. 1.10 for q = 3. The indices of Po, P , , . . . , P, are
given in binary notation. Note that each processor has three neighbors.

There are several other interconnection networks besides the ones just de-
scribed. The decision regarding which of these to use largely depends on the
application and in particular on such factors as the kinds of computations to be
performed, the desired speed of execution, and the number of processors available. We
conclude this section by illustrating a parallel algorithm for an SIMD computer that
uses an interconnection network.

Example 1.5

Assume that the sum of n numbers x,, x,, . . . , x, needs to be computed. There are n - 1
additions involved in this computation, and a sequential algorithm running on a
conventional (i.e., SISD) computer will require n steps to complete it, as mentioned in

16 Introduction Chap. 1

Figure 1.10 Cube connection.

example 1.1. Using a tree-connected SIMD computer with log n levels and n/2 leaves,
the job can be done in log n steps as shown in Fig. 1.1 1 for n = 8.

The original input is reczived at the leaves, two numbers per leaf. Each leaf adds its
inputs and sends the result to its parent. The process is now repeated at each subsequent
level: Each processor receives two inputs from its children, computes their sum, and sends
it to its parent. The final result is eventually produced by the root. Since at each level ail
the processors operate in parallel, the sum is computed in log n steps. This compares very
favorably with the sequential computation.

The improvement in speed is even more dramatic when m sets, each of n numbers,
are available and the sum of each set is to be computed. A conventional machine requires
mn steps in this case. A naive application of the parallel algorithm produces them sums in

INPUT
Figure 1.11 Adding eight numbers on a
processor tree.

Sec. 1.2 Models of Computation 17

m(log n) steps. Through a process known as pipelining, however, we can do significantly
better. Notice that once a set has been processed by the leaves, they are free to receive the
next one. The same observation applies to all processors at higher levels. Hence each of
the m - 1 sets that follow the initial one can be input to the leaves one step after their
predecessor. Once the first sum exits from the root, a new sum is produced in the next
step. The entire process therefore takes log n + m - 1 steps.

It should be clear from our discussion so far that SIMD computers are
considerably more versatile than those conforming to the MISD model. Numerous
problems covering a wide variety of applications can be solved by parallel algorithms
on SIMD computers. Also, as shown by examples 1.4 and 1.5, algorithms for these
computers are relatively easy to design, analyze, and implement. In one respect,
however, this class of problems is restricted to those that can be subdivided into a set
of identical subproblems all of which are then solved simultaneously by the same set of
instructions. Obviously, there are many computations that do not fit this pattern. In
some problems it may not be possible or desirable to execute all instructions
synchronously. Typically, such problems are subdivided into subproblems that are
not necessarily identical and cannot or should not be solved by the same set of
instructions. To solve these problems, we turn to the class of MIMD computers.

1.2.4 MIMD Computers

This class of computers is the most general and most powerful in our paradigm of
parallel computation that classifies parallel computers according to whether the
instruction and/or the data streams are duplicated. Here we have N processors, N
streams of instructions, and N streams of data, as shown in Fig. 1.12. The processors
here are of the type used in MISD computers in the sense that each possesses its own
control unit in addition to its local memory and arithmetic and logic unit. This makes
these processors more powerful than the ones used for SIMD computers.

Each processor operates under the control of an instruction stream issued by its
control unit. Thus the processors are potentially all executing different programs on
different data while solving different subproblems of a single problem. This means that
the processors typically operate asynchronously. As with SIMD computers, commu-
nication between processors is performed through a shared memory or an intercon-
nection network. MIMD computers sharing a common memory are often referred to
as multiprocessors (or tightly coupled machines) while those with an interconnection
network are known as multicomputers (or loosely coupled machines).

Since the processors on a multiprocessor computer share a common memory,
the discussion in section 1.2.3.1 regarding the various modes of concurrent memory
access applies here as well. Indeed, two or more processors executing an asynchronous
algorithm may, by accident or by design, wish to gain access to the same memory
location. We can therefore talk of EREW, CREW, ERCW, and CRCW SM MIMD
computers and algorithms, and various methods should be established for resolving
memory access conflicts in models that disallow them.

Introduction Chap. 1

Figure 1.12 MIMD computer.

SHARED MEMORY

OR

INTERCONNECTION NETWORK

Multicomputers are sometimes referred to as distributed systems. The distinction
is usually based on the physical distance separating the processors and is therefore
often subjective. A rule of thumb is the following: If all the processors are in close
proximity of one another (they are all in the same room, say), then they are a
multicomputer; otherwise (they are in different cities, say) they are a distributed
system. The nomenclature is relevant only when it comes to evaluating parallel
algorithms. Because processors in a distributed system are so far apart, the number of
data exchanges among them is significantly more important than the number of
computational steps performed by any of them.

The following example examines an application where the great flexibility of
MIMD computers is exploited.

Example 1.6

DATA
STREAM

N

DATA
STREAM

1

Computer programs that play games of strategy, such as chess, do so by generating and
searching so-called game trees. The root of the tree is the current game configuration or
position from which the program is to make a move. Children of the root represent all the
positions reached through one move by the program. Nodes at the next level represent all
positions reached through the opponent's reply. This continues up to some predefined

DATA
STREAM

2

v v 'I

PROCESSOR
N

0 . 0 PROCESSOR
1

PROCESSOR
2

A .I A

INSTRUCTION
STREAM

1

INSTRUCTION
STREAM

2

INSTRUCTION
STREAM

N

CONTROL
N

CONTROL
1

u u u
CONTROL

2 * . *

Sec. 1.2 Models of Computation 19

number of levels. Each leaf position is now assigned a value representing its "goodness"
from the program's point of view. The program then determines the path leading to the
best position it can reach assuming that the opponent plays a perfect game. Finally, the
original move on this path (i.e., an edge leaving the root) is selected for the program.

As there are typically several moves per position, game trees tend to be very large.
In order to cut down on the search time, these trees are generated as they are searched.
The idea is to explore the tree using the depth-first search method. From the given root
position, paths are created and examined one by one. First, a complete path is built from
the root to a leaf. The next path is obtained by backing up from the current leaf to a
position all of whose descendants have not yet been explored and building a new path.
During the generation of such a path it may happen that a position is reached that, based
on information collected so far, definitely leads to leaves that are no better than the ones
already examined. In this case the program interrupts its search along that path and all
descendants of that position are ignored. A cutoff is said to have occurred. Search can
now resume along a new path.

So far we have described the search procedure as it would be executed sequentially.
One way to implement it on an MIMD computer would be to distribute the subtrees of
the root among the processors and let as many subtrees as possible be explored in
parallel. During the search the processors may exchange various pieces of information.
For example, one processor may obtain from another the best move found so far: This
may lead to further cutoffs. Another datum that may be communicated is whether a
processor has finished searching its subtree(s). If there is a subtree that is still under
consideration, then an idle processor may be assigned the job of searching part of that
subtree.

This approach clearly does not lend itself to implementation on an SIMD
computer as the sequence of operations involved in the search is not predictable in
advance. At any given point, the instruction being executed varies from one processor to
another: While one processor may be generating a new position, a second may be
evaluating a leaf, a third may be executing a cutoff, a fourth may be backing up to start a
new path, a fifth may be communicating its best move, a sixth may be signaling the end of
its search, and so on.

1.2.4.1 Programming MIMD Computers. As mentioned earlier, the
MIMD model of parallel computation is the most general and powerful possible.
Computers in this class are used to solve in parallel those problems that lack the
regular structure required by the SIMD model. This generality does not come for free:
Asynchronous algorithms are difficult to design, evaluate, and implement. In order to
appreciate the complexity involved in programming MIMD computers, it is import-
ant to distinguish between the notion of a process and that of a processor. An
asynchronous algorithm is a collection of processes some or all of which are executed
simultaneously on a number of available processors. Initially, all processors are free.
The parallel algorithm starts its execution on an arbitrarily chosen processor. Shortly
thereafter it creates a number of computational tasks, or processes, to be performed. A
process thus corresponds to a section of the algorithm: There may be several processes
associated with the same algorithm section, each with a different parameter.

Once a process is created, it must be executed on a processor. If a free processor

20 Introduction Chap. 1

is available, the process is assigned to the processor that performs the computations
specified by the process. Otherwise (if no free processor is available), the process is
queued and waits for a processor to be free.

When a processor completes execution of a process, it becomes free. If a process
is waiting to be executed, then it can be assigned to the processor just freed. Otherwise
(if no process is waiting), the processor is queued and waits for a process to be created.

The order in which processes are executed by processors can obey any policy
that assigns priorities to processes. For example, processes can be executed in a first-
in-first-out or in a last-in-first-out order. Also, the availability of a processor is
sometimes not sufficient for the processor to be assigned a waiting process. An
additional condition may have to be satisfied before the process starts. Similarly, if a
processor has already been assigned a process and an unsatisfied condition is
encountered during execution, then the processor is freed. When the condition for
resumption of that process is later satisfied, a processor (not necessarily the original
one) is assigned to it. These are but a few of the scheduling problems that characterize
the programming of multiprocessors. Finding efficient solutions to these problems is
of paramount importance if MIMD computers are to be considered useful. Note that
none of these scheduling problems arise on the less flexible but easier to program
SIMD computers.

1.2.4.2 Spec ia l-Purpose Arch i tectures. In theory, any parallel al-
gorithm can be executed efficiently on the MIMD model. The latter can therefore be
used to build parallel computers with a wide variety of applications. Such computers
are said to have a general-purpose architecture. In practice, by contrast, it is quite
sensible in many applications to assemble several processors in a configuration
specifically designed for the problem at hand. The result is a parallel computer well
suited for solving that problem very quickly but that cannot in general be used for any
other purpose. Such a computer is said to have a special-purpose architecture. With a
particular problem in mind, there are several ways to design a special-purpose parallel
computer. For example, a collection of specialized or very simple processors may be
used in one of the standard networks such as the mesh. Alternatively, one may
interconnect a number of standard processors in a custom geometry. These two
approaches may also be combined.

Example 1.7

Black-and-white pictures are stored in computers in the form of two-dimensional arrays.
Each array entry represents a picture element, or pixel. A 0 entry represents a white pixel,
a 1 entry a black pixel. The larger the array, the more pixels we have, and hence the higher
the resolution, that is, the precision with which the picture is represented. Once a picture
is stored in that way, it can be processed, for example, to remove any noise that may be
present, increase the sharpness, fill in missing details, and determine contours of objects.

Assume that it is desired to execute a very simple noise removal algorithm that gets
rid of "salt" and "pepper" in pictures, that is, sparse white dots on a black background
and sparse black dots on a white background, respectively. Such an algorithm can be
implemented very efficiently on a set of very simple processors in a two-dimensional

Sec. 1.3 Analyzing Algorithms 21

configuration where each processor is linked to its eight closest neighbors (i.e., the mesh
with diagonal connections in addition to horizontal and vertical ones). Each processor
corresponds to a pixel and stores its value. All the processors can now execute the
following step in parallel: if a pixel is 0(1) and all its neighbors are 1(0), it changes its value
to l(0).

One final observation is in order in concluding this section. Having studied a
variety of approaches to building parallel computers, it is natural to ask: How is one
to choose a parallel computer from among the available models? We already saw how
one model can use its computational abilities to simulate an algorithm designed for
another model. In fact, we shall show in the next section that one processor is capable
of executing any parallel algorithm. This indicates that all the models of parallel
computers are equivalent in terms of the problems that they can solve. What
distinguishes one from another is the ease and speed with which it solves a particular
problem. Therefore, the range of applications for which the computer will be used and
the urgency with which answers to problems are needed are important factors in
deciding what parallel computer to use. However, as with many things in life, the
choice of a parallel computer is mostly dictated by economic considerations.

1.3 ANALYZING ALGORITHMS

This book is concerned with two aspects of parallel algorithms: their design and their
analysis. A number of algorithm design techniques were illustrated in section 1.2 in
connection with our description of the different models of parallel computation. The
examples studied therein also dealt with the question of algorithm analysis. This refers
to the process of determining how good an algorithm is, that is, how fast, how
expensive to run, and how efficient it is in its use of the available resources. In this
section we define more formally the various notions used in this book when analyzing
parallel algorithms.

Once a new algorithm for some problem has been designed, it is usually
evaluated using the following criteria: running time, number of processors used, and
cost. Besides these standard metrics, a number of other technology-related measures
are sometimes used when it is known that the algorithm is destined to run on a
computer based on that particular technology.

1.3.1 Running Time

Since speeding up computations appears to be the main reason behind our interest in
building parallel computers, the most important measure in evaluating a parallel
algorithm is therefore its running time. This is defined as the time taken by the
algorithm to solve a problem on a parallel computer, that is, the time elapsed from the
moment the algorithm starts to the moment it terminates. If the various processors do
not all begin and end their computation simultaneously, then the running time is

22 Introduction Chap. 1

equal to the time elapsed between the moment the first processor to begin computing
starts and the moment the last processor to end computing terminates.

1.3.1.1 Counting Steps. Before actually implementing an algorithm
(whether sequential or parallel) on a computer, it is customary to conduct a
theoretical analysis of the time it will require to solve the computational problem at
hand. This is usually done by counting the number of basic operations, or steps,
executed by the algorithm in the worst case. This yields an expression describing the
number of such steps as a function of the input size. The definition of what constitutes
a step varies of course from one theoretical model of computation to another.
Intuitively, however, comparing, adding, or swapping two numbers are commonly
accepted basic operations in most models. Indeed, each of these operations requires a
constant number of time units, or cycles, on a typical (SISD) computer. The running
time of a parallel algorithm is usually obtained by counting two kinds of steps:
computational steps and routing steps. A computational step is an arithmetic or logic
operation performed on a datum within a processor. In a routing step, on the other
hand, a datum travels from one processor to another via the shared memory or
through the communication network. For a problem of size n, the parallel worst-case
running time of an algorithm, a function of n, will be denoted by t(n). Strictly speaking,
the running time is also a function of the number of processors. Since the latter can
always be expressed as a function of n, we shall write t as a function of the size of the
input to avoid complicating our notation.

Example 1.8

In example 1.4 we studied a parallel algorithm that searches a file with n entries on an N-
processor EREW SM SIMD computer. The algorithm requires log N parallel steps to
broadcast the value to be searched for and n/N comparison steps within each processor.
Assuming that each step (broadcast or comparison) requires one time unit, we say that
the algorithms runs in log N + n/N time, that is, t(n) = log N + n/N.

In general, computational steps and routing steps do not necessarily require the
same number of time units. A routing step usually depends on the distance between
the processors and typically takes a little longer to execute than a computational step.

1.3.1.2 Lower and Upper Bounds. Given a computational problem for
which a new sequential algorithm has just been designed, it is common practice
among algorithm designers to ask the following two questions:

(i) Is it the fastest possible algorithm for the problem?
(ii) If not, how does it compare with other existing algorithms for the same

problem?

The answer to the first question is usually obtained by comparing the number of
steps executed by the algorithm to a known lower bound on the number of steps
required to solve the problem in the worst case.

Sec. 1.3 Analyzing Algorithms 23

Example 1.9

Say that we want to compute the product of two n x n matrices. Since the resulting
matrix has n2 entries, at least this many steps are needed by any matrix multiplication
algorithm simply to produce the output.

Lower bounds, such as the one in example 1.9, are usually known as obvious or
trivial lower bounds, as they are obtained by counting the number of steps needed
during input and/or output. A more sophisticated lower bound is derived in the next
example.

Example 1.10

The problem of sorting is defined as follows: A set of n numbers in random order is given;
arrange the numbers in nondecreasing order. There are n ! possible permutations of the
input and log n ! (i.e., on the order of n log n) bits are needed to distinguish among them.
Therefore, in the worst case, any algorithm for sorting requires on the order of n log n
steps at least to recognize a particular output.

If the number of steps an algorithm executes in the worst case is equal to (or of
the same order as) the lower bound, then the algorithm is the fastest possible and is
said to be optimal. Otherwise, a faster algorithm may have to be invented, or it may be
possible to improve the lower bound. In any case, if the new algorithm is faster than all
known algorithms for the problem, then we say that it has established a new upper
bound on the number of steps required to solve that problem in the worst case.
Question (ii) is therefore always settled by comparing the running time of the new
algorithm with the existing upper bound for the problem (established by the fastest
previously known algorithm).

Example 1.11

To date, no algorithm is known for multiplying two n x n matrices in nZ steps. The
standard textbook algorithm requires on the order of n3 operations. However, the upper
bound on this problem is established at the time of this writing by an algorithm requiring
on the order of nx operations at most, where x < 2.5.

By contrast, several sorting algorithms exist that require on the order of at most
n log n operations and are hence optimal. i3

In the preceding discussion, we used the phrase "on the order of" to express
lower and upper bounds. We now introduce some notation for that purpose. Let f (n)
and g(n) be functions from the positive integers to the positive reals:

(i) The function g(n) is said to be of order at least f (n), denoted a(f (n)), if there are
positive constants c and no such that g(n) 2 cf (n) for all n 2 no.

(ii) The function g(n) is said to be of order at most f (n), denoted O(f (n)), if there are
positive constants c and no such that g(n) < cf (n) for all n 2 no.

This notation allows us to concentrate on the dominating term in an expression
describing a lower or upper bound and to ignore any multiplicative constants.

24 Introduction Chap. 1

Example 1.12

For matrix multiplication, the lower bound is R(n2) and the upper bound O(n2.5). For
sorting, the lower bound is R(n log n) and the upper bound O(n log n).

Our treatment of lower and upper bounds in this section has so far concentrated
on sequential algorithms. Clearly, the same general ideas also apply to parallel
algorithms while taking two additional factors into consideration:

(i) the model of parallel computation used and

(ii) the number of processors involved.

Example 1.13

An n x n mesh-connected SIMD computer (see Fig. 1.7) is used to compute the sum of n2

numbers. Initially, there is one number per processor. Processor P(n - 1, n - 1) is to
produce the output. Since the number initially in P(0,O) has to be part of the sum, it must
somehow find its way to P(n - 1, n - 1). This requires at least 2(n - 1) routing steps.
Thus the lower bound on computing the sum is n (n) steps.

These ideas are further elaborated on in the following section.

1.3.1.3 Speedup. In evaluating a parallel algorithm for a given problem, it
is quite natural to do it in terms of the best available sequential algorithm for that
problem. Thus a good indication of the quality of a parallel algorithm is the speedup it
produces. This is defined as

Speedup =

worst-case running time of fastest known sequential algorithm for problem
worst-case running time of parallel algorithm

Clearly, the larger the speedup, the better the parallel algorithm.

Example 1.14

In example 1.4, a file of n entries is searched by an algorithm running on a CREW SM
SIMD computer with N processors in O(n /N) time. Since the running time of the best
possible sequential algorithm is O(n), the speedup is equal to O(N) .

For most problems, the speedup achieved in this example is usually the largest
that can be obtained with N processors. To see this, assume that the fastest sequential
algorithm for a problem requires time TI , that a parallel algorithm for the same
problem requires time T,, and that T,/T, > N. We now observe that any parallel
algorithm can be simulated on a sequential computer. The simulation is carried out as
follows: The (only) processor on the sequential computer executes the parallel steps
serially by pretending that it is PI, then that it is P,, and so on. The time taken by the
simulation is the sum of the times taken to imitate all N processors, which is at most N
times T,. But NT, < TI, implying that the simulation we have just performed solves

Sec. 1.3 Analyzing Algorithms 25

the problem faster than the sequential algorithm believed to be the fastest for that
problem. This can mean one of two things:

(i) The sequential algorithm with running time TI is not really the fastest possible
and we have just found a faster one with running time NT,, thus improving the
state of the art of sequential computing, or

(ii) there is an error in our analysis!

Suppose we know that a sequential algorithm for a given problem is indeed the
fastest possible. Ideally, of course, one hopes to achieve the maximum speedup of N
when solving such a problem using N processors operating in parallel. In practice,
such a speedup cannot be achieved for every problem since

(i) it is not always possible to decompose a problem into N tasks, each requiring
(l/N)th of the time taken by one processor to solve the original problem, and

(ii) in most cases the structure of the parallel computer used to solve a problem
usually imposes restrictions that render the desired running time unattainable.

Example 1.15

The problem of adding n numbers discussed in example 1.5 is solved in O(1og n) time on a
tree-connected parallel computer using n - 1 processors. Here the speedup is O(n/log n)
since the best possible sequential algorithm requires O(n) additions. This speedup is far
from the ideal n - 1 and is due to the fact that the n numbers were input at the leaves and
the sum output at the root. Any algorithm for such a model necessarily requires Qlog n)
time, that is, the time required for a single datum to propagate from input to output
through all levels of the tree.

1.3.2 Number of Processors

The second most important criterion in evaluating a parallel algorithm is the number
of processors it requires to solve a problem. It costs money to purchase, maintain, and
run computers. When several processors are present, the problem of maintenance, in
particular, is compounded, and the price paid to guarantee a high degree of reliability
rises sharply. Therefore, the larger the number of processors an algorithm uses to
solve a problem, the more expensive the solution becomes to obtain. For a problem of
size n, the number of processors required by an algorithm, a function of n, will be
denoted by p(n). Sometimes the number of processors is a constant independent of n.

Example 1.16

In example 1.5, the size of the tree depends on n, the number of terms to be added, and
p(n) = n - 1.

On the other hand, in example 1.4, N, the number of processors on the shared-
memory computer, is in no way related to n, the size of the file to be searched (except for
the fact that N < n). Nevertheless, given a value of n, it is possible to express N in terms of
n as follows: N = nx where 0 < x < 1. Thus p(n) = nx.

26 Introduction Chap. 1

1.3.3 Cost

The cost of a parallel algorithm is defined as the product of the previous two measures;
hence

Cost = parallel running time x number of processors used.

In other words, cost equals the number of steps executed collectively by all
processors in solving a problem in the worst case. This definition assumes that all
processors execute the same number of steps. If this is not the case, then cost is an
upper bound on the total number of steps executed. For a problem of size n, the cost of
a parallel algorithm, a function of n, will be denoted by c(n). Thus c(n) = p(n) x t(n).

Assume that a lower bound is known on the number of sequential operations
required in the worst case to solve a problem. If the cost of a parallel algorithm for
that problem matches this lower bound to within a constant multiplicative factor,
then the algorithm is said to be cost optimal. This is because any parallel algorithm can
be simulated on a sequential computer, as described in section 1.3.1. If the total
numbers of steps executed during the simulation is equal to the lower bound, then this
means that, when it comes to cost, this parallel algorithm cannot be improved upon as
it executes the minimum number of steps possible. It may be possible, of course, to
reduce the running time of a cost-optimal parallel algorithm by using more processors.
Similarly, we may be able to use fewer processors, while retaining cost optimality, if we
are willing to settle for a higher running time.

A parallel algorithm is not cost optimal if a sequential algorithm exists whose
running time is smaller than the parallel algorithm's cost.

Example 1.17

In example 1.4, the algorithm for searching a file with n entries on an N-processor CREW
SM SIMD computer has a cost of

This cost is optimal since no randomly ordered file of size n can be searched for a
particular value in fewer than n steps in the worst case: One step is needed to compare
each entry with the given value.

In example 1.5, the cost of adding n numbers on an (n - 1)-processor tree is
(n - 1) x O(1ogn). This cost is not optimal since we know how to add n numbers
optimally using O(n) sequential additions.

We note in passing that the preceding discussion leads to a method for obtaining
model-independent lower bounds on parallel algorithms. Let Q(T(n)) be a lower
bound on the number of sequential steps required to solve a problem of size n. Then
O(T(n) /N) is a lower bound on the running time of any parallel algorithm that uses N
processors to solve that problem.

Example 1.18

Since Qnlogn) steps is a lower bound on any sequential sorting algorithm, the
equivalent lower bound on any parallel algorithm using n processors is n(log n).

Sec. 1.3 Analyzing Algorithms 27

When no optimal sequential algorithm is known for solving a problem, the
eflciency of a parallel algorithm for that problem is used to evaluate its cost. This is
defined as follows:

Efficiency =

worst-case running time of fastest known sequential algorithm for problem
cost of parallel algorithm

Usually, efficiency < 1; otherwise a faster sequential algorithm can be obtained from
the parallel one!

Example 1.19

Let the worst-case running time of the fastest sequential algorithm to multiply two n x n
matrices be 0(n2.') time units. The efficiency of a parallel algorithm that uses n2

processors to solve the problem in O(n) time is O(n2.')/0(n3).

Finally, let the cost of a parallel algorithm for a given probleni match the
running time of the fastest existing sequential algorithm for the same problem.
Furthermore, assume that it is not known whether the sequential algorithm is
optimal. In this case, the status of the parallel algorithm with respect to cost
optimality is unknown. Thus in example 1.19, if the parallel algorithm had a cost of
O(n29, then its cost optimality would be an open question.

1.3.4 Other Measures

A digital computer can be viewed as a large collection of interconnected logical gates.
These gates are built using transistors, resistors, and capacitors. In today's computers,
gates come in packages called chips. These are tiny pieces of semiconductor material
used to fabricate logical gates and the wires connecting them. The number of gates on
a chip determines the level of integration being used to build the circuit. One particular
technology that appears to be linked to future successes in parallel computing is Very
Large Scale Integration (VLSI). Here, nearly a million logical gates can be located on
a single 1-cm2 chip. The chip is thus able to house a number of processors, and several
such chips may be assembled to build a powerful parallel computer. When evaluating
parallel algorithms for VLSI, the following criteria are often used: processor area, wire
length, and period of the circuit.

1.3.4.1 Area. If several processors are going to share the "real estate" on a
chip, the area needed by the processors and wires connecting them as well as the
interconnection geometry determine how many processors the chip will hold.
Alternatively, if the number of processors per chip is fixed in advance, then the size of
the chip itself is dictated by the total area the processors require. If two algorithms
take the same amount of time to solve a problem, then the one occupying less area
when implemented as a VLSI circuit is usually preferred. Note that when using the
area as a measure of the goodness of a parallel algorithm, we are in fact using the

28 Introduction Chap. 1

criterion in section 1.3.2, namely, the number of processors needed by the algorithm.
This is because the area occupied by each processor is normally a constant quantity.

1.3.4.2 Length. This refers to the length of the wires connecting the
processors in a given architecture. If the wires have constant length, then it usually
means that the architecture is

(i) regular, that is, has a pattern that repeats everywhere, and
(ii) modular, that is, can be built of one (or just a few) repeated modules.

With these properties, extension of the design becomes easy, and the size of a
parallel computer can be increased by simply adding more modules. The linear and
two-dimensional arrays of section 1.2.3.2 enjoy this property. Also, fixed wire length
means that the time taken by a signal to propagate from one processor to another is
always constant. If, on the other hand, wire length varies from one section of the
network to another, then propagation time becomes a function of that length. The
tree, perfect shuffle, and cube interconnections in section 1.2.3.2 are examples of such
networks. Again this measure is not unrelated to the criterion in section 1.3.1, namely,
running time, since the duration of a routing step (and hence the algorithm's
performance) depends on wire length.

1.3.4.3 Period. Assume that several sets of inputs are available and queued
for processing by a circuit in a pipeline fashion. Let A, , A,, . . . , A, be a sequence of
such inputs such that the time to process A, is the same for all 1 Q i Q n. The period of
the circuit is the time elapsed between the moments when processing of Ai and A,+
begin, which should be the same for all 1 < i Q n.

Example 1.20

In example 1.5 several sums were to be computed on a tree-connected SIMD computer.
We saw that once the leaves had processed one set of numbers to be added and sent it to
their parents for further processing, they were ready to receive the next set. The period of
this circuit is therefore 1: One time unit (the time for one addition) separates two
inputs.

Evidently, a small period is a desirable property of a parallel algorithm. In
general, the period is significantly smaller than the time required to completely
process one input set. In example 1.20, the period is not only significantly smaller than
the O(1og n) time units required to compute the sum of n numbers, but also happens to
be constant.

We conclude this section with a remark concerning the time taken by a parallel
algorithm to receive its input and, once finished computing, to return its output. Our
assumption throughout this book is that all the processors of a parallel computer are
capable of reading the available input and producing the available output in parallel.
Therefore, such simultaneous input or output operations will be regarded as requiring
constant time.

Sec. 1.4 Expressing Algorithms 29

1.4 EXPRESSING ALGORITHMS

So far we have used an informal language to describe parallel algorithms. In our
subsequent treatment we would like to make this language a bit more formal while
keeping our statements of algorithms as intuitive as possible. As a compromise, a
high-level description will be used that combines plain English with widely known
programming constructs.

A parallel algorithm will normally consist of two kinds of operations: sequential
and parallel. In describing the former, we use statements similar to those of a typical
structured programming language (such as Pascal, say). Examples of such statements
include: i f . . . then.. . else, while.. . do, for. . .do, assignment statements, input and
output statements, and so on. The meanings of these statements are assumed to be
known. A left-pointing arrow denotes the assignment operator; thus a + b, means
that the value of b is assigned to a. The logical operations and, or, xor (exclusive-or),
and not are used in their familiar connotation. Thus, if a and b are two expressions,
each taking one of the values true or false, then

(i) (a and b) is true if both a and b are true; otherwise (a and b) is false;
(ii) (a or b) is true if at least one of a and b is true; otherwise (a or b) is false;

(iii) (a xor b) is true if exactly one of a and b is true; otherwise (a xor b) is false; and
(iv) (not a) is true if a is false; otherwise (not a) is false.

Parallel operations, on the other hand, are expressed by two kinds of statements:

(i) When several steps are to be done at the same time, we write

do steps i to j in parallel

step i
step i + 1

step j.

(ii) When several processors are to perform the same operation simultaneously, we
write

for i = j to k do in parallel
{The operations to be performed by Pi are stated here}
end for IJ

where i takes every integer value from j to k, or

for i = r, s, . . . , t do in parallel
{The operations to be performed by Pi are stated here)
end for IJ

Introduction Chap. 1

where the integer values taken by i are enumerated, or

for all i in S do in parallel
{The operations to be performed by Pi are stated here}
end for

where S is a given set of integers.

Comments in algorithms are surrounded with curly brackets {), as shown in the
preceding. Curly brackets are also used to denote a sequence of elements as, for
example, in A = {a,, a,, . . . ,a,- ,) or in E = {si E S: si = m}. Both uses are fairly
standard and easy to recognize from the context.

1.5 ORGANIZATION OF THE BOOK

The remainder of this book is organized in thirteen chapters. Each chapter is devoted
to the study of parallel algorithms for a fundamental computational problem or
problem area. The related operations of selection, merging, sorting, and searching are
covered in chapters 2-5, respectively. Several computations of either a combinatorial
or numerical nature are then examined, namely, generating permutations and
combinations (chapter 6), matrix operations (chapter 7), numerical problems (chapter
8), and computing Fourier transforms (chapter 9). Four application areas are treated
in chapters 10 (graph theory), 11 (computational geometry), 12 (traversing com-
binatorial spaces), and 13 (decision and optimization). Finally, chapter 14 addresses a
number of basic problems for which the definition of a time unit (given in section
1.3.1.1) is interpreted as the time required to perform an operation on a pair of bits.
Each chapter concludes with a set of problems, bibliographical remarks, and a list of
references.

1.6 PROBLEMS

1.1 Show how an MISD computer can be used to handle multiple queries on a given object in
a database.

1.2 Three applications of MISD computers are given in examples 1.2 and 1.3 and in problem
1.1. Can you think of other computations for which the MISD model is suitable?

1.3 There is no mention in section 1.2.2 of the possible communication among processors.
Indeed, in most applications for which the MISD model is practical, virtually no
communication is needed. In some problems, however, it may be necessary for the
processors to exchange intermediate results. In addition, there should always be a
mechanism to allow a processor to signal the end of its computation, which may lead the
others to terminate their own. As with the SIMD and MIMD models, the processors can
communicate through the common memory they already share and that generates the
data stream. Alternatively, and for practical reasons, there could be a network connecting
the processors (in addition to the memory). In the latter case, the memory's job is to issue

Sec. 1.6 Problems 31

the data stream while all communications are done through the network. Describe a
problem that can be conveniently solved on an MISD computer where interprocessor
communication is possible.

1.4 In section 1.2.3.1, while discussing simulating multiple accesses on an EREW SM SIMD
computer, we mentioned that procedure broadcast was not suitable in the following
situation: Several multiple-read operations are attempted by several subsets of the set of
processors each subset trying to gain access to a different memory location. Strictly
speaking, broadcast may be used, but the resulting algorithm may be inefficient. Show how
this can be done and analyze the worst-case running time of the simulation.

1.5 Given a set of numbers {s,, s2, . . . , s,}, all sums of the form s, + s,, s, + s, + s,, . . . ,
s, + s2 + . . . + s, are to be computed. Design an algorithm for solving this problem using
N processors on each of the four submodels of the SM SIMD model.

1.6 Show that a fully connected network of N processors is equivalent to an EREW SM
SIMD computer with N processors and exactly N locations of shared memory.

1.7 Let an EREW SM SIMD computer have N processors and M locations of shared
memory. Give a procedure for simulating this computer on a fully interconnected network
of N processors each with up to M / N locations in its local memory. How many steps on
the second computer are required to simulate one step on the first?

1.8 For each of the interconnection networks in section 1.2.3.2, describe a problem that can be
solved efficiently on that network. Give an algorithm for each problem, derive its running
time and cost, and determine whether it is cost optimal.

1.9 It is required to determine the largest of a set of n numbers. Describe an algorithm for
solving this problem on each of the interconnection networks in section 1.2.3.2. Express
the running time of each solution as a function of n.

1.10 Show how a fully connected network of N processors can be simulated on a cube-
connected network with the same number of processors such that each step of a
computation on the first network requires at most O(log2N) steps on the second.

1.11 Prove that an algorithm requiring t(n) time to solve a problem of size n on a cube-
connected computer with N processors can be simulated on a shuffle-exchange network
with the same number of processors in O(log N) x t(n) time.

1.12 The plus-minus 2' (PM2I) interconnection network for an N-processor SIMD computer is
defined as follows: Pj is connected to P, and P,, where r = j + 2'mod N and
s= j -2 'modN, fo rO< i< logN.
(i) Let A be an algorithm that requires T steps to run on a cube-connected computer.

Prove that a PM2I-connected computer with the same number of processors can
execute A in at most 2T steps.

(ii) Let A be an algorithm that requires T steps to run on a PM2I-connected computer
with N processors. Prove that a cube-connected computer also with N processors can
execute A in at most T log N steps.

1.13 Branch-and-bound is the name of a well-known algorithm for solving combinatorial
optimization problems. Let P be a problem for which we want to find a least-cost solution
from among N feasible solutions. The number N is assumed to be so large as to preclude
exhaustive enumeration. In branch-and-bound we think of the N feasible solutions as the
leaves of a giant tree. Each node on a path from root to leaf represents a partial solution
obtained by extending the partial solution represented by its parent. Starting with the
empty solution at the root, the algorithm generates all of the root's descendants.

32 Introduction Chap. 1

Expansion then continues from the node with least cost and the process is repeated. When
the cost of a partial solution exceeds a certain bound, that node is no longer a candidate
for expansion. Search continues until a leaf is reached and there are no more nodes to be
expanded. This leaf represents a least-cost solution. Show how this algorithm can be
made to run in parallel on an MIMD computer.

1.14 It is sometimes computationally infeasible (even with a parallel computer) to obtain exact
answers to some combinatorial optimization problems. Instead, a near-optimal solution is
computed using an approximation method. One such method is known as local
neighborhood search. Let f be a combinatorial function that is to be minimized, say. We
begin by computing the value o f f at a randomly chosen point. The neighbors of that
point are then examined and the value of f computed for each new point. Each time a
point reduces the value of the function, we move to that point. This continues until no
further improvement can be obtained. The point reached is labeled a local minimum. The
entire process is repeated several times, each time from a new random point. Finally, a
global minimum is computed from all local minima thus obtained. This is the approximate
answer. Discuss various ways for obtaining a parallel version of this method that runs on
an MIMD computer.

1.15 Example 1.6 and problems 1.13 and 1.14 describe three applications of MIMD computers.
Describe other problems that can be solved naturally on an MIMD computer and for
which neither the MISD nor SIMD models are appropriate. Propose an algorithm to
solve each problem.

1.16 Three general classes of parallel computers were discussed in this chapter, namely, the
MISD, SIMD, and MIMD models. Can you think of other models of parallel com-
putation? For every model you propose explain why it does, or does not, belong to one of
the preceding classes.

1.17 A satellite picture is represented as an n x n array of pixels each taking an integer value
between 0 and 9, thus providing various gray levels. It is required to smooth the picture,
that is, the value of pixel (i, j) is to be replaced by the average of its value and those of its
eight neighbors (i - 1 , j), (i - 1 , j - I), (i, j - I), (i + 1, j - l), (i + 1, j), (i + 1, j + I),
(i, j + I), and (i - 1, j + I), with appropriate rounding. Describe a special-purpose parallel
architecture for this problem. Assume that N, the number of processors available, is less
than n2, the number of pixels. Give two different implementations of the smoothing
process and analyze their running times.

1.18 Let A and B be two n x n matrices with elements aij and bij, respectively, for i,
j = 1,2,. . . , n. It is required to compute C = A x B where the elements cij of the product
matrix C are obtained from

n

cij = a, x bkj for i, j = 1,2,. . . , n.
k = 1

(a) Design a parallel algorithm for computing C on the following model of computation.
The model consists of n2 processors arranged in an n x n array (n rows and n
columns). The processors are interconnected as follows:
1. The processors of each column are connected to form a ring, that is, every processor

is connected to its top and bottom neighbors, and the topmost and bottommost
processors of the column are also connected.

Sec. 1.8 References 33

2. The processors of each row are connected to form a binary tree, that is, if the
processors in the row are numbered 1,2,. . . , n, then processor i is connected to
processors 2i and 2i + 1 if they exist.

The local memory of each processor consists of four locations at most.
(b) Analyze your algorithm.

1.19 Design a special-purpose architecture for solving a system of linear equations.
1.20 Example 1.7 and problems 1.17-1.19 describe applications of special-purpose parallel

architectures. Can you think of other problems that can be efficiently solved on such
architectures?

1.7 B lBL lOGRAPHlCAL R E M A R K S

Several recent books have been devoted entirely or in part to the subject of parallel
architectures. These include [Baer 11, [Cosnard], [Enslow], [Feilmeier], [Fernbach], [Hillis
11, [Hockney], [Hwang 11, [Hwang 21, [Karin], [Kuck 11, [Kuck 21, [Legendi], [Leighton],
[Leiserson], [Lorin], [Mead], [Preston], [Reed], [Reijns], [Siege]], [Stone], [Uhr], [Ullman],
and [Wu]. Some of the parallel computers that were built in research laboratories or have
appeared on the market are described in [Baer 21, [Frenkel 11, [Frenkel2], [Hillis 23, [Hord],
[Jones 11, [Jones 21, [Lipovski], [Potter], and [Wah]. Reviews of parallel languages are
provided in [Gelernter], [Howe], and [Karp]. Issues pertaining to parallel operating systems
are addressed in [Evans] and [Oleinick]. The design and analysis of parallel algorithms are
covered in [Akl 31, [Cook 11, [Cook 21, [Graham], [Jamieson], [Kronsjo], [Kuhn], [Kung],
[Quinn], [Rodrigue], [Schendel], [Snyder], and [Traub].

Various approaches to simulating the shared-memory model by weaker models are given
in [Alt], [Karlin], [Mehlhorn], [Parberry], [Stockmeyer], [Ullman], [Upfal 11, [Upfal2], and
[Vishkin]. Interconnection networks are reviewed in [Bhuyan] and [Wu].

The procedure described in example 1.6 for searching game trees on an MIMD computer
is a simplified version of a parallel algorithm first proposed in [Akl I]. Similar algorithms can
be found in [Akl 23 and [Marsland].

Good references for sequential algorithms are [Horowitz] and [Reingold]. Fast
sequential matrix multiplication algorithms, such as the one mentioned in example 1.11, are
reviewed in [Strassen]. The branch-and-bound and local neighborhood search methods
referred to in problems 1.13 and 1.14, respectively, are detailed in [Papadimitriou].

1.8 REFERENCES

[AKL 11
Akl, S. G., Barnard, D. T., and Doran, R. J., Design, analysis and implementation of a parallel
tree search algorithm, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
PAMI-4, No. 2, March 1982, pp. 192-203.

[AKL 21
Akl, S. G., and Doran, R. J., A comparison of parallel implementations of the Alpha-Beta
and Scout tree search algorithms using the game of checkers, in Bramer, M. A., Ed., Computer
Game Playing, Wiley, Chichester, England, 1983, pp. 290-303.

34 Introduction Chap. 1

[AKL 33
Akl, S. G., Parallel Sorting Algorithms, Academic, Orlando, Fl., 1985.

CALTI
Alt, H., Hagerup, T., Mehlhorn, K., and Preparata, F. P., Deterministic simulation of
idealized parallel computers on more realistic ones, SIAM Journal on Computing, Vol. 16,
No. 5, October 1987, pp. 808-835.

[BAER 11
Baer, J.-L., Computer Systems Architecture, Computer Science Press, Potomac, Md., 1980.

[BAER 23
Baer, J.-L., Computer architecture, Computer, Vol. 17, No. 10, October 1984, pp. 77-87.

[BHUYAN]
Bhuyan, L. N., Ed., Special Issue on Interconnection Networks for Parallel and Distributed
Processing, Computer, Vol. 20, No. 6, June 1987.

[COOK 11
Cook, S. A., Towards a complexity theory of synchronous parallel computation, Technical
Report No. 141180, Department of Computer Science, University of Toronto, Toronto, 1980.

[COOK 21
Cook, S. A., A taxonomy of problems with fast parallel algorithms, Information and Control,
Vol. 64, 1985, pp. 2-22.

[COSNARD]
Cosnard, M., Quinton, P., Robert, Y., and Tchuente, M., Eds., Parallel Algorithms and
Architectures, North-Holland, Amsterdam, 1986.

[ENSLOW]
Enslow, P. H., Jr., Multiprocessors and Parallel Processing, Wiley-Interscience, New York,
1974.

[EVANS]
Evans, D. J., Parallel Processing Systems: An Advanced Course, Cambridge University Press,
Cambridge, England, 1982.

[FEILMEIER]
Feilmeier, M., Joubert, G., and Schendel, U., Eds., Parallel Computing 85, North-Holland,
Amsterdam, 1986.

[FERNBACH]
Fernbach, S., Ed., Supercomputers, North-Holland, Amsterdam, 1986.

[FRENKEL 11
Frenkel, K. A., Evaluating two massively parallel machines, Communications of the ACM,
Vol. 29, No. 8, August 1986, pp. 752-758.

[FRENKEL 21
Frenkel, K. A., Ed., Special Issue on Parallelism, Communications of the ACM, Vol. 29, No.
12, December 1986.

[GELERNTER]
Gelernter, D., Ed., Special Issue on Domesticating Parallelism, Computer, Vol. 19, No. 8,
August 1986.

[GRAHAM]
Graham, R. L., Bounds on multiprocessing anomalies and related packing algorithms,
Proceedings of the AFIPS 1972 Sprint Joint Computer Conference, Atlantic City, New
Jersey, May 1972, pp. 205-217, AFIPS Press, Montvale, N.J., 1972.

Sec. 1.8 References 35

[HILLIS 11
Hillis, W. D., The Connection Machine, MIT Press, Cambridge, Mass., 1985.

[HILLIS 21
Hillis, W. D., The connection machine, Scientific American, Vol. 256, No. 6, June 1987, pp.
108-115.

[HOCKNEY]
Hockney, R. W., and Jesshope, C. R., Parallel Computers, Adam Hilger, Bristol, England,
1981.

[HORD]
Hord, M. R., The Illiac IV: The First Supercomputer, Computer Science Press, Rockville,
Md., 1982.

[HOROWITZ]
Horowitz, E., and Sahni, S., Fundamentals of Computer Algorithms, Computer Science Press,
Rockville, Md., 1978.

[H o w l
Howe, C. D., and Moxon, B., How to program parallel processors, Spectrum, Vol. 24, No. 9,
September 1987, pp. 36-41.

[HWANG 11
Hwang, K., Ed., Supercomputers: Design and Applications, IEEE Computer Society Press, Los
Angeles, 1984.

[HWANG 23
Hwang, K., and Briggs, F. A., Computer Architecture and Parallel Processing, McGraw-Hill,
New York, 1984.

[JAMIESON]
Jamieson, L. H., Gannon, D. B., and Douglass, R. J., Eds., The Characteristics of Parallel
Algorithms, MIT Press, Cambridge, Mass., 1987.

[JONES 11
Jones, A. K., and Gehringer, E. F., Eds., The Cm* multiprocessor project: A research review,
Technical Report No. CMU-CS-80-131, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, July 1980.

[JONES 23
Jones, A. K., and Schwarz, P., Experience using multiprocessor systems-a status report,
Computing Surveys, Vol. 12, No. 2, June 1980, pp. 121-165.

[KARIN]
Karin, S., and Smith, N. P., The Supercomputer Era, Harcourt, Brace, Jovanevich, New York,
1987.

[KARLIN]
Karlin, A. R., and Upfal, E., Parallel hashing-an efficient implementation of shared memory,
Proceedings of the 18th Annual ACM Symposium on Theory of Computing, Berkeley,
California, May 1986, pp. 160-168, Association for Computing Machinery, New York, N.Y.,
1986.

[KARP]
Karp, A. H., Programming for parallelism, Computer, Vol. 20, No. 5, May 1987, pp. 43-57.

[KRONSJO]
Kronsjo, L., Computational Complexity of Sequential and Parallel Algorithms, Wiley,
Chichester, England, 1985.

36 Introduction Chap. 1

[K UCK 11
Kuck, D. J., Lawrie, D. H., and Sameh, A. H., Eds., High Speed Computer and Algorithm
Organization, Academic, New York, 1977.

[K UCK 23
Kuck, D. J., The Structure of Computers and Computations, Vol. 1, Wiley, New York, 1978.

[KUHN]
Kuhn, R. H., and Padua, D. A., Eds., Parallel Processing, IEEE Computer Society Press, Los
Angeles, 198 1.

[KUNG]
Kung, H. T., The structure of parallel algorithms, in Yovits, M. C., Ed., Advances in
Computers, Academic, New York, 1980, pp. 65-112.

[LEGENDI]
Legendi, T., Parkinson, D., Vollmar, R., and Wolf, G., Eds., Parallel Processing by Cellular
Automata and Arrays, North-Holland, Amsterdam, 1987.

[LEIGHTON]
Leighton, F. T., Complexity Issues in VLSI, MIT Press, Cambridge, Mass., 1983.

[LE~SERSON]
Leiserson, C. E., Area-Efficient VLSI Computation, MIT Press, Cambridge, Mass., 1983.

[LIPOVSKI]
Lipovski, G. J., and Malek, M., Parallel Computing: Theory and Practice, Wiley, New York,
1987.

[LORIN]
Lorin, H., Parallelism in Hardware and Software: Real and Apparent Concurrency, Prentice-
Hall, Englewood Cliffs, N.J., 1972.

[M ARSLAND]
Marsland, T. A., and Campbell, M., Parallel search of strongly ordered game trees,
Computing Surveys, Vol. 14, No. 4, December 1982, pp. 533-551.

[M EAD]
Mead, C. A., and Conway, L. A., Introduction to VLSI Systems, Addison-Wesley, Reading,
Mass., 1980.

[M EHLHORN]
Mehlhorn, K., and Vishkin, U., Randomized and deterministic simulations of PRAMS by
parallel machines with restricted granularity of parallel memories, Acta Informatics, Vol. 21,
1984, pp. 339-374.

[OLEINICK]
Oleinick, P. N., Parallel Algorithms on a Multiprocessor, UMI Research Press, Ann Arbor,
Mich., 1982.

[PAPADIMITRIOU]
Papadimitriou, C. H., and Steiglitz, K., Combinatorial Optimization: Algorithms and Complex-
ity, Prentice-Hall, Englewood Cliffs, N.J., 1982.

[PARBERRY]
Parberry, I., Some practical simulations of impractical parallel computers, Parallel Comput-
ing, Vol. 4, 1987, pp. 93-101.

[POTTER]
Potter, J. L., Ed., The Massively Parallel Processor, MIT Press, Cambridge, Mass., 1985.

Sec. 1.8 References 37

[PRESTON]
Preston, K., and Uhr, L., Eds., Multicomputers and Image Processing: Algorithms and
Programs, Academic, New York, 1982.

CQUINNI
Quinn, M. J., Designing Efficient Algorithms for Parallel Computers, McGraw-Hill, New
York, 1987.

CREED1
Reed, D. A., and Fujimoto, R. M., Multicomputer Networks: Message-Based Parallel
Processing, MIT Press, Cambridge, Mass., 1987.

[REIJNS]
Reijns, G. L., and Barton, M. H., Eds., Highly Parallel Computers, North-Holland,
Amsterdam, 1987.

[REINGOLD]
Reingold, E. M., Nievergelt, J., and Deo, N., Combinatorial Algorithms, Prentice-Hall,
Englewood Cliffs, N.J., 1977.

[RODRIGUE]
Rodrigue, G., Ed., Parallel Computations, Academic, New York, 1982.

[SCHENDEL]
Schendel, U., Introduction to Numerical Methods for Parallel Computers, Wiley-Interscience,
New York, 1984.

[SIEGEL]
Siegel, H. J., Interconnection Networks for Large-Scale Parallel Processing, Lexington Books,
Lexington, Mass., 1985.

[SNYDER]
Snyder, L., Jamieson, L. H., Gannon, D. B., and Siegel, H. J., Algorithmically Specialized
Parallel Computers, Academic, Orlando, FI., 1985.

[STOCKMEYER]
Stockmeyer, L. J., and Vishkin, U., Simulation of parallel random access machines by
circuits, SIAM Journal on Computing, Vol. 13, No. 2, May 1984, pp. 409-42'2.

[STONE]
Stone, H. S., Ed., Introduction to Computer Architecture, Science Research Associates,
Chicago, 1980.

[STRASSEN]
Strassen, V., The asymptotic spectrum of tensors and the exponent of matrix multiplication,
Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer Science,
Toronto, October 1986, IEEE Computer Society, Washington, D.C., 1986.

[TRAUB]
Traub, J. F., Ed., Complexity of Sequential and Parallel Numerical Algorithms, Academic, New
York, 1973.

[UHRI
Uhr, L., Algorithm-Structured Computer Arrays and Networks, Academic, New York, 1984.

[ULLMAN]
Ullman, J. D., Computational Aspects of VLSI, Computer Science Press, Rockville, Md., 1984.

[UPFAL 11
Upfal, E., A probabilistic relation between desirable and feasible models of parallel

38 Introduction Chap. 1

computation, Proceedings of the 16th Annual ACM Symposium on Theory of Computing,
Washington, D.C., May 1984, pp. 258-265, Association for Computing Machinery, New
York, N.Y., 1984.

[UPFAL 21
Upfal, E., and Wigderson, A., How to share memory in a distributed system, Proceedings of
the 25th Annual IEEE Symposium on Foundations of Computer Science, Singer Island,
Florida, October 1984, pp. 171-180, IEEE Computer Society, Washington, D.C., 1984.

[VISHKIN]
Vishkin, U., Implementation of simultaneous memory address access in models that forbid it,
Journal of Algorithms, Vol. 4, 1983, pp. 45-50.

CWahl
Wah, B. W., Ed., Special Issue on New Computers for Artificial Intelligence Processing,
Computer, Vol. 20, No. 1, January 1987.

C Wul
Wu, C.-L., and Feng, T.-Y., Eds., ~nterconnectionNetworks for Parallel and Distributed
Processing, IEEE Computer Science Press, Los Angeles, 1984.

Selection

2.1 INTRODUCTION

Our study of parallel algorithm design and analysis begins by addressing the following
problem: Given a sequence S of n elements and an integer k, where 1 6 k < n, it is
required to determine the kth smallest element in S. This is known as the selection
problem. It arises in many applications in computer science and statistics. Our purpose
in this chapter is to present a parallel algorithm for solving this problem on the
shared-memory SIMD model. The algorithm will be designed to meet a number of
goals, and our analysis will then confirm that these goals have indeed been met.

We start in section 2.2 by defining the selection problem formally and deriving a
lower bound on the number of steps required for solving it on a sequential computer.
This translates into a lower bound on the cost of any parallel algorithm for selection.
In section 2.3 an optimal sequential algorithm is presented. Our design goals are
stated in section 2.4 in the form of properties generally desirable in any parallel
algorithm. Two procedures that will be often used in this book are described in section
2.5. Section 2.6 contains the parallel selection algorithm and its analysis.

2.2 THE PROBLEM AND A LOWER BOUND

The problems studied in this and the next two chapters are intimately related and
belong to a family of problems known as comparison problems. These problems are
usually solved by comparing pairs of elements of an input sequence. In order to set the
stage for our presentation we need the following definitions.

2.2.1 Linear Order

The elements of a set A are said to satisfy a linear order < if and only if

(i) for any two elements a and b of A, (1 < b, a = b, or b < a, and
(ii) for any three elements a, b, and c of A, if a < b and b < c, then a < c.

40 Selection Chap. 2

The symbol < is to be read "precedes." An example of a set satisfying a linear order is
the set of all integers. Another example is the set of letters of the Latin alphabet. We
shall say that these sets are linearly ordered. Note that when the elements of A are
numbers, it is customary to use the symbol < to denote "less than or equal to."

2.2.2 Rank

For a sequence S = (s,, s,, . . . , s,) whose elements are drawn from a linearly ordered
set, the rank of an element si of S is defined as the number of elements in S preceding si
plus 1. Thus, in S = (8, - 3,2, - 5,6,0) the rank of 0 is 3. Note that if si = sj then si
precedes s j if and only if i < j.

2.2.3 Selection

A sequence S = {s,, s,, . . . , s,) whose elements are drawn from a linearly ordered set
and an integer k, where 1 < k < n, are given. It is required to determine the element
with rank equal to k. Again, in S = (8, - 3,2, - 5,6,0) the element with rank 4 is 2.
We shall denote the element with rank k by s(,,.

In the ensuing discussion, it is assumed without loss of generality that S is a
sequence of integers, as in the preceding example. Selection will therefore call for
finding the kth smallest element. We also introduce the following useful notation. For
a real number r, Lr] denotes the largest integer smaller than or equal to r (the "floor" of
r), while [rl denotes the smallest integer larger than or equal to r (the "ceiling" of r).
Thus L3.91 = 3, r3.11 = 4, and L3.0~ = r3.01 = 3.

2.2.4 Complexity

Three particular values of k in the definition of the selection problem immediately
come to one's mind: k = 1, k = n, and k = rn/21. In the first two cases we would be
looking for the smallest and largest elements of S, respectively. In the third case, s(,,
would be the median of S, that is, the element for which half of the elements of S are
smaller than (or equal to) it and the other half larger (or equal). It seems intuitive, at
least in the sequential mode of thinking and computing, that the first two cases are
easier to solve than when k = rn/21 or any other value. Indeed, for k = 1 or k = n, all
one has to do is examine the sequence element by element, keeping track of the
smallest (or largest) element seen so far until the result is obtained. No such obvious
solution appears to work for 1 < k < n.

Evidently, if S were presented in sorted order, that is, S = (s(,,, so,, . . . , s(,,), then
selection would be trivial: In one step we could obtain s(,,. Of course, we do not
assume that this is the case. Nor do we want to sort S first and then pick the kth
element: This appears to be (and indeed is) a computationally far more demanding
task than we need (particularly for large values of n) since sorting would solve the
selection problem for all values of k, not just one.

Regardless of the value of k, one fact is certain: In order to determine the kth

Sec. 2.3 A Sequential Algorithm 41

smallest element, we must examine each element of S at least once. This establishes a
lower bound of Q(n) on the number of (sequential) steps required to solve the problem.
From chapter 1, we know that this immediately implies an R(n) lower bound on the
cost of any parallel algorithm for selection.

2.3 A SEQUENTIAL ALGORITHM

In this section we study a sequential algorithm for the selection problem. There are
two reasons for our interest in a sequential algorithm. First, our parallel algorithm is
based on the sequential one and is a parallel implementation of it on an EREW SM
SIMD computer. Second, the parallel algorithm assumes the existence of the
sequential one and uses it as a procedure.

The algorithm presented in what follows in the form of procedure
SEQUENTIAL SELECT is recursive in nature. It uses the divide-and-conquer
approach to algorithm design. The sequence S and the integer k are the procedure's
initial input. At each stage of the recursion, a number of elements of S are discarded
from further consideration as candidates for being the kth smallest element. This
continues until the kth element is finally determined. We denote by IS] the size of a
sequence S; thus initially, IS1 = n. Also, let Q be a small integer constant to be
determined later when analyzing the running time of the algorithm.

procedure SEQUENTIAL SELECT (S, k)

Step 1: if IS1 <Q then sort S and return the kth element directly

else subdivide S into ISI/Q subsequences of Q elements each (with up to Q- 1
leftover elements)

end if.

Step 2: Sort each subsequence and determine its median.

Step 3: Call SEQUENTIAL SELECT recursively to find m, the median of the ISI/Q
medians found in step 2.

Step 4: Create three subsequences S,, S,, and S, of elements of S smaller than, equal
to, and larger than m, respectively.

Step 5: if IS,(> k then (the kth element of S must be in S,)
call SEQUENTIAL SELECT recursively to find the kth element of S,

else if IS,I+ IS,l>k then return m
else call SEQUENTIAL SELECT recursively to find the (k -- IS,J - IS,l)th

element of S,
end if

end if.

Note that the preceding statement of procedure SEQUENTIAL SELECT does not
specify how the kth smallest element of S is actually returned. One way to do this
would be to have an additional parameter, say, x, in the procedure's heading (besides

42 Selection Chap. 2

S and k) and return the kth smallest element in x. Another way would be to simply
return the kth smallest as the first element of the sequence S.

Analysis. A step-by-step analysis of t(n), the running time of SEQUENTIAL
SELECT, is now provided.

Step 1: Since Q is a constant, sorting S when IS1 < Q takes constant time.
Otherwise, subdividing S requires c,n time for some constant c,.
Step 2: Since each of the ISl/Q subsequences consists of Q elements, it can be
sorted in constant time. Thus, c2n time is also needed for this step for some
constant c,.
Step 3: There are ISI/Q medians; hence the recursion takes t(n/Q) time.
Step 4: One pass through S creates S,, S,, and S, given m; therefore this step is
completed in c3n time for some constant c3.
Step 5: Since m is the median of JSI/Q elements, there are ISJ/2Q elements larger
than or equal to it, as shown in Fig. 2.1. Each of the ISI/Q elements was itself the
median of a set of Q elements, which means that it has Q/2 elements larger than
or equal to it. It follows that (IS1/2Q) x (Q/2) = IS114 elements of S are
guaranteed to be larger than or equal to m. Consequently, JS,I < 31S1/4. By a
similar reasoning, IS,[< 31S1/4. A recursive call in this step to SEQUENTIAL
SELECT therefore requires t(3n/4). From the preceding analysis we have

The time has now come to specify Q. If we choose Q so that

k- ISI!Q SUBSEQUENCES -4

Q ELEMENTS

PER SUBSEQUENCE

IN SORTED

ORDER

SMALLEST ELEMENT

'MEDIAN ELEMENT

LARGEST ELEMENT

Figure 2.1 Main idea behind procedure SEQUENTIAL SELECT.

Sec. 2.4 Desirable Properties for Parallel Algorithms 43

then the two recursive calls in the procedure are performed on ever-decreasing
sequences. Any value of Q 2 5 will do. Take Q = 5; thus

t(n) = c4n + t(n/5) + t(3n/4).

This recurrence can be solved by assuming that

t(n) < c,n for some constant c,.

Substituting, we get

t(n) < c4n + c5(n/5) + c5(3n/4)

= c4n + c5(19n/20).

Finally, taking c, = 20c4 yields

t(n) < c5(n/20) + c5(19n/20)

= c5n,

thus confirming our assumption. In other words, t(n) = O(n), which is optimal in view
of the lower bound derived in section 2.2.4.

2.4 DESIRABLE PROPERTIES FOR PARALLEL ALGORITHMS

Before we embark in our study of a parallel algorithm for the selection problem, it
may be worthwhile to set ourselves some design goals. A number of criteria were
described in section 1.3 for evaluating parallel algorithms. In light of these criteria, five
important properties that we desire a parallel algorithm to possess are now defined.

2.4.1 Number of Processors

The first two properties concern the number of processors to be used by the algorithm.
Let n be the size of the problem to be solved:

(i) p(n) must be smaller than n: No matter how inexpensive computers
become, it is unrealistic when designing a parallel algorithm to assume that we have at
our disposal more (or even as many) processors as there are items of data. This is
particularly true when n is very large. It is therefore important that p(n) be expressible
as a sublinear function of n, that is, p(n) = nx, 0 < x < 1.

(ii) p(n) must be adaptive: In computing in general, and in parallel computing
in particular, "appetite comes with eating." The availability of additional computing
power always means that larger and more complex problems will be attacked than
was possible before. Users of parallel computers will want to push their machines to
their limits and beyond. Even if one could afford to have as many processors as data
for a particular problem size, it may not be desirable to design an algorithm based on
that assumption: A larger problem would render the algorithm totally useless.

44 Selection Chap. 2

Algorithms using a number of processors that is a sublinear function of n [and hence
satisfying property (i)], such as log n or n1I2, would not be acceptable either due to
their inflexibility. What we need are algorithms that possess the "intelligence" to adapt
to the actual number of processors available on the computer being used.

2.4.2 Running Time

The next two properties concern the worst-case running time of the parallel algorithm:

(i) t (n) must be small: Our primary motive for building parallel computers is
to speed up the computation process. It is therefore important that the parallel
algorithms we design be fast. To be useful, a parallel algorithm should be significantly
faster than the best sequential algorithm for the problem at hand.

(ii) t(n) must be adaptive: Ideally, one hopes to have an algorithm whose
running time decreases as more processors are used. In practice, it is usually the case
that a limit is eventually reached beyond which no speedup is possible regardless of
the number of processors used. Nevertheless, it is desirable that t(n) vary inversely
with p(n) within the bounds set for p(n).

2.4.3 Cost

Ultimately, we wish to have parallel algorithms for which c(n) = p(n) x t(n) always
matches a known lower bound on the number of sequential operations required in the
worst case to solve the problem. In other words, a parallel algorithm should be cost
optimal.

In subsequent chapters we shall see that meeting the preceding objectives is
usually difficult and sometimes impossible. In particular, when a set of processors are
linked by an interconnection network, the geometry of the network often imposes
limits on what can be accomplished by a parallel algorithm. It is a different story when
the algorithm is to run on a shared-memory parallel computer. Here, it is not at all
unreasonable to insist on these properties given how powerful and flexible the model
is.

In section 2.6 we describe a parallel algorithm for selecting the kth smallest
element of a sequence S = {s,, s,, . . . ,s,). The algorithm runs on an EREW SM
SIMD computer with N processors, where N < n. The algorithm enjoys all the
desirable properties formulated in this section:

(i) It uses p(n) = nl-" processors, where 0 < x < 1. The value of x is obtained from
N = nl-". Thus p(n) is sublinear and adaptive.

(ii) It runs in t(n) = O(nx) time, where x depends on the number of processors
available on the parallel computer. The value of x is obtained in (i). Thus t(n) is
smaller than the running time of the optimal sequential algorithm described in

Sec. 2.5 Two Useful Procedures 45

section 2.3. It is also adaptive: The larger is p(n), the smaller is t(n), and vice
versa.

(iii) It has a cost of c(n) = n1 -" x O(nx) = O(n), which is optimal in view of the lower
bound derived in section 2.2.4.

In closing this section we note that all real quantities of the kind just described
(e.g., nl-" and nx) should in practice be rounded to a convenient integer, according to
our assumption in chapter 1. When dealing with numbers of processors and running
times, though, it is important that this rounding be done pessimistically. Thus, the real
n l -X representing the number of processors used by an algorithm should be

interpreted as Ln'-x]: This is to ensure that the resulting integer does not exceed the
actual number of processors. Conversely, the real nx representing the worst-case
running time of an algorithm should be interpreted as rnX1: This guarantees that the
resulting integer is not smaller than the true worst-case running time.

2.5 TWO USEFUL PROCEDURES

In the EREW SM SIMD model no two processors can gain access to the same
memory location simultaneously. However, two situations may arise in a typical
parallel algorithm:

(i) All processors need to read a datum held in a particular location of the common
memory.

(ii) Each processor has to compute a function of data held by other processors and
therefore needs to receive these data.

Clearly, a way must be found to efficiently simulate these two operations that
cannot be performed in one step on the EREW model. In this section, we present two
procedures for performing these simulations. The two procedures are used by the
algorithm in this chapter as well as by other parallel algorithms to be studied
subsequently. In what follows we assume that N processors PI , P,, . . . , P, are
available on an EREW SM SIMD computer.

2.5.1 Broadcasting a Datum

Let D be a location in memory holding a datum that all N processors need at a
given moment during the execution of an algorithm. As mentioned in section 1.2.3.1,
this is a special case of the more general multiple-read situation and can be simulated
on an EREW computer by the broadcasting process described in example 1.4. We
now give this process formally as procedure BROADCAST. The procedure assumes
the presence of an array A of length N in memory. The array is initially empty and is

46 Selection Chap. 2

used by the procedure as a working space to distribute the contents of D to the
processors. Its ith position is denoted by A(i).

procedure BROADCAST (D, N, A)

Step 1: Processor PI
(i) reads the value in D,
(ii) stores it in its own memory, and
(iii) writes it in A(1).

Step 2: for i= 0 to (log N- 1) do
for j=2 '+ 1 to 2'+' do in parallel

Processor Pj
(i) reads the value in A(j-2 ') ,
(ii) stores it in its own memory, and
(iii) writes it in A(j).

end for
end for.

The working of BROADCAST is illustrated in Fig. 2.2 for N = 8 and D = 5.
When the procedure terminates, all processors have stored the value of D in their local
memories for later use. Since the number of processors having read D doubles in each
iteration, the procedure terminates in O(1og N) time. The memory requirement of
BROADCAST is an array of length N. Strictly speaking, an array of half that length
will do since in the last iteration of the procedure all the processors have received the
value in D and need not write it back in A [see Fig. 2.2(d)]. BROADCAST can be
easily modified to prevent this final write operation and hence use an array A of length
N / 2 .

Besides being generally useful in broadcasting data to processors during the
execution of an algorithm, procedure BROADCAST becomes particularly important
when starting an adaptive algorithm such as the one to be described in section 2.6.
Initially, each of the N processors knows its own index i, 1 < i < N, and the available
number of processors N. When a problem is to be solved, the problem size n must be
communicated to all processors. This can be done using procedure BROADCAST
before executing the algorithm. Each processor now computes x from N = n' -", and
the algorithm is performed. Therefore, we shall assume henceforth that the parameter
x is known to all processors when an adaptive algorithm starts its computation.

2.5.2 Computing All Sums

Assume that each processor Pi holds in its local memory a number a,, 1 < i 6 N. It is
often useful to compute, for each Pi, the sum a, + a, + . . . + a,. In example 1.5 an
algorithm was demonstrated for computing the sum of N numbers in O(1og N) time on
a tree-connected computer with O(N) processors. Clearly this algorithm can be
implemented on a shared-memory machine to compute the sum in the same amount
of time using the same number of processors. The question here is: Can the power

Sec. 2.5 Two Useful Procedures 47

'1 '2 '3 '4 '5 '6 '7 '8 '1 '2 '3 '4 '5 '6 '7 '8

(a) STEP 1 (b) STEP 2 (i = 0)

(c) STEP 2 (i = 1) (d) STEP 2 (i = 2)

Figure 2.2 Distributing a datum to eight processors using procedure BROADCAST.

of the shared-memory model be exploited to compute all sums of the form
a , + a, + + a,, 1 < i < N, known as the preJix sums, using N processors in
O(1og N) time? As it turns out, this is indeed possible. The idea is to keep as many
processors busy as long as possible and exploit the associativity of the addition
operation. Procedure ALLSUMS given formally in the following accomplishes
exactly that:

procedure ALLSUMS (a,, a,, . . ., a,)

for j=OtologN-1 do
for i = 2' + 1 to N do in parallel

Processor Pi
(i) obtains a,-,, from Pi - , , through shared memory and
(ii) replaces ai with a i - ,, + ai.

end for
end for.

The working of ALLSUMS is illustrated in Fig. 2.3 for N = 8 with Aij referring to the
sum ai + a, , , + . . . + aj . When the procedure terminates, a, has been replaced by

(a) j = 0

P1 '2 '3 p4 P5 '6 '7 '8

(b) j = 1

Figure 2.3 Computing the prefix sums of eight numbers using procedure ALLSUMS

Sec. 2.6 An Algorithm for Parallel Selection 49

a, + a, + . - . + ai in the local memory of Pi, for 1 < i < N. The procedure requires
O(1og N) time since the number of processors that have finished their computation
doubles at each stage.

It is important to note that procedure ALLSUMS can be modified to solve any
problem where the addition operation is replaced by any other associative binary
operation. Examples of such operations on numbers are multiplication, finding the
larger or smaller of two numbers, and so on. Other operations that apply to a pair of
logical quantities (or a pair of bits) are and, or, and xor. Various aspects of the problem
of computing the prefix sums in parallel are discussed in detail in chapters 13 and 14.

2.6 AN ALGORITHM FOR PARALLEL SELECTION

We are now ready to study an algorithm for parallel selection on an EREW SM
SIMD computer. The algorithm presented as procedure PARALLEL SELECT
makes the following assumptions (some of these were stated earlier):

1. A sequence of integers S = {s,, s,, . . . , s,} and an integer k, 1 < k < n, are given,
and it is required to determine the kth smallest element of S. This is the initial
input to PARALLEL SELECT.

2. The parallel computer consists of N processors PI , P,, . . . , P,.
3. Each processor has received n and computed x from N = nl-", where

O < x < l .
4. Each of the n' -" processors is capable of storing a sequence of nx elements in its

local memory.
5. Each processor can execute procedures SEQUENTIAL SELECT,

BROADCAST, and ALLSUMS.
6. M is an array in shared memory of length N whose ith position is M(i).

procedure PARALLEL SELECT (S, k)

Step 1: if (S(,<4 then PI uses at most five comparisons to return the kth element
else

(i) S is subdivided into ISI'-X subsequences Si of length lSIX each, where
1 <i<lS('-", and

(ii) subsequence Si is assigned to processor Pi.
end if.

Step 2: for i = 1 to ISI1 - X do in parallel
(2.1) {Pi obtains the median mi, i.e., the r(Si(/21th element, of its associated

subsequence)
SEQUENTIAL SELECT (Si, rlSil/21)

(2.2) Pi stores mi in M(i)
end for.

50 Selection Chap. 2

Step 3: {The procedure is called recursively to obtain the median rn of M }

PARALLEL SELECT (M , rlM 1/21).

Step 4: The sequence S is subdivided into three subsequences:

Step 5: if)Ll> k then PARALLEL SELECT (L , k)
else if ILI + IE l2 k then return m

else PARALLEL SELECT (G, k - 1 LJ - IEJ)
end if

end if.

Note that the precise mechanism used by procedure PARALLEL SELECT to return
the kth smallest element of S is unspecified in the preceding statement. However, any
of the ways suggested in section 2.3 in connection with procedure SEQUENTIAL
SELECT can be used here.

Analysis. We have deliberately given a high-level description of
PARALLEL SELECT to avoid obscuring the main ideas of the algorithm. In order to
obtain an accurate analysis of the procedure's running time, however, various
implementation details must be specified. As usual, we denote by t(n) the time required
by PARALLEL SELECT for an input of size n. A function describing t(n) is now
obtained by analyzing each step of the procedure.

Step 1: To perform this step, each processor needs the beginning address A of
sequence Sin the shared memory, its size JSI, and the value of k. These quantities
can be broadcast to all processors using procedure BROADCAST: This requires
O(1og nl-") time. If IS(< 4, then P, returns the kth element in constant time.
Otherwise, Pi computes the address of the first and last elements in Si from
A + (i - I)nX and A + inx - 1, respectively; this can be done in constant time.
Thus, step 1 takes cllog n time units for some constant c,.
Step 2: SEQUENTIAL SELECT finds the median of a sequence of length n" in
c,nx time units for some constant c,.
Step 3: Since PARALLEL SELECT is called with a sequence of length nl-",
this step requires t(nl -") time.
Step 4: The sequence S can be subdivided into L, E, and G as follows:

(i) First m is broadcast to all the processors in O(lognl-") time using
procedure BROADCAST.

(ii) Each processor Pi now splits Si into three subsequences L,, E,, and G, of
elements smaller than, equal to, and larger than m, respectively. This can
be done in time linear in the size of Si, that is, O(nx) time.

(iii) The subsequences L,, Ei, and Gi are now merged to form L, E, and G. We
show how this can be done for the Li; similar procedures with the same

Sec. 2.6 An Algorithm for Parallel Selection 51

running time can be derived for merging the Ei and G,, respectively. Let
a, = lLiJ. For each i, 1 < i < nl-", the sum

is computed. All these sums can be obtained by nl-" processors in
O(1og nl-") time using procedure ALLSUMS. Now let z, = 0. All pro-
cessors simultaneously merge their Li subsequences to form L: Processor
Pi copies Li into L starting at position 2,-I + 1. This can be done in O(nx)
time.
Hence the time required by this step is c3nx for some constant c3.

Step 5: The size of L needed in this step has already been obtained in step 4
through the computation of z , ~ - ~ . The same remark applies to the sizes of E and
G. Now we must determine how much time is taken by each of the two recursive
steps. Since m is the median of M, nl-"12 elements of S are guaranteed to be
larger than it. Furthermore, every element of M is smaller than at least nx/2
elements of S. Thus ILI < 3n/4. Similarly, IGI < 3n/4. Consequently, step 5
requires at most t(3n/4) time.

The preceding analysis yields the following recurrence for t(n):

whose solution is t(n) = O(nX) for n > 4. Since p(n) = nl-", we have

This cost is optimal in view of the R(n) lower bound derived in section 2.2. Note,
however, that nx is asymptotically larger than log n for any x. (Indeed we have used
this fact in our analysis of PARALLEL SELECT.) Since N = n' -"and n/nx c npog n,
it follows that PARALLEL SELECT is cost optimal provided N < nllog n.

Example 2.1

This example illustrates the working of PARALLEL SELECT. Let S = (3, 14, 16,20, 8,
31, 22, 12, 33, 1, 4, 9, 10, 5, 13, 7, 24, 2, 14, 26, 18, 34, 36, 25, 14, 27, 32, 35, 331, that is,
n = 29 and let k = 21, that is, we need to determine the twenty-first element of S. Assume
further that the EREW SM SIMD computer available consists of five processors,
(N = 5). Hence JSJ1-" = 5, implying that 1 - x = 0.47796. The input sequence is initially
in the shared memory as shown in Fig. 2.4(a). After step 1, each processor has been
assigned a subsequence of S: The first four processors receive six elements each, and the
fifth receives five, as in Fig. 2.4(b). Now each processor finds the median of its
subsequence in step 2 and places it in a shared-memory array M; this is illustrated in Fig.
2412). When PARALLEL SELECT is called recursively in step 3, it returns the median
m = 14 of M. The three subsequences of S, namely, L, E, and G of elements smaller than,
equal to, and larger than 14, respectively, are formed in step 4, as shown in Fig. 2.4(d).
Since JLJ = 11 and IEJ = 3, JLj + JEJ < k and PARALLEL SELECT is called recursively
in step 5 with S = G and k = 21 - (11 + 3) = 7. Since IGI = 15, we use 15'-" = 3.6485,
that is, three, processors during this recursive step.

Again in step 1, each processor is assigned five elements, as shown in Fig. 2.4(e).
The sequence M of medians obtained in step 2 is shown in Fig. 2.4(f). The median m = 26

52 Selection Chap. 2

Figure 2.4 Selecting twenty-first element of a sequence using procedure PARALLEL SELECT.

of M is determined in step 3. The three subsequences L, E, and G created in step 4 are
illustrated in Fig. 2.qg). Since ILI = 6 and [El = 1, the only element of E, namely, 26, is
returned as the twenty-first element of the input.

We conclude this section with the following observation. In designing
PARALLEL SELECT, we adopted the approach of taking a sequential algorithm for
a problem and turning it into a parallel algorithm. We were quite successful in

Sec. 2.7 Problems 53

obtaining an algorithm for the EREW SM SIMD model that is fast, adaptive, and
cost optimal while using a number of processors that is sublinear in the size of the
input. There are problems however, for which this approach does not work that well.
In these cases a parallel algorithm (not based on any sequential algorithm) must be
derived by exploiting the inherent parallelism in the problem. We shall study such
algorithms in subsequent chapters. Taken to the extreme, this latter approach can
sometimes offer surprises: A parallel algorithm provides an insight that leads to an
improvement over the best existing sequential algorithm.

2.7 P R O B L E M S

In an interconnection-network SIMD computer, one of the N processors holds a datum
that it wishes to make known to all other processors. Show how this can be done on each
of the networks studied in chapter 1. Which of these networks accomplish this task in the
same order of time as required by procedure BROADCAST?
Consider an SIMD computer where the N processors are linked together by a perfect
shuffle interconnection network. Now assume that the line connecting two processors can
serve as a two-way link; in other words, if Pi can send data to P j (using a perfect shuffle
link), then P j can also send data back to Pi (the latter link being referred to as a perfect
unshu$e connection). In addition, assume that for i < N - 1, each Pi is linked by a direct
one-way link to Pi+ ,; call these the nearest-neighbor links. Each processor Pi holds an
integer ai. It is desired that ai in Pi be replaced with a, + a, + . . . + ai for all i. Can this
task be accomplished using the unshuffle and nearest-neighbor links in the same order of
time as required by procedure ALLSUMS?
A parallel selection algorithm that uses O(n/log'n) processors and runs in O(log'n) time for
some 0 < s < 1 would be faster than PARALLEL SELECT since log'n is asymptotically
smaller than nx for any x and s. Can you find such an algorithm?
If PARALLEL SELECT were to be implemented on a CREW SM SIMD computer,
would it run any faster?
Design and analyze a parallel algorithm for solving the selection problem on a CRCW SM
SIMD computer.
A tree-connected computer with n leaves stores one integer of a sequence S per leaf. For a
given k, 1 < k < n, design an algorithm that runs on this computer and selects the kth
smallest element of S.
Repeat problem 2.6 for a linear array of n processors with one element of S per processor.
Repeat problem 2.6 for an nl" x n1I2 mesh of processors with one element of S per
processor.
Consider the following variant of the linear array interconnection network for SIMD
computers. In addition to the usual links connecting the processors, a further communi-
cation path known as a bus is available, as shown in Fig. 2.5. At any given time during the
execution of an algorithm, precisely one of the processors is allowed to broadcast one of
the input data to the other processors using the bus. All processors receive the datum
simultaneously. The time required by the broadcast operation is assumed to be constant.
Repeat problem 2.6 for this modified linear array.

Selection Chap. 2

BUS

Figure 2.5 Linear array with a bus.

2.10 Modify the mesh interconnection network for SIMD machines to include a bus and repeat
problem 2.6 for the modified model.

2.11 Design an algorithm for solving the selection problem for the case k = 1 (i.e., finding the
smallest element of a sequence) on each of the following two models: (i) a mesh-connected
SIMD computer and (ii) the machine in problem 2.10.

2.12 A problem related to selection is that of determining the k smallest elements of a sequence
S (in any order). On a sequential computer this can be done as follows: First determine the
kth smallest element (using SEQUENTIAL SELECT); then one pass through S suffices to
determine the k - 1 elements smaller than k. The running time of this algorithm is linear in
the size of S. Design a parallel algorithm to solve this problem on your chosen submodel of
each of the following models and analyze its running time and cost: (i) shared-memory
SIMD, (ii) interconnection-network SIMD, and (iii) specialized architecture.

2.13 Modify procedure BROADCAST to obtain a formal statement of procedure STORE
described in section 1.2.3.1. Provide a different version of your procedure for each of the
write conflict resolution policies mentioned in chapter 1.

2.14 In steps 1 and 2 of procedure SEQUENTIAL SELECT, a simple sequential algorithm is
required for sorting short sequences. Describe one such algorithm.

2.8 B l B L l O G R A P H l C A L R E M A R K S

As mentioned in section 2.1, the problem of selection has a number of applications in computer
science and statistics. In this book, for example, we invoke a procedure for selecting the kth
smallest out of n elements in our development of algorithms for parallel merging (chapter 3),
sorting (chapter 4), and convex huil computation (chapter 11). An application to image analysis
is cited in [Chandran]. In statistics, selection is referred to as the computation of order statistics.
In particular, computing the median element of a set of data is a standard procedure in
statistical analysis. The idea upon which procedure SEQUENTIAL SELECT is based was first
proposed in [Blum]. Sequential algorithms for sorting short sequences, as required by that
procedure, can be found in [Knuth].

Procedures BROADCAST and ALLSUMS are adapted from [Akl2]. Another way of
computing the prefix sums of n numbers is through a specialized network of processors. One
such network is suggested by Fig. 2.3. It consists of logn rows of n processors each. The
processors are connected by the lines illustrating the flow of data in Fig. 2.3. The top row of
processors receives the n numbers as input, and all the prefix sums are produced by the bottom

Sec. 2.8 Bibliographical Remarks 55

row as output. This network has a cost of nlog2n. Networks with lower cost and their
applications are described in [Fich], [Kogge 11, [Kogge 23, [Ladner], [Reif], and [Stone]. A
~arallel algorithm to compute the prefix sums on an EREW SM SIMD computer for the case
where the input numbers are presented in a linked list is proposed in [Kruskal].

Procedure PARALLEL SELECT was first presented in [Akl 11. Other parallel al-
gorithms for selecting the kth smallest out of n elements on the EREW SM SIMD computer are
described in [Cole 21 and [Vishkin]. The algorithm in [Cole 23 uses n/(log n log*n) processors
and runs in time O(logn log*n), where log*n is the least i such that the ith iterate of the
logarithm function (i.e., 10g(~)n) is less than or equal to 2. Note that this algorithm is cost optimal
and faster than PARALLEL SELECT but is not adaptive. The algorithm in [Vishkin] runs in
O(n/N) time using N < n/(log n log log n) processors. This algorithm is both adaptive and cost
optimal; however, when compared with PARALLEL SELECT, its running time is seen to be
larger and its range of optimality smaller. Finally, a parallel selection algorithm is obtained in
[Akl3] that runs in O(log log n) time using O(n/log log n) processors. Examples of parallel
algorithms that aid in the design of sequential algorithms are provided in [Megiddo].

A model of parallel computation is described in [Valiant], where only the time taken to
perform comparisons among pairs of input elements is counted. Thus, the time taken in routing
data from one processor to another, the time taken to specify what comparisons are to be
performed, and any other computations besides comparisons are all ignored. This is approp-
riately known as the comparison model. A lower bound of ROog log n) on the time required by n
processors to select using this model is derived in [Valiant]. This bound is achieved by an
algorithm described in [Ajtai]. It runs in O(log log n) time and is essentially a refinement of an
earlier O((log log n)') algorithm appearing in [Cole 11.

A number of algorithms exist for selection on a tree-connected SIMD computer. An
algorithm in [Tanimoto] finds the kth smallest element on a tree machine with n leaves in
O(k + log n) time. Note that when k = n/2, this algorithm requires O(n) time, which is no better
than sequential selection. This is improved in [Stout 11, where an algorithm is described whose
running time is strictly less than f f for any a > 0. It is shown in [Aggarwal] how a further
speedup can be achieved for the case where the elements of S are taken from a field of size
O(nl+?) for some constant y > 0: Selection can now be performed in O(log2n) time. In chapter
14 we shall study an algorithm for selection on the tree that was first proposed in [Cooper].
This algorithm takes the time to operate on two bits (rather than two entire numbers) as its unit
of time.

The selection problem has also been tackled on variants of basic models. An algorithm is
proposed in [Stout 23 that runs on a mesh-connected computer with a broadcast ability. The
model in [Chandran] is a cube-connected computer where each communication between two
processors counts as one routing step regardless of how many elements are exchanged.

Variations on the problem of selection itself have also been studied. Algorithms for
finding the largest element of a sequence (a special case of selection) appear in [Bokhari],
[Shiloach], and [Valiant]. A special-purpose architecture for selecting the k smallest out of n
elements is described in wah] .

Finally, all the results discussed so far were obtained by worst-case analyses. Sometimes it
is useful to derive the time required by a parallel algorithm on the average. Here, the elements of
the input are assumed to obey a given probability distribution, and the expected running time is
obtained. Algorithms specifically designed to achieve a good running time on the average are
said to be probabilistic. Examples of such probabilistic algorithms are provided in [Greenberg]
for the tree-connected SIMD model and in [Reischuck] for the comparison model.

56 Selection Chap. 2

2.9 R E F E R E N C E S

[AGGARWAL]
Aggarwal, A., A comparative study of X-tree, pyramid and related machines, Proceedings of
the 25th Annual IEEE Symposium on Foundations of Computer Science, Singer Island,
Florida, October 1984, pp. 89-99, IEEE Computer Society, Washington, D.C., 1984.

[AJTAI]
Ajtai, M., Komlos, J., Steiger, W. L., and SzemerCdi, E., Deterministic selection in
O(log log N) parallel time, Proceedings of the 18th Annual ACM Symposium on Theory of
Computing, Berkeley, California, May 1986, pp. 188-195, Association for Computing
Machinery, New York, N.Y., 1986.

[AKL 11
Akl, S. G., An optimal algorithm for parallel selection, Information Processing Letters, Vol.
19, No. 1, July 1984, pp. 47-50.

[AKL 21
Akl, S. G., Parallel Sorting Algorithms, Academic, Orlando, FI., 1985.

[AKL 33
Akl, S. G., Parallel selection in O(log log n) time using O(n/log log n) processors, Technical
Report No. 88-221, Department of Computing and Information Science, Queen's University,
Kingston, Ontario, March 1988.

[BLUM]
Blum, M., Floyd, R. W., Pratt, V., Rivest, R. L., and Tarjan, R. E., Time bounds for selection,
Journal of Computer and System Sciences, Vol. 7, No. 4, 1972, pp. 448-461.

[BOKHARI]
Bokhari, S. H., Finding maximum on an array processor with global bus, IEEE Transactions
on Computers, Vol. C-33, No. 2, February 1984, pp. 133-139.

[CHANDRAN]
Chandran, S., and Rosenfeld, A., Order statistics on a hypercube, Center for Automation
Research, University of Maryland, College Park, Md., 1986.

[COLE 11
Cole, R., and Yap, C. K., A parallel median algorithm, Information Processing Letters, Vol.
20, No. 3, April 1985, pp. 137-139.

[COLE 23
Cole, R., and Vishkin, U., Deterministic coin tossing and accelerating cascades: Micro and
macro techniques for designing parallel algorithms, Proceedings of the 18th Annual ACM
Symposium on Theory of Computing, Berkeley, California, May 1986, pp. 206-219,
Association for Computing Machinery, New York, N.Y., 1986.

[COOPER]
Cooper, J., and Akl, S. G., Efficient selection on a binary tree, Information Processing k t te rs ,
Vol. 23, No. 3, October 1986, pp. 123-126.

[FICH]
Fich, F. E., New bounds for parallel prefix circuits, Proceedings of the 15th Annual ACM
Symposium on Theory of Computing, Boston, Massachusetts, May 1983, pp. 100-109,
Association for Computing Machinery, New York, N.Y., 1983.

[GREENBERG]
Greenberg, A. G., and Manber, U., A probabilistic pipeline algorithm for k-selection on the
tree machine, IEEE Transactions on Computers, Vol. C-36, No. 3, March 1987, pp. 359-362.

Sec. 2.9 References 57

[KNUTH]
Knuth, D. E., The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-
Wesley, Reading, Mass., 1973.

[K~GGE 11
Kogge, P. M., Parallel solution of recurrence problems, IBM Journal of Research and
Development, March 1974, pp. 138-148.

[K~GGE 21
Kogge, P. M., and Stone, H. S., A parallel algorithm for the efficient solution of a general class
of recurrence equations, IEEE Transactions on Computers, Vol. C-22, No. 8, August 1973, pp.
786-792.

[KRUSKAL]
Kruskal, C. P., Rudolph, L., and Snir, M., The power of parallel prefix, IEEE Pansactions on
Computers, Vol. C-34, No. 10, October 1985, pp. 965-968.

[LADNER]
Ladner, R. E., and Fischer, M. J., Parallel prefix computation, Journal of the ACM, Vol. 27,
No. 4, October 1980, pp. 831-838.

[MEGIDDO]
Megiddo, N., Applying parallel computation algorithms in the design of serial algorithms,
Journal of the ACM, Vol. 30, No. 4, October 1983, pp. 852-865.

[REIF]
Reif, J. H., Probabilistic parallel prefix computation, Proceedings of the 1984 International
Conference on Parallel Processing, Bellaire, Michigan, August 1984, pp. 291-298, IEEE
Computer Society, Washington, D.C., 1984.

[REISCHUK]
Reischuk, R., A fast probabilistic parallel sorting algorithm, Proceedings of the 22nd Annual
IEEE Symposium on Foundations of Computer Science, Nashville, Tennessee, October
1981, pp. 212-219, IEEE Computer Society, Washington, D.C., 1981.

[SHILOACH]
Shiloach, Y., and Vishkin, U., Finding the maximum, merging, and sorting in a parallel
computation model, Journal of Algorithms, Vol. 2, 1981, pp. 88-102.

[STONE]
Stone, H. S., Ed., Introduction to Computer Architecture, Science Research Associates,
Chicago, 1980.

[STOUT 11
Stout, Q. F., Sorting, merging, selecting, and filtering on tree and pyramid machines,
Proceedings of the 1983 International Conference on Parallel Processing, Bella~re, Michigan,
August 1983, pp. 214-221, IEEE Computer Society, Washington, D.C., 1983.

[STOUT 21
Stout, Q. F., Mesh-connected computers with broadcasting, IEEE Transactions on
Computers, Vol. C-32, No. 9, September 1983, pp. 826-830.

[TANIMOTO]
Tanimoto, S. L., Sorting, histogramming, and other statistical operations on a pyramid
machine, Technical Report 82-08-02, Department of Computer Science, University of
Washington, Seattle, 1982.

[VALIANT]
Valiant, L. G., Parallelism in comparison problems, SIAM Journal on Computing, Vol. 4, No.
3, September 1975, pp. 348-355.

58 Selection Chap. 2

[VISHKIN]
Vishkin, U., An optimal parallel algorithm for selection, Department of Computer Science,
Courant Institute of Mathematical Sciences, New York, 1983.

CWAHI
Wah, B. W., and Chen, K.-L., A partitioning approach to the design of selection networks,
IEEE Transactions on Computers, Vol. C-33, No. 3, March 1984, pp. 261-268.

Merging

INTRODUCTION

We mentioned in chapter 2 that selection belongs to a class of problems known as
comparison problems. The second such problem to be studied in this book is that of
merging. It is defined as follows: Let A = (a,, a,, . . .,a,) and B = (b,, b,, . . . , b,) be
two sequences of numbers sorted in nondecreasing order; it is required to merge A and
B, that is, to form a third sequence C = (c,, c,, . . . , c,,,), also sorted in nondecreasing
order, such that each ci in C belongs to either A or B and each ai and each bi appears
exactly once in C. In computer science, merging arises in a variety of contexts
including database applications in particular and file management in general. Many
of these applications, of course, involve the merging of nonnumeric data.
Furthermore, it is often necessary once the merging is complete to delete duplicate
entries from the resulting sequence. A typical example is the merging of two mailing
lists each sorted alphabetically. These variants offer no new insights and can be
handled quite easily once the basic problem stated above has been solved.

Merging is very well understood in the sequential model of computation and a
simple algorithm exists for its solution. In the worst case, when r = s := n, say, the
algorithm runs in O(n) time. This is optimal since every element of A and B must be
examined at least once, thus making R(n) steps necessary in order to merge. Our
purpose in this chapter is to show how the problem can be solved on a variety of
parallel computational models. In view of the lower bound just stated, it should be
noted that R(n /N) time is needed by any parallel merging algorithm that uses N
processors.

We begin in section 3.2 by describing a special-purpose parallel architecture for
merging. A parallel algorithm for the CREW SM SIMD model is presented in section
3.3 that is adaptive and cost optimal. Since the algorithm invokes a sequential
procedure for merging, that procedure is also described in section 3.3. 11: is shown in
section 3.4 how the concurrent-read operations can be removed from the parallel
algorithm of section 3.3 by simulating it on an EREW computer. Finally,, an adaptive
and optimal algorithm for the EREW SM SIMD model is presented in section 3.5
whose running time is smaller than that of the simulation in section 3.4. The algorithm

60 Merging Chap. 3

is based on a sequential procedure for finding the median of two sorted sequences,
also described in section 3.5.

3.2 A NETWORK FOR MERGING

In chapter 1 we saw that special-purpose parallel architectures can be obtained in any
one of the following ways:

(i) using specialized processors together with a conventional interconnection
network,

(ii) using a custom-designed interconnection network to link standard processors,
or

(iii) using a combination of (i) and (ii).

In this section we shall take the third of these approaches. Merging will be
accomplished by a collection of very simple processors communicating through a
special-purpose network. This special-purpose parallel architecture is known as an
(r, s)-merging network. All the processors to be used are identical and are called
comparators. As illustrated by Fig. 3.1, a comparator receives two inputs and produces
two outputs. The only operation a comparator is capable of performing is to compare
the values of its two inputs and then place the smaller and larger of the two on its top
and bottom output lines, respectively.

Using these comparators, we proceed to build a network that takes as input the
two sorted sequences A = {a,,a,,. . . ,a,} and B = {b,, b,, . . . , b,} and produces as
output a single sorted sequence C = {c,, c,, . . . , c,,,}. The following presentation is
greatly simplified by making two assumptions:

1. the two input sequences are of the same size, that is, r = s = n >, 1, and
2. n is a power of 2.

We begin by considering merging networks for the first three values of n. When
n = 1, a single comparator clearly suffices: It produces as output its two inputs in

SMALLER OF X AND Y

LARGER OF X AND Y

Figure 3.1 Comparator.

Sec. 3.2 A Network for Merging 61

sorted order. When n = 2, the two sequences A = {a,, a,} and B = {b,, b,} are
correctly merged by the network in Fig. 3.2. This is easily verified. Processor P,
compares the smallest element of A to the smallest element of B. Its top output must
be the smallest element in C, that is, c,. Similarly, the bottom output of P , must be c,.
One additional comparison is performed by P, to produce the two middle elements of
C. When n = 4, we can use two copies of the network in Fig. 3.2 followed by three
comparators, as shown in Fig. 3.3 for A = {3,5,7,9} and B = {2,4,6,8}.

In general, an (n, n)-merging network is obtained by the following recursive
construction. First, the odd-numbered elements of A and B, that is,
{a,, a,, a,, . . . , a,- ,) and {b,, b,, b,, . . . , b,- ,), are merged using an (42, nl2)-merging
network to produce a sequence {dl, d,, d,, . . . , d,). Simultaneously, the even-
numbered elements of the two sequences, {a,, a,, a,, . . . , a,} and {b,, b,, b,, . . . , b,},
are also merged using an (n/2,n/2)-merging network to produce :a sequence
{el, e2,e3,. . .,en}. The final sequence {c,, c,, . . . , c,,} is now obtained from

CI = dl, c2, = en, czi = min(di + l , ei), and c,,+ , = max(d,+ ,, e,)

for i = I,;! ,..., n- 1.

The final comparisons are accomplished by a rank of n - 1 comparators as illustrated
in Fig. 3.4. Note that each of the (n/2, n/2)-merging networks is constructed by
applying the same rule recursively, that is, by using two (44, n/4)-merging networks
followed by a rank of (n/2) - 1 comparators.

The merging network in Fig. 3.4 is based on a method known as odd-even
merging. That this method works in general is shown as follows. First note that
dl = min(a,, b,) and en = max(a,, b,), which means that c, and c,, are computed
properly. Now observe that in the sequence {dl, d,, . . . , d, } , i elements are smaller
than or equal to d,,,. Each of these is an odd-numbered element of either A or B.
Therefore, 2i elements of A and B are smaller than or equal to d,, ,. In other words,

Figure 3.2 Merging two sequences of two elements each.

Merging Chap. 3

Figure 3.3 Merging two sequences of four elements each.

d,+ , 2 c,~. Similarly, ei 3 c,,. On the other hand, in the sequence {c , , c,, . . . , c,,), 2i
elements from A and B are smaller than or equal to c,,,,. This means that c,,,, is
larger than or equal to (i + 1) odd-numbered elements belonging to either A or B. In
other words, c,,+ , 2 di+ ,. Similarly, c,,,, 2 e,. Since c , ~ < c,,, ,, the preceding
inequalities imply that cZi = min(di+ ,, e,), and cZi+, = max(d,+ ,, e,), thus establishing
the correctness of odd-even merging.

Analysis. Our analysis of odd-even merging will concentrate on the time,
number of processors, and total number of operations required to merge.

(i) Running Time. We begin by assuming that a comparator can read its
input, perform a comparison, and produce its output all in one time unit. Now; let
t(2n) denote the time required by an (n, n)-merging network to merge two sequences of
length n each. The recursive nature of such a network yields the following recurrence
for t(2n):

t(2) = 1 for n = 1 (see Fig. 3.1),

t(2n) = t(n) + 1 for n > 1 (see Fig. 3A),

whose solution is easily seen to be t(2n) = 1 + log n. This is significantly faster than
the best, namely, O(n), running time achievable on a sequential computer.

(i i) Number of Processors. Here we are interested in counting the number of
comparators required to odd-even merge. Let p(2n) denote the number of cornpara-

Sec. 3.2 A Network for Merging

al d l +
d2 b b

d3 -4

(M2, n12) -

MERGING -4

d i + ~
NETWORK -+

d n

-
el

e2 -4

-+

(n12, nl2) -
MERGING

ei
NETWORK

en .-+

Figure 3.4 Odd-even merging.

tors in an (n, n)-merging network. Again, we have a recurrence:

p(2) = 1 for n = 1 (see Fig. 3.1),

p(2n) = 2p(n) + (n - 1) for n > 1 (see Fig. 3A),

whose solution p(2n) = 1 + n log n is also straightforward.

(iii) Cost. Since t(2n) = 1 + log n and p(2n) = 1 + n log n, the total number
of comparisons performed by an (n,'n)-merging network, that is, the network's cost, is

c(2n) = p(2n) x t(2n)

= O(n log2n).

Our network is therefore not cost optimal as it performs more operations than the
O(n) sufficient to merge sequentially.

64 Merging Chap. 3

Discussion. In this section we presented an example of a special-purpose
architecture for merging. These merging networks, as we called them, have the
following interesting property: The sequence of comparisons they perform is fixed in
advance. Regardless of the input, the network will always perform the same number of
comparisons in a predetermined order. This is why such networks are sometimes said
to be oblivious of their input.

Our analysis showed that the (n, n)-merging network studied is extremely fast,
especially when compared with the best possible sequential merging algorithm. Fbr
example, it can merge two sequences of length 2,' elements each in twenty-one steps;
the same result would require more than two million steps on a sequential computer.
Unfortunately, such speed is achieved by using an unreasonable number of pro-
cessors. Again, for n = 2,', our (n, n)-merging network would consist of over twenty
million comparators! In addition, the architecture of the network is highly irregular,
and the wires linking the comparators have lengths that vary with n. This suggests
that, although theoretically appealing, merging networks would be impractical for
large values of n.

3.3 MERGING ON THE CREW MODEL

Our study of odd-even merging identified a problem associated with merging
networks in general, namely, their inflexibility. A fixed number of comparators are
assembled in a fixed configuration to merge sequences of fixed size. Although this may
prove adequate for some applications, it is desirable in general to have a parallel
algorithm that adapts to the number of available processors on the parallel computer
at hand. This section describes one such algorithm. In addition to being adaptive, the
algorithm is also cost optimal: Its running time multiplied by the number of
processors used equals, to within a constant multiplicative factor, the lower bound on
the number of operations required to merge. The algorithm runs on the CREW SM
SIMD model. It assumes the existence, and makes use of, a sequential procedure for
merging two sorted sequences. We therefore begin by presenting this procedure.

3.3.1 Sequential Merging

Two sequences of numbers A = {a,, a,, . . .,a,} and B = {b,, b,, . . . , b,} sorted in
nondecreasing order are given. It is required to merge A and B to form a third
sequence C, also sorted in nondecreasing order. The merging process is to be
performed by a single processor. This can be done by the following algorithm. Two
pointers are used, one for each sequence. Initially, the pointers are positioned at
elements a, and b,, respectively. The smaller of a, and b , is assigned to c,, and the
pointer to the sequence from which c, came is advanced one position. Again, the two
elements pointed to are compared: The smaller becomes c, and the pointer to it is
advanced. This continues until one of the two input sequences is exhausted; the
elements left over in the other sequence are now copied in C. The algorithm is given in

Sec. 3.3 Merging on the CREW Model 65

what follows as procedure SEQUENTIAL MERGE. Its description is greatly
simplified by assuming the existence of two fictional elements a,, , and b,, ,, both of
which are equal to infinity.

procedure SEQUENTIAL MERGE (A, B, C)

Step 1: (1.1) ie 1
(1.2) j + 1.

Step 2: for k = l to r + s do
if a, < bj then (i) c, +- a,

(ii) i t i + 1
else (i) c, +- bj

(ii) j t j + l

end if
end for.

The procedure takes sequences A and B as input and returns sequence C as
output. Since each comparison leads to one element of C being defined, there are
exactly r + s such comparisons, and in the worst case, when r = s == n, say, the
algorithm runs in O(n) time. In view of the Q(n) lower bound on merging derived in
section 3.1, procedure SEQUENTIAL MERGE is optimal.

3.3.2 Parallel Merging

A CREW SM SIMD computer consists of N processors PI, P,, . . . , P,. It is required
to design a parallel algorithm for this computer that takes the two sequences A and B
as input and produces the sequence C as output, as defined earlier. Without loss of
generality, we assume that r < s.

It is desired that the parallel algorithm satisfy the properties stated in section 2.4,
namely, that

(i) the number of processors used by the algorithm be sublinear and adaptive,
(ii) the running time of the algorithm be adaptive and significantly smaller than the

best sequential algorithm, and
(iii) the cost be optimal.

We now describe an algorithm that satisfies these properties. It uses N
processors where N 6 r and in the worst case when r = s = n runs in O((n/N) + log n)
time. The algorithm is therefore cost optimal for N < n/log n. In addition to the basic
arithmetic and logic functions usually available, each of the N processors is assumed
capable of performing the following two sequential procedures:

1. Procedure SEQUENTIAL MERGE described in section 3.3.1.

2. Procedure BINARY SEARCH described in what follows. The procedure

66 Merging Chap. 3

takes as input a sequence S = {s,, s,, . . . , s,) of numbers sorted in nondecreasing
order and a number x. If x belongs to S, the procedure returns the index k of an
element s, in S such that x = s,. Otherwise, the procedure returns a zero. Binary
search is based on the divide-and-conquer principle. At each stage, a comparison is
performed between x and an element of S. Either the two are equal and the procedure
terminates or half of the elements of the sequence under consideration are discarded.
The process continues until the number of elements left is 0 or 1, and after at most one
additional comparison the procedure terminates.

procedure BINARY SEARCH (S, x , k)

Step 1 : (1 . 1) i t 1
(1.2) h+n
(1.3) k+O.

Step 2: while i < h do
(2.1) m+Li(i + h)/21
(2.2) if x=s, then (i) k e r n

(ii) i + h + l
else if x < s, then h t m - 1

else i t m + 1
end if

end if
end while.

Since the number of elements under consideration is reduced by one-half at each step,
the procedure requires O(1og n) time in the worst case.

We are now ready to describe our first parallel merging algorithm for a shared-
memory computer. The algorithm is presented as procedure CREW MERGE.

procedure CREW MERGE (A , B, C)

Step 1 : {Select N - 1 elements of A that subdivide that sequence into N subsequences of
approximately the same size. Call the subsequence formed by these N - 1 elements
A'. A subsequence B' of N - 1 elements of B is chosen similarly. This step is executed
as follows:)
for i = 1 to N - 1 do in parallel

Processor Pi determines af and b! from
('.I) + ~ i ~ r / N j

b; bib/N1

end for.

Step 2: {Merge A' and B' into a sequence of triples V = {o,, o,, . . . , o,,-,}, where each triple
consists of an element of A' or B' followed by its position in A' or B' followed by the
name of its sequence of origin, that is, A or B. This is done as follows:}
(2.1) for i = 1 to N - 1 do in parallel

(i) Processor Pi uses BINARY SEARCH on B' to find the smallest j such
that a! < bi

Sec. 3.3 Merging on the CREW Model

(ii) if j exists then q+j - l+(a;, i, A)
else v i+#- l-(ai, i, A)

end if
end for

(2.2) for i = 1 to N - 1 do in parallel
(i) Processor Pi uses BINARY SEARCH on A' to find the srnallest j such

that bi <a;
(ii) if j exists then oi + j- t (b i , i, B)

else v i+N- l+-(bi, i, B)
end if

end for.

Step 3: {Each processor merges and inserts into C the elements of two subsequences, one
from A and one from B. The indices of the two elements (one in A and one in B) at
which each processor is to begin merging are first computed and stored in an array
Q of ordered pairs. This step is executed as follows:)
(3.1) Q(l)+(l, 1)
(3.2) for i =2 to N do in parallel

if v2i-2 =(a;, k, A) then processor Pi
(i) uses BINARY SEARCH on B to find the smallest j such that bj>a;,
(4 Q(i)+(kTrlNl, i)

else processor Pi

(i) uses BINARY SEARCH on A to find the smallest j such that aj>b;
(ii) Q(~)+-(I, krs1~1)

end if
end for

(3.3) for i = 1 to N do in parallel
Processor Pi uses SEQUENTIAL MERGE and Q(i) = (x, y) to merge
two subsequences one beginning at a, and the other at by and places the
result of the merge in array C beginning at position x + y - 1. The
merge continues until

(i) an element larger than or equal to the first component of oZi is
encountered in each of A and B (when i < N - 1)

(ii) no elements are left in either A or B (when i = N)
end for.

Before analyzing the running time of the algorithm, we make the following two
observations:

(i) In general instances, an element ai of A is compared to an element bj of B to
determine which is smaller; if it turns out that ai = bj , then the algorithm decides
arbitrarily that ai is smaller.

(ii) Concurrent-read operations are performed whenever procedure BINARY
SEARCH is invoked, namely, in steps 2.1, 2.2, and 3.2. Indeed, in each of these
instances several processors are executing a binary search over the same
sequence.

68 Merging Chap. 3

Analysis. A step-by-step analysis of CREW MERGE follows:

Step 1: With all processors operating in parallel, each processor computes two
subscripts. Therefore this step requires constant time.
Step 2: This step consists of two applications of procedure BINARY SEARCH
to a sequence of length N - 1, each followed by an assignment statement. This
takes O(log N) time.
Step 3: Step 3.1 consists of a constant-time assignment, and step 3.2 requires at
most O(log s) time. To analyze step 3.3, we first observe that V contains 2N - 2
elements that divide C into 2N - 1 subsequences with maximum size equal to
(rr/N1 + [SIN]) . This maximum size occurs if, for example, one element a; of A'
equals an element bi of B'; then the rr/N1 elements smaller than or equal to a;
(and larger than or equal to a:-,) are also smaller than or equal to b;, and
similarly, the rs/N1 elements smaller than or equal to b; (and larger than or
equal to b;- ,) are also smaller than or equal to a;. In step 3 each processor
creates two such subsequences of C whose total size is therefore no larger than
2(rr/N1 + rs/N1), except P,, which creates only one subsequence of C. It
follows that procedure SEQUENTIAL MERGE takes at most O((r + s)/N)
time.

In the worst case, r = s = n, and since n 2 N, the algorithm's running time
is dominated by the time required by step 3. Thus

t(2n) = O((n/N) + log n).

Since p(2n) = N , c(2n) = p(2n) x t(2n) = O(n + N log n), and the algorithm is
cost optimal when N < njog n.

Example 3.1

Assume that a CREW SM SIMD computer with N = 4 processors is available and it is
required to merge A = (2, 3,4,6, 11, 12, 13, 15. 16,20,22,24) and B = {I, 5, 7, 8,9, 10, 14,
17, 18, 19, 21, 231, that is, r = s = 12.

The two subsequences A' = {4, 12, 16) and B' = (7, 10, 18) are found in step 1 and
then merged in step 2 to obtain

In steps 3.1 and 3.2, Q(1) = (1, I), Q(2) = (5, 3), Q(3) = (6, 7), and Q(4) = (10, 9) are
determined. In step 3.3 processor PI begins at elements a, = 2 and b , = 1 and merges all
elements of A and B smaller than 7, thus creating the subsequence {I, 2, 3,4, 5,6) of C.
Similarly, processor P , begins at a, = 11 and b, = 7 and merges all elements smaller
than 12, thus creating (7, 8,9, 10, 11). Processor P , begins at a, = 12 and b, = 14 and
creates (12, 13, 14,15, 16, 17). Finally P, begins at a,, = 20 and b, = 18 and creates {18,
19,20,21, 22,23,24). The resulting sequence C is therefore { I , 2, 3, g 5, 6,2, 8 , 9 , u , 11,
12, 13, 14, 15, 16, 17,@, 19, 20, 21, 22, 23, 24). The elements of A' and B' are shown -
underlined in C.

Sec. 3.4 Merging on the EREW Model

3.4 MERGING ON THE EREW MODEL

As we saw in the previous section, concurrent-read operations are performed at
several places of procedure CREW MERGE. We now show how this procedure can
be adapted to run on an N-processor EREW SM SIMD computer that, by definition,
disallows any attempt by more than one processor to read from a memory location.
The idea of the adaptation is quite simple: All we have to do is find a way to simulate
multiple-read operations. Once such a simulation is found, it can be used by the
parallel merge algorithm (and in general by any algorithm with multiple-read
operations) to perform every read operation from the EREW memory. Of course, we
require the simulation to be efficient. Simply queuing all the requests to read from a
given memory location and serving them one after the other is surely inadequate: It
can increase the running time by a factor of N in the worst case. On the other hand,
using procedure BROADCAST of chapter 2 is inappropriate: A multiple-read
operation from a memory location may not necessarily involve all processors.
Typically, several arbitrary subsets of the set of processors attempt to gain access to
different locations, one location per subset. In chapter 1 we described a method for
performing the simulation in this general case. This is now presented more formally as
procedure MULTIPLE BROADCAST in what follows.

Assume that an algorithm designed to run on a CREW SM SIMD computer
requires a total of M locations of shared memory. In order to simulate this algorithm
on the EREW model with N processors, where N = 2q for q 2 1, we increase the size
of the memory from M to M(2N - 1). Thus, each of the M locations is thought of as
the root of a binary tree with N leaves. Such a tree has q + 1 levels and a total of
2N - 1 nodes, as shown in Fig. 3.5 for N = 16. The nodes of the tree represent
consecutive locations in memory. Thus if location D is the root, then its left and right
children are D + 1 and D + 2, respectively. In general, the left and right children of
D + x are D + 2x + 1 and D + 2x + 2, respectively.

Assume that processor Pi wishes at some point to read from some location d(i) in
memory. It places its request at location d(i) + (N - 1) + (i - l), a leaf of the tree
rooted at d(i). This is done by initializing two variables local to Pi:

1. level(i), which stores the current level of the tree reached by Pi;s request, is
initialized to 0, and

2. loc(i), which stores the current node of the tree reached by Pis request, is
initialized to (N - 1) + (i - 1). Note that Pi need only store the position in the
tree relative to d(i) that its request has reached and not the act.ual memory
location d(i) + (N - 1) + (i - 1).

The simulation consists of two stages: the ascent stage and the descent stage. During
the ascent stage, the processors proceed as follows: At each level a processor Pi
occupying a left child is first given priority to advance its request one level up the tree.

Merging Chap. 3

LEVEL

'1 P2 P3 P4 '8 1 '1 4 '1 6

Figure 3.5 Memory organization for multiple broadcasting.

It does so by marking the parent location with a special marker, say, [i]. It then
updates its level and location. In this case, a request at the right child is immobilized
for the remainder of the procedure. Otherwise (i.e., if there was no processor
occupying the left child) a processor occupying the right child can now "claim" the
parent location. This continues until at most two processors reach level (log N) - 1.
They each in turn read the value stored in the root, and the descent stage commences.
The value just read goes down the tree of memory locations until every request to read
by a processor has been honored. Procedure MULTIPLE BROADCAST follows.

procedure MULTIPLE BROADCAST (d(l), d(2), . . . , d(N))

Step 1: for i = 1 to N do in parallel
{Pi initializes level(i) and loc(i)}
(1.1) level(i)tO
(1.2) loc(i) + N + i - 2
(1.3) store [i] in location d(i) + loc(i)

end for.

Step 2: for v = 0 to (log N) - 2 do
(2.1) for i = 1 to N do in parallel

{Pi at a left child advances up its tree}
(2.1.1) x t L(loc(i) - 1)/2]
(2.1.2) if loc(i) is odd and level(i) = v

Sec. 3.4 Merging on the EREW Model

then (i) loc(i) t x
(ii) store [i] in location d(i) + loc(i)
(iii) level(i) + level(i) + 1

end if
end for

(2.2) for i = 1 to N do in parallel
{ P i at a right child advances up its tree if possible}

if d(i) + x does not already contain a marker [j] for some 1 < j < N
then (i) loc(i) t x

(ii) store [i] in location d(i) + loc(i)
(iii) level(i) + level(i) + 1

end if
end for

end for.

Step 3: for v = (log N) - 1 down to 0 do
(3.1) for i = 1 to N do in parallel

{ P i at a left child reads from its parent and then moves down the tree}
(3.1.1) x +- L(loc(i) - 1)/2J
(3.1.2) y + (2 x loc(i)) + 1
(3.1.3) if loc(i) is odd and level(i) = v

then (i) read the contents of d(i) + x
(ii) write the contents of d(i) + x in location

d(i) + loc(i)
(iii) level(i) t level(i) - 1
(iv) if location d(i) + y contains [i]

then loc(i) + y
else loc(i) t y + 1
end if

end if
end for

(3.2) for i = 1 to N do in parallel
{ P i at a right child reads from its parent and then moves down the tree}

if loc(i) is even and level(i) = v
then (i) read the contents of d(i) + x

(ii) write the contents of d(i) + x in location d(i) + loc(i)
(iii) level(i) + level(i) - 1
(iv) if location d(i) + y contains [i]

then loc(i) t y
else loc(i) t y + l
end if

end if
end for

end for.

Step 1 of the procedure consists of three constant-time operations. Each d the ascent
and descent stages in steps 2 and 3, respectively, requires O(1og N) time. The overall
running time of procedure MULTIPLE BROADCAST is therefore O(1og N) .

Merging Chap. 3

Figure 3.6 Memory contents after step 2 of procedure MULTIPLE BROADCAST.

Example 3.2

Let N = 16 and assume that at a given moment during the execution of a CREW parallel
algorithm processors PI, P,, P, , P,, P, , PI , , PI,, and PI, need to read a quantity Q
from a location D in memory. When simulating this multiple-read operation on an
EREW computer using MULTIPLE BROADCAST, the processors place their requests
at the appropriate leaves of a tree of locations rooted at D during step 1, as shown in Fig.
3.5. Figure 3.6 shows the positions of the various processors and the contents of memory
locations at the end of step 2. The contents of the memory locations at the end of step 3
are shown in Fig. 3.7.

Note that:

1. The markers [i] are chosen so that they can be easily distinguished from data
values such as Q.

2. If during a multiple-read step of the CREW algorithm being simulated, a
processor Pi does not wish to read from memory, then d(i) may be chosen
arbitrarily among the M memory locations used by the algorithm.

3. When the procedure terminates, the value of level(i) is negative and that of loc(i)
is out of bounds. These values are meaningless. This is of no consequence,
however, since level(i) and loc(i) are always initialized in step 1.

We are now ready to analyze the running time t(2n) of an adaptation of procedure
CREW MERGE for the EREW model. Since every read operation (simple or
multiple) is simulated using procedure MULTIPLE BROADCAST in O(1og N) time,
the adapted procedure is at most O(1og N) times slower than procedure CREW

Sec. 3.5 A Better Algorithm for the EREW Model

Figure 3.7 Memory contents at end of procedure MULTIPLE BROADCAST.

MERGE, that is,

t(2n) = O(1og N) x O(n/N + log n)

The algorithm has a cost of

c(2n) = O(n log n + N log2n)

which is not optimal. Furthermore, since procedure CREW MERGE uses O(n)
locations of shared memory, the storage requirements of its adaptation for the EREW
model are O(Nn). In the following section an algorithm for merging on the EREW
model is described that is cost optimal and uses only O(n) shared-memory locations.

3.5 A BETTER ALGORITHM FOR THE EREW MODEL

We saw in the previous section how a direct simulation of the CRE.W merging
algorithm on the EREW model is not cost optimal. This is due to the logarithmic
factor always introduced by procedure MULTIPLE BROADCAST. Clearly, in order
to match the performance of procedure CREW MERGE, another approach is needed.
In this section we describe an adaptive and cost-optimal parallel algorithm for
merging on the EREW SM SIMD model of computation. The algorithm merges two
sorted sequences A = (a,, a,, . . . , a,) and B = (b,, b,, . . . , b,) into a single sequence
C = {c1,c2,. . . , c,,,). It uses N processors P I , P,, . . . , P,, where 1 < N < r + s and,
in the worst case when r = s = n, runs in O((n/N) + log N log n) time. A building block
of the algorithm is a sequential procedure for finding the median of two sorted
sequences. This procedure is presented in section 3.5.1. The merging algorithm itself is
the subject of section 3.5.2.

74 Merging Chap. 3

3.5.1 Finding the Median of Two Sorted Sequences

In this section we study a variant of the selection problem visited in chapter 2. Given
two sorted sequences A = {a,, a,, . . . ,a,} and B = {b,, b,, . . . , b,), where r, s 3 1, let
A.B denote the sequence of length m = r + s resulting from merging A and B. It is
required to find the median, that is, the [m/2lth element, of A.B. Without actually
forming A.B, the algorithm we are about to describe returns a pair (a,, by) that satisfies
the following properties:

1. Either a, or by is the median of A.B, that is, either a, or by is larger than precisely
rm/21 - 1 elements and smaller than precisely Lm/2j elements.

2. If a, is the median, then by is either
(i) the largest element in B smaller than or equal to a, or

(ii) the smallest element in B larger than or equal to a,.
Alternatively, if by is the median, then a, is either
(i) the largest element in A smaller than or equal to by or
(ii) the smallest element in A larger than or equal to by.

3. If more than one pair satisfies 1 and 2, then the algorithm returns the pair for
which x + y is smallest.

We shall refer to (a,, by) as the median pair of A.B. Thus x and y are the indices of
the median pair. Note that a, is the median of A.B if either

(i) a, > by and x + y - 1 = rm/21 - 1 or
(ii) a, < by and m - (x + y - 1) = Lm/2J.

Otherwise by is the median of A.B.

Example 3.3

Let A = {2, 5, 7, 10) and B = (1, 4, 8, 9) and observe that the median of A.B is 5 and
belongs to A. There are two median pairs satisfying properties 1 and 2:

(i) (a,, b,) = (5,4), where 4 is the largest element in B smaller than or equal to 5;
(ii) (a,, b3) = (5,8), where 8 is the smallest element in B larger than or equal to 5.

The median pair is therefore (5, 4).

The algorithm, described in what follows as procedure TWO-SEQUENCE
MEDIAN, proceeds in stages. At the end of each stage, some elements are removed
from consideration from both A and B. We denote by n, and n, the number of
elements of A and B, respectively, still under consideration at the beginning of a stage
and by w the smaller of Ln,/2j and LnB/2j. Each stage is as follows: The medians a and
b of the elements still under consideration in A and in B, respectively, are compared. If
a 2 b, then the largest (smallest) w elements of A(B) are removed from consideration.
Otherwise, that is, if a < b, then the smallest (largest) w elements of A(B) are removed

Sec. 3.5 A Better Algorithm for the EREW Model 75

from consideration. This process is repeated until there is only one element left still
under consideration in one or both of the two sequences. The median pair is then
determined from a small set of candidate pairs. The procedure keeps track of the
elements still under consideration by using two pointers to each sequence: low, and
high, in A and low, and high, in B.

procedure TWO-SEQUENCE MEDIAN (A, B, x, y)

Step 1: (1.1) low, + 1
(1.2) low, + 1
(1.3) high, + r
(1.4) high, + s
(1.5) n, + r
(1.6) n, + s.

Step 2: while n, > 1 and n, > 1 do
(2.1) u t low, + [(high, - low, - 11/21
(2.2) v 6 low, + r(high, - low, - 1)/21
(2.3) w + min(CnADJ, LnB/21)
(2.4) n, + n, - w
(2.5) nB 6 n, - w
(2.6) if a, 2 b,

then (i) high, t high, - w
(ii) low, + low, + w

else (i) low, t low, + w
(ii) high,+high, - w

end if
end while.

Step 3: Return as x and y the indices of the pair from {a,- ,, a,, a,,, ,) x {b,.- ,, b,, b,, ,}
satisfying properties 1-3 of a median pair.

Note that procedure TWO-SEQUENCE MEDIAN returns the indices of the median
pair (a,, by) rather than the pair itself.

Example 3.4

Let A = (10, 11, 12, 13, 14, 15, 16, 17, 18) and B = (3, 4, 5, 6, 7, 8, 19, 20, 21, 22). The
following variables are initialized during step 1 of procedure TWO-S.EQUENCE
MEDIAN: low, = low, = 1, high, = n, = 9, and high, = n, = 10.

In the first iteration of step 2, u = v = 5, w = min(4 5) = 4, n, = 5, and n, = 6.
Since a, > b,, high, =low,= 5. In the second iteration, u= 3, v = 7, w = 1nin(2,3) = 2,
n, = 3, and n, = 4. Since a, < b,, low, = 3 and high, = 8. In the third iteration, u = 4,
v = 6, w = min(l,2) = 1, n, = 2, and n, = 3. Since a, > b,, high, = 4 and low, = 6. In
the fourth and final iteration of step 2, u = 3, v = 7, w = min(1,l) = 1, n, = 1, and
n, = 2. Since a, < b,, low, = 4 and high, = 7.

In step 3, two of the nine pairs in (11, 12, 13) x {8, 19, 20) satisfy the first two
properties of a median pair. These pairs are (a,, b,) = (13,8) and (a,, b,) = (13,19). The
procedure thus returns (4,6) as the indices of the median pair.

76 Merging Chap. 3

Analysis. Steps 1 and 3 require constant time. Each iteration of step 2
reduces the smaller of the two sequences by half. For constants c, and c, procedure
TWO-SEQUENCE MEDIAN thus requires c, + c,log(min{r,s)) time, which is
O(1og n) in the worst case.

3.5.2 Fast Merging on the EREW Model

We now make use of procedure TWO-SEQUENCE MEDIAN to construct a parallel
merging algorithm for the EREW model. The algorithm, presented in what follows as
procedure EREW MERGE, has the following properties:

1. It requires a number of processors that is sublinear in the size of the input and
adapts to the actual number of processors available on the EREW computer.

2. Its running time is small and varies inversely with the number of processors
used.

3. Its cost is optimal.

Given two sorted sequences A = {a,, a,, . . .,a,) and B = {b,, b,, . . . , b,), the
algorithm assumes the existence of N processors P,, P,, . . . , P,, where N is a power of
2 and 1 < N < r + s. It merges A and B into a sorted sequence C = {c,, c,, . . . , c,,,)
in two stages as follows:

Stage 1: Each of the two sequences A and B is partitioned into N (possibly
empty) subsequences A,, A,, . . . ,A, and B,, B,, . . . , B, such that

(i) [Ail + IBil = (r + s)/N for 1 < i 6 N and
(ii) all elements in Ai.Bi are smaller than or equal to all elements in Ai+,.Bi+

for 1 < i < N.

Stage 2: All pairs Ai and Bi, 1 ,(i < N, are merged simultaneously and placed
in C.

The first stage can be implemented efficiently with the help of procedure TWO-
SEQUENCE MEDIAN. Stage 2 is carried out using procedure SEQUENTIAL
MERGE. In the following procedure A[i,j] is used to denote the subsequence
{ai, a,, ,, . . . , aj) of A if i < j; otherwise A[i, j] is empty. We define B[i, j] similarly.

procedure EREW MERGE (A, B, C)

Step 1: (1.1) Processor PI obtains the quadruple (1, r, 1, s)
(1.2) for j = 1 to log N do

for i = 1 to 2'-' do in parallel
Processor Pi having received the quadruple (e, f, g, h)
(1.2.1) {Finds the median pair of two sequences)

TWO -SEQUENCE MEDIAN (A [e , f], B[g, h] , x, y)

Sec. 3.5 A Better Algorithm for the EREW Model 77

(1.2.2) {Computes four pointers p,, p,, q , , and q , as follows:}
if a, is the median
then (i) p, t x

(ii) q l +- x + 1
(iii) if by < a, then (a) p, t y

(b) 92 +- Y + 1
else (a) p, + y - 1

(b) 9 , + Y
end if

else (4 P, Y
(ii) q , + y + 1

(iii) if a, < by then (a) p, + x
(b) 91 c x + 1

else(a) p , t x - 1
(b) 9 1 + x

end if
end if
(1.2.3) Communicates the quadruple (e, p,, g, p,) to P,, -
(1.2.4) Communicates the quadruple (q , , f, q,, h) to P2,i

end for
end for.

Step 2: for i = 1 to N do in parallel
Processor Pi having received the quadruple (a, b, c, d)

(2.1) w + 1 + ((i - 1Xr + s))/N
(2.2) z + min{i(r + s)/N, (r + s)}
(2.3) SEQUENTIAL MERGE (A[a, b], B[c, dl, CCw, z])

end for.

It should be clear that at any time during the execution of the procedure the
subsequences on which processors are working are all disjoint. Hence, no concurrent-
read operation is ever needed.

Example 3.5

Let A = (10, 11, 12, 13,14, 15, 16, 17, 181, B = {3,4,5,6,7, 8, 19,20,21,22)., and N = 4.
In step 1.1 processor PI receives (1, 9, 1, 10). During the first iteration of step 1.2

processor P I determines the indices of the median pair of A and B, namely, (4,6). It keeps
(1,4,1,6) and communicates (5,9,7,10) to P,. During the second iteration, PI computes
the indices of the median pair of A[1,4] = {10,1l, 12,131 and B[1,6] = {3,4,5,6,7,8},
namely, 1 and 5. Simultaneously, P, does the same with A[5,9] = {14,15,16,17, 18) and
B[7,10] = {19,20,21,22) and obtains 9 and 7. Processor P I keeps (1,0,1,5) and
communicates (1,4,6,6) to P,. Similarly, P, communicates (5,9,7,6) to P, and
(10,9,7,10) to P,.

In step 2, processors P, to P, simultaneously create C[1,19] as follows. Having
last received (1,0,1,5), PI computes w = 1 and z = 5 and copies B[1,5] = {3,4,5,6,7}
into C[1,5]. Similarly, P,, having last received (1,4,6,6), computes w = 6 and z = 10 and
merges A[1, 41 and B[6, 63 to obtain C[6, 101 = (8, 10, 11, 12, 13). Processor P3,
having last received (5, 9, 7, 6), computes w = 11 and z = 15 and copies

Merging Chap. 3

A[5,9] = {14,15,16,17,18) into C[11,15]. Finally P,, having last received (10,9,7, lo),
computes w = 16 and z = 19 and copies B[7,10] = {19,20,21,22) into C[16,19].

Analysis. I n order t o analyze the time requirements of procedure EREW
MERGE, note that in step 1.1 processor PI reads from memory in constant time.
During the j th iteration of step 1.2, each processor involved has to find the indices of
the median pair of (r + s)/2j-' elements. This is done using procedure TWO-
SEQUENCE MEDIAN in O(log[(r + s)/2j-']) time, which is O(log(r + S)). The two
other operations in step 1.2 take constant time as they involve communications
among processors through the shared memory. Since there are log N iterations of step
1.2, step 1 is completed in O(1og N x log(r + s)) time.

In step 2 each processor merges a t most (r + s)/N elements. This is done using
procedure SEQUENTIAL MERGE in O((r + s)/N) time. Together, steps 1 and 2 take
O((r + s)/N + log N x log(r + s)) time. In the worst case, when r = s = n, the time
required by procedure EREW MERGE can be expressed as

yielding a cost of c(2n) = O(n + N log2n). In view of the R(n) lower bound on the
number of operations required to merge, this cost is optimal when N < nllog2n.

3.6 P R O B L E M S

3.1 The odd-even merging network described in section 3.2 is just one example from a wide
class of merging networks. Show that, in general, any (r,s)-merging network built of
comparators must require n(log(r + s)) time in order to completely merge two sorted
sequences of length r and s, respectively.

3.2 Show that, in general, any (r, s)-merging network must require R(s log r) comparators
when r < s.

3.3 Use the results in problems 3.1 and 3.2 to draw conclusions about the running time and
number of comparators needed by the (n, n) odd-even merging network of section 3.2.

3.4 The odd-even merging network described in section 3.2 requires the two input sequences
to be of equal length n. Modify that network so it becomes an (r,s)-merging network,
where r is not necessarily equal to s.

3.5 The sequence of comparisons in the odd-even merging network can be viewed as a
parallel algorithm. Describe an implementation of that algorithm on an SIMD computer
where the processors are connected to form a linear array. The two input sequences to be
merged initially occupy processors P, to P, and P,,, to P,, respectively. When the
algorithm terminates, Pi should contain the ith smallest element of the output sequence.

3.6 Repeat problem 3.5 for an m x m mesh-connected SIMD computer. Here the two
sequences to be merged are initially horizontally adjacent, that is, one sequence occupies
the upper part of the mesh and the second the lower part, as shown in Fig. 3.8(a). The
output should be returned, as in Fig. 3.8(b), that is, in row-major order: The ith element
resides in row j and column k, where i = jm + k + 1. Note that for simplicity, only the
processors and their contents are shown in the figure, whereas the communications links
have been omitted.

Sec. 3.6 Problems 79

SEQUENCE 1 r
SEQUENCE 2 r

F i p e 3.8 Merging two horizontal sequences on mesh-connected SIMD computer.

3.7 Repeat problem 3.6 for the case where the two input sequences are initially vertically
adjacent, that is, one sequence occupies the left part of the mesh and the second the right
part, as shown in Fig. 3.9. The result of the merge should appear as in Fig. 3.8(b).

3.8 A sequence {a,, a,, . . . ,a,,} is said to be bitonic if either
(i) there is an integer 1 < j < 2n such that

(ii) the sequence does not initially satisfy condition (i) but can be shifted cyclically until
condition (i) is satisfied.
For example, {2,5,8,7,6,4,3,1} is a bitonic sequence as it satisfies condition (i). Similarly,
the sequence (2, 1, 3, 5, 6, 7, 8,4}, which does not satisfy condition (i), is also bitonic as it
can be shifted cyclically to obtain (1, 3, 5, 6, 7, 8, 4, 2). Let {a,,a,,. . . ,a,,} be a bitonic
sequence and let d, = min{a,,a,+,} and ei = max{ai, a,,,} for 1 < i < n. Show that
(a) {dl, d,, . . . , d,) and {el, e,, . . .,en) are each bitonic and
(b) max{dl, d,, . . . , d,} < min{e,, e,,. . . ,en}.

3.9 Two sequences A = {a,, a,,. . .,a,} and B = (a,,,, a,,,, . ..,a,,} are given that when
concatenated form a bitonic sequence {a,, a,, . . . , a,,}. Use the two properties of bitonic
sequences derived in problem 3.8 to design an (n, n)-merging network for merging A and B.

Figure 3.9 Merging two vertical se-
quences on mesh-connected SIMD

SEQUENCE 1 SEQUENCE 2 Computer.

Merging Chap. 3

Analyze the running time and number of comparators required. How does your network
compare with odd-even merging in those respects?

3.10 Is it necessary for the bitonic merging network in problem 3.9 that the two input sequences
be of equal length?

3.11 The sequence of comparisons in the bitonic merging network can be viewed as a parallel
algorithm. Repeat problem 3.5 for this algorithm.

3.12 Repeat problem 3.6 for the bitonic merging algorithm.
3.13 Repeat problem 3.7 for the bitonic merging algorithm.
3.14 Design an algorithm for merging on a tree-connected SIMD computer. The two input

sequences to be merged, of length r and s, respectively, are initially distributed among the
leaves of the tree. Consider the two following situations:
(i) The tree has at least r + s leaves; initially leaves 1,. . . , r store the first sequence and

leaves r + I , . . . , r + s store the second sequence, one element per leaf.
(ii) The tree has fewer than r + s leaves; initially, each leaf stores a subsequence of the

input.
Analyze the running time and cost of your algorithm.

3.15 The running time analysis in problem 3.14 probably indicates that merging on the tree is
no faster than procedure SEQUENTIAL MERGE. Show how merging on the tree can be
more appealing than sequential merging when several pairs of sequences are queued for
merging.

3.16 Consider the following variant of a tree-connected SIMD computer. In addition to the
edges of the tree, two-way links connect processors at the same level (into a linear array),
as shown in Fig. 3.10 for a four-leaf tree computer. Assume that such a parallel computer,
known as a pyramid, has n processors at the base storing two sorted sequences of total
length n, one element per processor. Show that R(n/log n) is a lower bound on the time
required for merging on the pyramid.

3.17 Develop a parallel algorithm for merging two sequences of total length n on a pyramid
with n base processors. Analyze the running time of your algorithm.

APEX

BASE

Figure 3.10 Processor pyramid.

Sec. 3.6 Problems 81

3:18 Procedure CREW MERGE assumes that N, the number of processors available to merge
two sequences of length r and s, respectively, is smaller than or equal to r when r < s.
Modify the procedure so it can handle the case when r < N < s.

3.19 Modify procedure CREW MERGE to use N > s 3 r processors. Analyze the running
time and cost of the modified procedure.

3.20 Show that procedure CREW MERGE can be simulated on an EREW computer in
O((n/N) + log2n) time if a way can be found to distinguish between simple reat1 operations
(each processor needs to gain access to a different memory location) and multiple-read
operations.

3.21 Establish the correctness of procedure TWO-SEQUENCE MEDIAN.
3.22 Modify procedure TWO-SEQUENCE MEDIAN so that given two sequences A and B of

length r and s, respectively, and an integer 1 < k < r + s, it returns the kth smallest
element of A.B. Show that the running time of the new procedure is the same as that of
procedure TWO-SEQUENCE MEDIAN.

3.23 Establish the correctness of procedure EREW MERGE.
3.24 Procedure EREW MERGE assumes that N, the number of processors available, is a

power of 2. Can you modify the procedure for the case where N is not a power of 2?
3.25 Can the range of cost optimality of procedure EREW MERGE, namely, N <I n/log2n, be

expanded to, say, N < n/log n?
3.26 Can procedure EREW MERGE be modified (or a totally new algorithm for the EREW

model be developed) to match the O((n/N) + logn) running time of procedure CREW
MERGE?

3.27 Using the results in problems 1.6 and 1.10, show that an algorithm for an N-processor
EREW SM SIMD computer requiring O(N) locations of shared memory and time T can
be simulated on a cube-connected network with the same number of processors in time
T x O(log2~).

3.28 Analyze the memory requirements of procedure EREW MERGE. Then, assuming that
N = r + s, use the result in problem 3.27 to determine whether the procedure can be
simulated on a cube with N processors in O(log4N) time.

3.29 Assume that r + s processors are available for merging two sequences A and B of length r
and s, respectively, into a sequence C. Now consider the following simpler variant of
procedure CREW MERGE.

for i = 1 t o r + s do in parallel
P,finds the i th smallest element of A.B (using the procedure in problem 3.22) and places it
in the i th position of C

end for.

Analyze the running time and cost of this procedure.
330 Adapt the procedure in problem 3.29 for the case where N processors are available, where

N < r + s. Compare the running time and cost of the resulting procedure to those of
procedure CREW MERGE.

3.31 Develop a parallel merging algorithm for the CRCW model.
3.32 Show how each of the parallel merging algorithms studied in this chapter can lead to a

parallel sorting algorithm.

82 Merging Chap. 3

3.33 Modify procedure MULTIPLE BROADCAST to obtain a formal statement of procedure
MULTIPLE STORE described in section 1.2.3.1. Provide a different version of your
procedure for each of the write conflict resolution policies mentioned in chapter 1.

3.7 B lBL lOGRAPHlCAL R E M A R K S

Merging networks are discussed in [Akl 11, [Batcher], [Hong], [Knuth], [Per]], [Tseng], and
[Yao]. The odd-even and bitonic merging networks were first proposed in [Batcher]. These
two networks are shown to be asymptotically the best possible merging networks with respect
to their running time (in [Hong]) and number of comparators needed (in [Yao]). Various
implementations of the odd-even and bitonic merging algorithms on one- and two-dimensional
arrays of processors are described in [Kumar], [Nassimi], and [Thompson].

Procedure CREW MERGE is based on ideas presented in [Shiloach]. A second parallel
merging procedure for the CREW model when N 2 s 2 r is described in [Shiloach] whose
running time is O((logr)/log(N/s)). Ideas similar to those in [Shiloach] are presented in
[Barlow]. These results are improved in [Borodin] and [Kruskal]. It is shown in [Borodin]
how r + s processors can merge two sequences of length r and s, respectively, where r 6 s in
O(log log r) time. An adaptive algorithm is described in [Kruskal] that uses N < r + s
procissdrs and runs in time O((r + s)/N + log[(r + s)/N] + log log N). When r = s = n and
N = n/log log n, this last algorithm runs in O(log log n) time and is therefore cost optimal.

The concept of multiple broadcasting is attributed to [Eckstein]. Let A be an algorithm
designed to run in time t and spaces on an N-processor CREW SM SIMD computer. As shown
in section 3.4, procedure MULTIPLE BROADCAST allows A to be simulated on an N-
processor EREW SM SIMD computer in time O(t x log N) and space O(s x p). In [Vishkin]
ind [Wah] variants of this procedure are given that perform the simulation using only O(s + p)
space. Procedures TWO-SEQUENCE MEDIAN and EREW MERGE first appeared in
[Akl 21. Algorithms for merging on a tree and a pyramid are given in [Akl 11 and [Stout],
respectively.

Three parallel merging algorithms are described in [Valiant] to run on the comparison
model of computation where only comparisons among input elements are counted in analyzing
the running time of an algorithm. The first merges two lists of length rand s, respectively, where
r < s, using (r ~) ' ' ~ processors in O(log1ogr) time. The second uses ~ (r s) ' ' ~ processors, where
c >, 2, and runs in O(log log r - log log c) time. The third uses N processors, where N < r, and
runs in O((r + s)/N + log[(rslog N)/N]). A fourth algorithm for the comparison model is
described in [Gavril] that uses N 6 r processors and runs in O(log r + r/N + (r/N)log s/r) time.
An R(log log n) lower bound on the time required to merge two sequences of length n each on
the comparison model is derived in [Borodin]. Essentially the same lower bound is obtained in
[Haggkvist]. It is interesting to note that this lower bound is matched by the CREW algorithm
in [Kruskal] mentioned earlier where all operations (not just comparisons) are counted.

3.8 REFERENCES

[AKL 11
Akl, S. G., Parallel Sorting Algorithms, Academic, Orlando, FI., 1985.

[AKL 21
Akl, S. G., and Santoro, N., Optimal parallel merging and sorting without memory conflicts,
IEEE Transactions on Computers, Vol. C-36, No. 11, November 1987, pp. 1367-1369.

Sec. 3.8 References 83

[BARLOW]
Barlow, R. H., Evans, D. J., and Shanehchi, J., A parallel merging algorithm, Information
Processing Letters, Vol. 13, No. 3, December 1981, pp. 103-106.

[BATCHER]
Batcher, K. E., Sorting networks and their applications, Proceedings of the AFIPS 1968
Spring Joint Computer Conference, Atlantic City, New Jersey, April 30-May 2, 1968, pp.
307-314, AFIPS Press, Montvale, N.J., 1968.

[BORODIN]
Borodin, A., and Hopcroft, J. E., Routing, merging and sorting on parallel models of
computation, Journal of Computer and System Sciences, Vol. 30, 1985, pp. 1301-145.

[ECKSTE~N]
Eckstein, D. M., Simultaneous memory accesses, Technical Report # 79-6, Department of
Computer Science, Iowa State University, Ames, Iowa, August 1979.

[GAVRIL]
Gavril, F., Merging with parallel processors, Communications of the ACM, Vol. 18, No. 10,
October 1975, pp. 588-591.

[HAGGKVIST]
Haggkvist, R., and Hell, P., Sorting and merging in rounds, SIAM Journal on Algebraic and
Discrete Methods, Vol. 3, No. 4, December 1982, pp. 465-473.

[HONG]
Hong, Z., and Sedgewick, R., Notes on merging networks, Proceedings of the 14th Annual
ACM Symposium on Theory of Computing, San Francisco, California, May 1'982, pp. 296-
302, Association for Computing Machinery, New York, N.Y., 1982.

[KNUTH]
Knuth, D. E., The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-
Wesley, Reading, Mass., 1973.

[KRUSKAL]
Kruskal, C. P., Searching, merging, and sorting in parallel computation, IEEE Transactions
on Computers, Vol. C-32, No. 10, October 1983, pp. 942-946.

[K UMAR]
Kumar, M., and Hirschberg, D. S., An efficient implementation of Batcher's odd-even merge
algorithm and its application in parallel sorting schemes, IEEE Transactions on Computers,
Vol. C-32, No. 3, March 1983, pp. 254-264.

[NASSIMI]
Nassimi, D., and Sahni, S., Bitonic sort on a mesh-connected parallel computer, IEEE
Transactions on Computers, Vol. C-28, No. 1, January 1979, pp. 2-7.

[PERL]
Perl, Y., The bitonic and odd-even networks are more than merging, Technical Report DCS-
TR-123, Department of Computer Science, Rutgers University, New Brunswick, N.J.,
February 1983.

[SHILOACH]
Shiloach, Y., and Vishkin, U., Finding the maximum, merging, and sorting in a parallel
computation model, Journal of Algorithms, Vol. 2, 1981, pp. 88-102.

[STOUT]
Stout, Q. F., Sorting, merging, selecting and filtering on tree and pyramid machines,
Proceedings of the 1983 International Conference on Parallel Processing, Bellaire, Michigan,
August 1983, pp. 214-221, IEEE Computer Society, Washington, D.C., 1983.

84 Merging Chap. 3

[THOMPSON]
Thompson, C. D., and Kung, H. T., Sorting on a mesh-connected parallel computer,
Communications of the ACM, Vol. 20, No. 4, April 1977, pp. 263-271.

[TSENG]
Tseng, S. S., and Lee, R. C. T., A new parallel sorting algorithm based upon min-mid-max
operations, BIT Vol. 24, 1984, pp. 187-195.

[V ALIANT]
Valiant, L. G., Parallelism in comparison problems, SlAM Journal of Computing, Vol. 4, No.
3, September 1975, pp. 348-355.

[VISHKIN]
Vishkin, U., Implementation of simultaneous memory address access in models that forbid it,
Journal of Algorithms, Vol. 4, 1983, pp. 45-50.

CWAHI
Wah, W., and Akl, S. G., Simulating multiple memory accesses in logarithmic time and linear
space, Technical Report No. 87-196, Department of Computing and Information Science,
Queen's University, Kingston, Ontario, July 1987.

CYA0l
Yao, A. C.-C., and Yao, F. F., Lower bounds on merging networks, Journal of the ACM, Vol.
23, No. 3, July 1976, pp. 566-571.

Sorting

4.1 INTRODUCTION

In the previous two chapters we described parallel algorithms for two comparison
problems: selection and merging. We now turn our attention to a third such problem:
sorting. Among all computational tasks studied by computer scientists over the past
forty years, sorting appears to have received the most attention. Entire books have
been devoted to the subject. And although the problem and its many solutions seem to
be quite well understood, hardly a month goes by without a new article appearing in a
technical journal that describes yet another facet of sorting. There are two reasons for
this interest. The problem is important to practitioners, as sorting data is at the heart
of many computations. It also has a rich theory: The design and analysis of' algorithms
is an important area of computer science today thanks mainly to the early work on
sorting.

The problem is defined as follows. We are given a sequence S = (s,, s,, . . . , s,) of
n items on which a linear order < is defined. The elements of S are initially in random
order. The purpose of sorting is to arrange the elements of S into a new sequence
S' = is;, s;, . . . , sb) such that s: < s:,, for i = 1,2,. . . , n - 1. We saw in chapter 1
(example 1.10) that any algorithm for sorting must require fl(n log n) operations in the
worst case. As we did in the previous two chapters, we shall assume henceforth,
without loss of generality, that the elements of S are numbers (of arbitrary size) to be
arranged in nondecreasing order.

Numerous algorithms exist for sorting on a sequential computational model.
One such algorithm is given in what follows as the recursive procedure
QUICKSORT. The notation a o b means that the variables a and b exchange their
values.

procedure QUICKSORT (S)

if IS1 = 2 and s, < s,
then s, ++ s2
else if IS1 > 2 then

(1) {Determine rn, the median element of S)
SEQUENTIAL SELECT (s, rls1121)

Sorting Chap. 4

(2) {Split S into two subsequences S , and S,}
(2.1) S , + {s,: s, G m} and IS,[= rlS1/21
(2.2) S , + {si: si 2 m} and IS,I = LIS1/2J

(3) Q U I C K S O R T (S ,)
(4) Q U I C K S O R T (S ,)

end if
end if.

At each level of the recursion, procedure QUICKSORT finds the median of a
sequence S and then splits S into two subsequences S, and S, of elements smaller than
or equal to and larger than or equal to the median, respectively. The algorithm is now
applied recursively to each of S, and S,. This continues until S consists of either one
or two elements, in which case recursion is no longer needed. We also insist that
(S,I = rlS1/21 and IS,I = LlS1/2_(to ensure that the recursive calls to procedure
QUICKSORT are on sequences smaller than S so that the procedure is guaranteed to
terminate when all elements of S are equal. This is done by placing all elements of S
smaller than m in S,; if IS, I < rJS1/21, then elements equal to m are added to S, until
IS,I = rlS1/21. From chapter 2 we know that procedure SEQUENTIAL SELECT
runs in time linear in the size of the input. Similarly, creating S, and S, requires one
pass through S, which is also linear.

For some constant c, we can express the running time of procedure
QUICKSORT as

= O(n log n),

which is optimal.

Example 4.1

Let S = (6, 5 , 9 , 2 , 4 , 3 , 5, 1, 7,5, 8) . The first call to procedure Q U I C K S O R T produces 5
as the median element of S , and hence S , = { 2 , 4 , 3 , 1 , 5 , 5) and S , = { 6 , 9 , 7 , 8 , 5) . Note
that S , = = 6 and S , = L ~ J = 5. A recursive call to Q U I C K S O R T with S , as input
produces the two subsequences { 2 , 1 , 3 } and { 4 , 5 , 5 } . The second call with S, as input
produces {6,5,7} and { 9 , 8 } . Further recursive calls complete the sorting of these
sequences.

Because of the importance of sorting, it was natural for researchers to also
develop several algorithms for sorting on parallel computers. In this chapter we study
a number of such algorithms for various computational models. Note that, in view of
the R(n log n) operations required in the worst case to sort sequentially, no parallel
sorting algorithm can have a cost inferior to O(n log n). When its cost is O(n log n), a
parallel sorting algorithm is of course cost optimal. Similarly, a lower bound on the
time required to sort using N processors operating in parallel is R((n log n) /N) for
N < n log n.

We begin in section 4.2 by describing a special-purpose parallel architecture for
sorting. The architecture is a sorting network based on the odd-even merging

Sec. 4.2 A Network for Sorting 87

algorithm studied in chapter 3. In section 4.3 a parallel sorting algorithm is presented
for an SIMD computer where the processors are connected to form a linear array.
Sections 4.4-4.6 are devoted to the shared-memory SIMD model.

4.2 A NETWORK FOR SORTING

Recall how an (r, s)-merging network was constructed in section 3.2 for merging two
sorted sequences. It is rather straightforward to use a collection of merging networks
to build a sorting network for the sequence S = {s,, s,, . . . , s,), where n is a power of 2.
The idea is the following. In a first stage, a rank of n/2 comparators is used to create
n/2 sorted sequences each of length 2. In a second stage, pairs of these are now merged
into sorted sequences of length 4 using a rank of (2,2)-merging networks. Again, in a
third stage, pairs of sequences of length 4 are merged using (4,4)-merging networks
into sequences of length 8. The process continues until two sequences of length n/2
each are merged by an (42, n/2)-merging network to produce a single sorted sequence
of length n. The resulting architecture is known as an odd-even sorting network and is
illustrated in Fig. 4.1 for S = {8,4,7,2, 1,5,6,3). Note that, as in the case of merging,
the odd-even sorting network is oblivious of its input.

Analysis. As we did for the merging network, we shall analyze the running
time, number of comparators, and cost of the odd-even sorting network. Since the size
of the merged sequences doubles after every stage, there are log n stages in all.

(i) Running Time. Denote by 42') the time required in the ith stage to merge
two sorted sequences of 2'-' elements each. From section 3.2 we have the recurrence

s(2) = 1 for i = 1,

~(2') = s(2' - ') + 1 for i > 1,

whose solution is s(2') = i. Therefore, the time required by an odd-even sorting
network to sort a sequence of length n is

logn

t(n) = C s(2') = O(log2n).
i = 1

Note that this is significantly faster than the (optimal) sequential running time of
O(n log n) achieved by procedure QUICKSORT.

(ii) Number of Processors. Denote by q(2') the number of comparators
required in the ith stage to merge two sorted sequences of 2'-' elements each. From
section 3.2 we have the recurrence

q(2) = 1 for i = 1,

q(2i)= 2q(2i-1)+ 2'-I - 1 for i > 1,

whose solution is g(2') = (i - 1)2'-l + 1. Therefore, the number of comparators

Sec. 4.3 Sorting on a Linear Array

needed by an odd-even sorting network to sort a sequence of length n is

logn

p(n) = C 2 (low) - iq(2i)
i = 1

(iii) Cost. Since t(n) = O(log2n) and p(n) = O(n log2n), the total number of
comparisons performed by an odd-even sorting network, that is, the network's cost, is

Our sorting network is therefore not cost optimal as it performs more operations than
the O(n log n) sufficient to sort sequentially.

Since the odd-even sorting network is based on the odd-even merging one, the
remarks made in section 3.2 apply here as well. In particular:

(i) The network is extremely fast. It can sort a sequence of length 220 within, on the
order of, (20)2 time units. This is to be contrasted with the time required by
procedure QUICKSORT, which would be in excess of 20 million time units.

(ii) The number of comparators is too high. Again for n = 220, the network would
need on the order of 400 million comparators.

(iii) The architecture is highly irregular and the wires linking the comparators have
lengths that vary with n.

We therefore reach the same conclusion as for the merging network of section 3.2: The
odd-even sorting network is impractical for large input sequences.

4.3 SORTING O N A LINEAR ARRAY

In this section we describe a parallel sorting algorithm for an SIMD computer where
the processors are connected to form a linear array as depicted in Fig. 1.6. The
algorithm uses n processors P,, P,, . . . , Pn to sort the sequences S = {s,, s2, . . . , s,). At
any time during the execution of the algorithm, processor Pi holds one element of the
input sequence; we denote this element by xi for all 1 < i f n. Initially xi = si. It is
required that, upon termination, xi be the ith element of the sorted sequence. The
algorithm consists of two steps that are performed repeatedly. In the first step, all odd-
numbered processors Pi obtain xi+, from Pi + ,. If xi > xi+ ,, then P,, and Pi+ ,
exchange the elements they held at the beginning of this step. In the second step, all
even-numbered processors perform the same operations as did the odd-numbered
ones in the first step. After rn/21 repetitions of these two steps in this order, no further
exchanges of elements can take place. Hence the algorithm terminates with xi < xi+

90 Sorting Chap. 4

for all 1 < i < n - 1. The algorithm is given in what follows as procedure ODD-
EVEN TRANSPOSITION.

procedure ODD-EVEN TRANSPOSITION (S)
for j = 1 to [n/21 do

(1) for i = 1, 3, . . . ,2Ln/2_1 - 1 do in parallel
if xi > x i + ,
then x i - x i + ,
end if

end for
(2) for i = 2,4,. . . ,2L(n - 11/21 do in parallel

if x i > x i + ,
then x i - x i + ,
end if

end for
end for.

Example 4.2

Let S = (6, 5,9,2,4, 3, 5, 1, 7, 5,8). The contents of the linear array for this input during
the execution of procedure ODD-EVEN TRANSPOSITION are illustrated in Fig. 4.2.
Note that although a sorted sequence is produced after four iterations of steps 1 and 2,
two more (redundant) iterations are performed, that is, a total of ryl as required by the
procedure's statement. /J

Analysis. Each of steps 1 and 2 consists of one comparison and two routing
operations and hence requires constant time. These two steps are executed rn/21
times. The running time of procedure ODD-EVEN TRANSPOSITION is therefore
t(n) = O(n). Since p(n) = n, the procedure's cost is given by c(n) = p(n) x t(n) = O(n2),
which is not optimal.

From this analysis, procedure ODD-EVEN TRANSPOSITION does not
appear to be too attractive. Indeed,

(i) with respect to procedure QUICKSORT, it achieves a speedup of O(1og n) only,
(ii) it uses a number of processors equal to the size of the input, which is

unreasonable, and
(iii) it is not cost optimal.

The only redeeming feature of procedure ODD-EVEN TRANSPOSITION
seems to be its extreme simplicity. We are therefore tempted to salvage its basic idea in
order to obtain a new algorithm with optimal cost. There are two obvious ways for
doing this: either (1) reduce the running time or (2) reduce the number of processors
used. The first approach is hopeless: The running time of procedure ODD-EVEN
TRANSPOSITION is the smallest possible achievable on a linear array with n
processors. To see this, assume that the largest element in S is initially in P , and must
therefore move n - 1 steps across the linear array before settling in its final position in
P,. This requires O(n) time.

Sec. 4.3 Sorting on a Linear Array 91

'1 '2 '6 '7 '8 '9 '10 '11

INITIALLY y m
AFTER STEP

(1)

Figure 4.2 Sorting sequence of eleven elements using procedure ODD-EVEN
TRANSPOSITION.

Now consider the second approach. If N processors, where N < n, are available,
then they can simulate the algorithm in n x t (n) /N time. The cost remains n x t(n),
which as we know is not optimal. A more subtle simulation, however, allows us to
achieve cost optimality. Assume that each of the N processors in the linear array holds
a subsequence of S of length n /N . (It may be necessary to add some dummy elements
to S if n is not a multiple of N.) In the new algorithm, the comparison-exchange

92 Sorting Chap. 4

operations of procedure ODD-EVEN TRANSPOSITION are now replaced with
merge-split operations on subsequences. Let Si denote the subsequence held by
processor Pi. Initially, the Si are random subsequences of S. In step 1, each Pi sorts Si
using procedure QUICKSORT. In step 2.1 each odd-numbered processor Pi merges
the two subsequences Si and Si+ , into a sorted sequence S,! = {s ; , s;, . . . , It
retains the first half of S! and assigns to its neighbor P i + , the second half. Step 2.2 is
identical to 2.1 except that it is performed by all even-numbered processors. Steps 2.1
and 2.2 are repeated alternately. After rN/21 iterations no further exchange of
elements can take place between two processors. The algorithm is given in what
follows as procedure MERGE SPLIT. When it terminates, the sequence S = S , ,
S,, . . . , S N is sorted.

procedure MERGE SPLIT (S)

Step 1: for i = 1 to N do in parallel
QUICKSORT (S i)

end for.

Step 2: for j = 1 to rN/21 do
(2.1) for i = 1, 3,. . . ,2LN/2J - 1 do in parallel

(i) SEQUENTIAL MERGE (Si , Si+ St!)
(ii) Si + {s;, s; , . . . ,

(iii) Si + i +- { s & / N) + 1, s(.,N) + 2 , . . . r s; . ,N)

end for
(2.2) for i = 2, 4,. . . ,2L(N - 1)/2] do in parallel

(i) SEQUENTIAL MERGE (Si , Si+ ,, Sl)
(ii) Si + {s;, s; , . . . , s:,,)
(iii) Si + 1 {s ; , , /N) + 1, ~ l . 1 ~) + 2 . . . , s; " ,N)

end for
end for.

Example 4.3

Let S = {8, 2, 5, 10, 1, 7, 3, 12, 6, 1 1 , 4, 9) and N = 4. The contents of the various
processors during the execution of procedure MERGE SPLIT for this input is illustrated
in Fig. 4.3.

Analysis. Step 1 requires O((n/N)log(n/N)) steps. Transferring S i + l to Pi,
merging by SEQUENTIAL MERGE, and returning S i + , to P i + , all require O(n/N)
time. The total running time of procedure MERGE SPLIT is therefore

= O((n log n) /N) + O(n),

and its cost is

c(n) = O(n log n) + O(nN),

which is optimal when N < log n.

Sec. 4.4 Sorting on the CRCW Model 93

Figure 4.3 Sorting sequence of twelve elements using procedure MERGE SPILIT.

{11,4,9)

AFTER STEP

4.4 SORTING ON THE CRCW MODEL

INITIALLY

It is time to turn our attention to the shared-memory SIMD model. In the present and
the next two sections we describe parallel algorithms for sorting on the various
incarnations of this model. We begin with the most powerful submodel, the CRCW
SM SIMD computer. We then proceed to the weaker CREW model (section 4.9, and
finally we study algorithms for the weakest shared-memory computer, namely, the
EREW model (section 4.6).

Whenever an algorithm is to be designed for the CRCW model of computation,
one must specify how write conflicts, that is, multiple attempts to write into the same
memory location, can be resolved. For the purposes of the sorting algorithm to be
described, we shall assume that write conflicts are created whenever several processors

1

{8,2,5) (1017)

-

{3,12,6) - -

I2, 5, 81

-

(3, 6, 121 {I. 7, 10)
-

{4, 9, 1 1 1 I

94 Sorting Chap. 4

attempt to write potentially different integers into the same address. The conflict is
resolved by storing the sum of these integers in that address.

Assume that n2 processors are available on such a CRCW computer to sort the
sequence S = { s , , s2, . . . , s,). The sorting algorithm to be used is based on the idea of
sorting by enumeration: The position of each element si of S in the sorted sequence is
determined by computing c i , the number of elements smaller than it. If two elements si
and sj are equal, then si is taken to be the larger of the two if i > j; otherwise s j is the
larger. Once all the ci have been computed, si is placed in position 1 + ci of the sorted
sequence. To help visualize the algorithm, we assume that the processors are arranged
into n rows of n elements each and are numbered as shown in Fig. 4.4. The shared
memory contains two arrays: The input sequence is stored in array S, while the counts
c i are stored in array C. The sorted sequence is returned in array S. The ith row of
processors is "in charge" of element s i : Processors P(i, I), P(i, 2), . . . , P(i, n) compute ci
and store si in position 1 + ci of S. The algorithm is given as procedure CRCW SORT:

procedure CRCW SORT (S)

Step 1: .for i = 1 to n do in parallel
for j = 1 to n do in parallel

if (si > sj) or (si = sj and i > j)
then P(i, j) writes 1 in ci
else P(i, j) writes 0 in ci
end if

end for ---
end for.

Step 2: for i = 1 to n do in parallel
P(i, 1) stores si in position 1 + ci of S

end for.
Example 4.4

Let S = {5,2,4, 5). The two elements of S that each of the 16 processors compares and
the contents of arrays S and C after each step of procedure CRCW SORT are shown in
Fig. 4.5.

Analysis. Each of steps 1 and 2 consists of an operation requiring constant
time. Therefore t(n) = O(1). Since p(n) = n2, the cost of procedure CRCW SORT is

which is not optimal.
We have managed to sort in constant time on an extremely powerful model that

1. allows concurrent-read operations; that is, each input element si is read
simultaneously by all processors in row i and all processors in column i;

2. allows concurrent-write operations; that is,
(i) all processors in a given row are allowed to write simultaneously into the

same memory location and

Sec. 4.4 Sorting on the CRCW Model 95

S
SHARED

MEMORY

C

Figure 4.4 Processor and memory organization for sorting on CRCW SM SIMD model.

(ii) the write conflict resolution process is itself very powerful-all numbers to
be stored in a memory location are added and stored in constant time;

and
3. uses a very large number of processors; that is, the number of processors grows

quadratically with the size of the input.

For these reasons, particularly the last one, the algorithm is most likely to be of no
great practical value. Nevertheless, procedure CRCW SORT is interesting in its own
right: It demonstrates how sorting can be accomplished in constant time on a model
that is not only acceptable theoretically, but has also been proposed for a number of
contemplated and existing parallel computers.

96 Sorting Chap. 4

INITIALLY

(dl

AFTER AFTER
STEP 1 STEP 2

Figure 4.5 Sorting sequence of four elements using procedure CRCW SORT

4.5 SORTING O N THE CREW MODEL

In this section we attempt to deal with two of the objections raised with regards to
procedure CRCW SORT: its excessive use of processors and its tolerance of write
conflicts. Our purpose is to design an algorithm that is free of write conflicts and uses a
reasonable number of processors. In addition, we shall require the algorithm to also
satisfy our usual desired properties for shared-memory SIMD algorithms. Thus the
algorithm should have

(i) a sublinear and adaptive number of processors,
(ii) a running time that is small and adaptive, and

(iii) a cost that is optimal.

In sequential computation, a very efficient approach to sorting is based on the
idea of merging successively longer sequences of sorted elements. This approach is
even more attractive in parallel computation, and we have already invoked it twice in
this chapter in sections 4.2 and 4.3. Once again we shall use a merging algorithm in

Sec. 4.5 Sorting on the CREW Model 97

order to sort. Procedure CREW MERGE developed in chapter 3 will serve as a basis
for the CREW sorting algorithm of this section. The idea is quite simple. Assume that
a CREW SM SIMD computer with N processors PI, P,, . . . , P , is to be used to sort
the sequence S = {s,, s,, . . . , s,), where N < n. We begin by distributing the elements
of S evenly among the N processors. Each processor sorts its allocated subsequence
sequentially using procedure QUICKSORT. The N sorted subsequenc:es are now
merged pairwise, simultaneously, using procedure CREW MERGE for each pair. The
resulting subsequences are again merged pairwise and the process continues until one
sorted sequence of length n is obtained.

The algorithm is given in what follows as procedure CREW SORT. In it we
denote the initial subsequence of S allocated to processor Pi by Si. Subsequently, SF is
used to denote a subsequence obtained by merging two subsequences and the set of
processors that performed the merge.

procedure CREW SORT (S)

Step 1: for i = 1 to N do in parallel
Processor Pi
(1.1) reads a distinct subsequence Si of S of size n /N
(1.2) QUICKSORT (Si)
(1.3) Sf + Si
(1.4) P f + { P i)

em1 for.

Step 2: (2.1) u t 1
(2.2) v t N
(2.3) while v > 1 do

(2.3.1) for m = 1 to LvI2J do in parallel
(i) P;'' t P i , - , u P;,

(i i) The processors in the set P:+ ' perform
CREW MERGE (S;,- ,, S;,, 5':+,+')

end for
(2.3.2) if v is odd then (i) P;&f t P,"

(i i) S,",;,f t S,"
end if

(2.3.3) u + u + 1
(2.3.4) 0 + rv/21

end while.

Analysis. The dominating operation in step 1 is the call to QUICKSORT,
which requires O((n/N)log(n/N)) time. During each iteration of step 2.3, Lu/2J pairs of
subsequences with n/Lv/2] elements per pair are to be merged simultaneously using
N/Lv/2J processors per pair. Procedure CREW MERGE thus requires
O([(n/Lv/2J)/(N/Lv/2])] + log(n/Lv/2J)), that is, O((n/N) + log n) time. Since step 2.3 is
iterated Llog NJ times, the total running time of procedure CREW SOR'T is

t(n) = O((n/N)log(n/N)) + O((n/N)log N + log n log N)
= O((n/N)log n + log2n).

Sorting Chap. 4

Since p(n) = N, the procedure's cost is given by

c(n) = O(n log n + N log2n),

which is optimal for N d n/log n.

Example 4.5

Let S = (2 , 8, 5, 10, 15, 1, 12, 6, 14, 3, 11, 7 , 9, 4, 13, 16) and N = 4. During step 1,
processors P,, P,, P,, and P, receive the subsequences S , = (2, 8, 5, 101,
S , = (15 , 1, 12, 61, S , = (14, 3, 11, 71, and S, = (9, 4, 13, 161, respectively, which they
sort locally. At the end of step 1, S: = {2,5,8,10}, Sk = { I , 6,12,15), S: = {3,7,11,14),
S: = {4,9,13,16), P: = {P,} , Pk = {P,), P: = {P,), and P: = {P,}.

During the first iteration of step 2.3, the processors in P: = P: u P i = {P , , P, }
cooperate to merge the elements of Si and Sk to produce S: = {1,2,5,6,8,10,12,15).
Simultaneously, the processors in P$ = P: u P i = {P,, P,) merge S: and S: into
S : = { 3 , 4 , 7 , 9 , 11, 13, 14, 16).

During the second iteration of step 2.3, the processors in P: = P: u Pz =

{P , , P,, P,, P,} cooperate to merge S: and Sz into Si = (1 , 2,. . . , 16) and the procedure
terminates. IJ

4.6 SORTING ON THE EREW MODEL

Two of the criticisms expressed with regards to procedure CRCW SORT were
addressed by procedure CREW SORT, which adapts to the number of existing
processors and disallows multiple-write operations into the same memory location.
Still, procedure CREW SORT tolerates multiple-read operations. Our purpose in this
section is to deal with this third difficulty. Three parallel algorithms for sorting on the
EREW model are described, each representing an improvement over its predecessor.
We assume throughout this section that N processors PI, P,, . . . , P, are available on
an EREW SM SIMD computer to sort the sequence S = is,, s2, . . . , s,), where N < n.

4.6.1 Simulating Procedure CREW SORT

The simplest way to remove read conflicts from procedure CREW SORT is to use
procedure MULTIPLE BROADCAST. Each attempt to read from memory now
takes O(1og N) time. Simulating procedure CREW SORT on the EREW model
therefore requires

t(n) = O((n/N)log n + log n log N) x O(1og N)

= O([(n/N) + log Nllog n log N)

time and has a cost of

c(n) = O((n + N log N)log n log N),

which is not cost optimal.

Sec. 4.6 Sorting on the EREW Model 99

4.6.2 Sorting by Conflict -Free Merging

A more subtle way to avoid concurrent-read operations from the same memory
location in procedure CREW SORT is to remove the need for them. This can be
accomplished by replacing the call to produce CREW MERGE in step 2.3.1
with a call to procedure EREW MERGE. This step therefore requires
O((n/N) + log n log N). Since there are O(1og N) iterations of this step, the overall
running time of the modified procedure, including step 1, is

t(n) = O((n/N)log(n/N)) + O((n/N)log N + log n log2N)

= O([(n/N) + log2n]10g n),

yielding a cost of

c(n) = O((n + N log2n)log n).

Therefore the modified procedure is cost optimal when N Q n/log2n. This range of
optimality is therefore narrower than the one enjoyed by procedure CREW SORT.

4.6.3 Sorting by Selection

Our analysis so far indicates that perhaps another approach should be used if the
performance of procedure CREW SORT is to be matched on the EREW model. We
now study one such approach. The idea is to adapt the sequential procedure
QUICKSORT to run on a parallel computer. We begin by noting that, since N < n,
we can write N = nl-", where 0 < x < 1.

Now, let mi be defined as the ri(n/2llX)lth smallest element of S, for
1 Q i < 211" - 1. The m,'s can be used to divide S into 2lIX subsequences of size n/2lIx
each. These subsequences, denoted by S,, S ,,..., Sj , Sj+l., Sj+,,.. ., S2j, where
j = 2('Ix)- ', satisfy the following property: Every element of Si is smaller than or equal
to every element of Si+, for 1 Q i < 2j - 1. This is illustrated in Fig. 4.6. The
subdivision process can now be applied recursively to each of the subsequences Si
until the entire sequence S is sorted in nondecreasing order.

This algorithm can be performed in parallel by first invoking procedure
PARALLEL SELECT to determine the elements mi and then creating the sub-
sequences Si. The algorithm is applied in parallel to the subsequences ,S1, s,, . . . , Sj
using N/j processors per subsequence. The same is then done with the r;ubsequences
Sj+ Sj+,, . . . , SZj. Note that the number of processors used to sort each subsequence
of size n/2'Ix, namely, n'-x/2('1x)-', is exactly the number required for a proper
recursive application of the algorithm, that is, (n/2'Ix)' -".

It is important, of course, that 2"" be an integer of finite size: This ensures that a
bound can be placed on the running time and that all the mi exist. Initially, the N
available processors compute x from N = nl-". If x does not satisfy the conditions (i) --
r l / x l < 10 (say) and (ii) n 2 2r'1x1, then the smallest real number larger than x an" *

Sec. 4.6 Sorting on the EREW Model 101

satisfying (i) and (ii) is taken as x. Let k = 2r1'x1. The algorithm is given as procedure
EREW SORT:

procedure EREW SORT (S)

if IS(< k
then QUICKSORT (S)
else (1) for i = 1 to k - 1 do

PARALLEL SELECT (S, r i (S(/k l) {Obtain mSi)
end for

(2) S, + (s ~ S : s < m,}
(3) for i = 2 to k - 1 do

S i t { s ~ S : m , - , < s < mi}
end for

(4) S k + { s ~ S : s > , mk-,)
(5) for i = 1 to k/2 do in parallel

EREW SORT (Si)
end for

(6) for i = (k/2) + 1 to k do in parallel
EREW SORT (Si)

end for
end if.

Note that in steps 2-4 the sequence Si is created using the method outlined in
chapter 2 in connection with procedure PARALLEL SELECT. Also in step 3, the
elements of S smaller than mi and larger than or equal to mi-, are first placed in Si. If
lSil < rlSllk1, then elements equal to mi are added to Si so that either ISi = rlSl/k] or
no element is left to add to Si. This is reminiscent of what we did with QUICKSORT.
Steps 2 and 4 are executed in a similar manner.

Example 4.6

Let S = {5 ,9 , 12, 16, 18,2, 10, 13, 17,4,7, 18, 18, 11, 3, 17,20,19, 14, 8, 5, 17, 1, 1 1 , 15, 10,
6) (i.e., n = 27) and let five processors P,, P,, P,, P,, P, be available on an EREW SM
SIMD computer (i.e., N = 5). Thus 5 = (27)'-", x - 0.5, and k = 211/"1 = 4. The working
of procedure EREW SORT for this input is illustrated in Fig. 4.7. During step 1, m, = 6,
m, = 11, and m, = 17 are computed. The four subsequences S,, S,, S,, and S, are created
in steps 2-4 as shown in Fig. 4.7(b). In step 5 the procedure is applied recursively and
simultaneously to S, and S,. Note that IS,I = IS,[= 7, and therefore 7'-" is rounded
down to 2 (as suggested in chapter 2). In other words two processors are used to sort each
of the subsequences S, and S, (the fifth processor remaining idle). For S,: processors PI
and P, compute m, = 2, m, = 4, and m, = 5, and the four subsequences {1,2}, {3,4},
{5,5), and (6) are created each of which is already in sorted order. For S,, processors P,
and P, compute m, = 8, m, = 10, and m, = 11, and the four subsequence:; {7,8), (9, lo} ,
{10,11), and { I 1) are created each of which is already in sorted order. The sequence S at
the end of step 5 is illustrated in Fig. 4.7(c). In step 6 the procedure is applied recursively
and simultaneously to S, and S,. Again since IS,[= 7 and IS,I = 6, 7 '-" and 6'-" are
rounded down to 2 and two processors are used to sort each of the two subsequences S ,

1 02 Sorting Chap. 4

(a) INITIALLY

1- S1 + S2 + s3 + s4 --{
(b) AFTER STEP (4)

I-- S3 + S4 +
(c) AFTER STEP (5)

(d) AFTER STEP (6)

Figure 4.7 Sorting sequence of twenty-seven elements using procedure EREW SORT.

and S,. For S,, m, = 13, m, = 15, and m, = 17 are computed, and the four subsequences
(12, 131, (14,151, (16,171, and (17) are created each of which is already sorted. For S,,
m, = 18, m, = 18, and m, = 20 are computed, and the four subsequences {17,18),
(18,181, (19,201, and an empty subsequence are created. The sequence S after step 5 is
shown in Fig. 4.7(d).

Analysis. The call to QUICKSORT takes constant time. From the analysis
of procedure PARALLEL SELECT in chapter 2 we know that steps 1-4 require cnx

time units for some constant c. The running time of procedure EREW SORT is
therefore

t(n) = cnx + %t(n/k)

= O(nx log n).

Since p(n) = n ' - X , the procedure's cost is given by

c(n) = p(n) x t(n) = O(n log n),

which is optimal. Note, however, that since nl-" < nllogn, cost optimality is
restricted to the range N < nllog n.

Procedure EREW SORT therefore matches CREW SORT in performance:

(i) It uses a number of processors N that is sublinear in the size of the input n and
adapts to it,

Sec. 4.7 Problems

(ii) it has a running time that is small and varies inversely with N, and
(iii) its cost is optimal for N < nllog n.

Procedure EREW SORT has the added advantage, of course, of running on a weaker
model of computation that does not allow multiple-read operations from the same
memory location.

It is also interesting to observe that procedure EREW SORT is a "mirror image"
of procedure CREW SORT in the following way. Both algorithms can be modeled in
theory by a binary tree. In procedure CREW SORT, subsequences arc: input at the
leaves, one subsequence per leaf, and sorted locally; they are then merged pairwise by
parent nodes until the output is produced at the root. By contrast, in procedure
EREW SORT, the sequence to be sorted is input at the root and then split into two
independent subsequences {S,, S,, . . . , Sj) and { S j + Sj+,, . . . , SZj); !splitting then
continues at each node until each leaf receives a subsequence that, once locally sorted,
is produced as output.

4.7 P R O B L E M S

4.1 Use the (n, n)-merging network defined in problem 3.9 to obtain a network for sorting
arbitrary (i.e., not necessarily bitonic) input sequences. Analyze the running time and
number of processors used by this network and compare these with the corresponding
quantities for the network in section 4.2.

4.2 Consider the following parallel architecture consisting of n2 processors placed in a square
array with n rows and n columns. The processors in each row are interconnected to form a
binary tree. The processors in each column are interconnected similarly. The tree
interconnections are the only links among the processors. Show that this architecture,
known as the mesh of trees, can sort a sequence of n elements in O(1og n) time.

4.3 The odd-even sorting network of section 4.2 uses O(n log2n) processors to sort a sequence
L/ of length n in O(logzn) time. For some applications, this may be too slow. On the other

hand, the architecture in problem 4.2 sorts in O(1og n) time using n2 processors. Again,
when n is large, this number of processors is prohibitive. Can you design i i network that
combines the features of these two algorithms, that is, one that uses O(n log2n) processors
and sorts in O(log n) time?

4.4 It may be argued that the number of processors used in problem 4.3, nameby, O(n log2n), is
still too large. Is it possible to reduce this to O(n log n) and still achieve an O(1og n) running
time?

4.5 Inspect the network obtained in problem 4.1. You will likely notice that it consists of m
columns of n/2 processors each, where m is a function of n obtained from your analysis. It
is required to exploit this regular structure to obtain a sorting network consisting of a
single column of n/2 processors that sorts a sequence of length n in O(m) time. The idea is
to keep the processors busy all the time as follows. The input sequence is fed to the
processors and an output is obtained equal to that obtained from the first column of the
bitonic sorting network. This output is permuted appropriately and fed back to the
processors to obtain the output of the second column. This continues form iterations, until
the sequence is fully sorted. Such a scheme is illustrated in Fig. 4.8 for n := 8.

Sorting Chap. 4

PERMUTATION
NETWORK

Figure 4.8 Sorting using permutation network.

4.6 The sorting network in problem 4.5 has a cost of O(nm). Is this optimal? The answer, of
course, depends on m. If the cost is not optimal, apply the same idea used in procedure
MERGE SPLIT to obtain an optimal algorithm.

4.7 Can you design a sorting network that uses O(n) processors to sort a sequence of length n
in O(log n) time?

4.8 Establish the correctness of procedure ODD-EVEN TRANSPOSITION.
4.9 As example 4.2 illustrates, a sequence may be completely sorted several iterations before

procedure ODD-EVEN TRANSPOSITION actually terminates. In fact, if the sequence is
initially sorted, the O(n) iterations performed by the procedure would be redundant. Is it
possible, within the limitations of the linear array model, to modify the procedure so that
an early termination is obtained if at any point the sequence becomes sorted?

.10 Procedure ODD-EVEN TRANSPOSITION assumes that all elements of the input 3 sequence are available and reside initially in the array of processors. It is conceivable that
in some applications, the inputs arrive sequentially and are received one at a time by the
leftmost processor PI. Similarly, the output is produced one element at a time from P , .
Modify procedure ODD-EVEN TRANSPOSITION so that it runs under these con-
ditions and completes the sort in exactly the same number of steps as before (i.e., without
an extra time penalty for input and output).

4.11 When several sequences are queued for sorting, the procedure in problem 4.9 has a period
of 2n. Show that this period can be reduced to n by allowing both P , and P , to handle
input and output. In this way, m sequences of n elements each are sorted in (m + l)n steps
instead of 2mn.

Sec. 4.7 Problems 105

4.12 In section 4.3 we showed how procedure ODD-EVEN TRANSPOSITION can be
modified so that its cost becomes optimal. Show that it is possible to obtain a cost-optimal
sorting algorithm on the linear array for the case of sequential input. One approach to
consider is the following. For a sequence of length n, the linear array consists of 1 + log n
processors. The leftmost processor receives the input, the rightmost produces the output.
Each processor is connected to its neighbors by two lines, as shown in Fig. 4.9 for n = 8.
This array can be made to sort in O(n) time by implementing an adapted version of the
sequential procedure Mergesort. This procedure consists of log n stages. In stage i sorted
subsequences of length 2' are created, i = 1,2, . . . , log n. In the parallel adaptation, the
steps are run overlapped on the linear akray.

4.13 In procedure MERGE SPLIT each processor needs at least 4n/N storage locations to
(/ merge two sequences of length n/N each. Modify the procedure to require only 1 + n/N

locations per processor.
4.14 A variant of the linear array that uses a bus was introduced in problem 2.9. Design an

algorithm for sorting on this model, where P , receives the input sequence of size n and P,
produces the output.

4.15 The n elements of a sequence are input to an n'I2 x n1I2 mesh-connected SIMD computer,
one element per processor. It is required to sort this sequence in row-major order. Derive a
lower bound on the running time required to solve this problem.

4.16 Use the results of problems 3.6 and 3.7 to obtain an algorithm for odd-even sorting on an
rn x m mesh-connected SIMD computer. Analyze your algorithm.

4.17 Is the algorithm obtained in problem 4.16 cost optimal? If not, apply the sacne idea used in
procedure MERGE SPLIT to obtain a cost-optimal algorithm.

4.18 Use the results of problems 3.12 and 3.13 to obtain an algorithm for bitonic sorting on an
rn x rn mesh-connected SIMD computer. Analyze your algorithm.

4.19 Repeat problem 4.17 for the algorithm in problem 4.18.
4.20 The algorithm in problem 4.16 returns a sequence sorted in row-major order. Another

indexing that may sometimes be desirable is known as snakelike row-major order: The ith
element resides in row j and column k, where

jm + k + 1 for j even,
i = C

'rn + m - k for j odd.

This is illustrated in Fig. 4.10 for n = 16. Show that after a sequence has be:en sorted into
row-major order, its elements may be rearranged into snakelike row-rnajor order in
2(n1l2 - 1) routing steps.

4.21 Another indexing for sequences sorted on two-dimensional arrays is the shujyed row-major
order. Let element i, 1 < i < n, reside in row j and column k in a row-major ordering. If i' is
the integer obtained by applying a perfect shuffle to the bits in the binary representation of
i - 1, then element i' + 1 occupies position (j, k) in a shuffled row-major indexing. This is

Figure 4.9 Cost-optimal sorting on linear array for case of sequential input.

INPUT

P2 P4
OUTPUT

b

Sorting Chap. 4

Figure 4.10 Snakelike row-major order.

illustrated in Fig. 4.11 for n = 16. Show that if n elements have already been sorted
according to row-major order and if each processor can store n'IZ elements, then the n
elements can be sorted into shuffled row-major order using an additional 4(n'IZ - 1)
routing steps.

A.22 A variant of the mesh interconnection network that uses a bus was introduced in problem
2.10. Repeat problem 4.15 for this model.

4.23 Design a parallel algorithm for sorting on the model of problem 2.10.

4.24 Design an algorithm for sorting on a tree-connected SIMD computer. The input sequence
is initially distributed among the leaves of the tree. Analyze the running time, number of
processors used, and cost of your algorithm.

4.25 Repeat problem 4.24 for the case where the sequence to be sorted is presented to the root.

4.26 Derive a lower bound for sorting a sequence of length n on the pyramid machine defined in
problem 3.16.

4.27 Design an algorithm for sorting on the pyramid machine.

4.28 Show that any parallel algorithm that uses a cube-connected SIMD computer with N
processors to sort a sequence of length n, where N 2 n, requires R(log N) time.

4.29 Implement the idea of sorting by enumeration on a cube-connected SIMD computer and
analyze the running time of your implementation.

4.30 Show that any parallel algorithm that uses the perfect shuffle interconnection network
with N processors to sort a sequence of length n, where N = 2" 2 n, requires R(log N)
time.

4.31 Consider a CRCW SM SIMD computer where write conflicts are resolved as follows: The
write operation is allowed if and only if all processors writing simultaneously in the same
memory location are attempting to store the same value. Describe an algorithm for this

Figure 4.11 ShuMed row-major order.

Sec. 4.8 Bibliographical Remarks 107

model that can determine the minimum of n numbers {x,, x,, . . . , x,} in constant time
using n2 processors. If more than one of the numbers qualify, the one with the smallest
subscript should be returned.

4.32 Show how procedure CRCW SORT can be modified to run on an EREW model and
analyze its running time.

4.33 Show that procedure CREW SORT can be simulated on an EREW computer in
O([(n/N) + logZn]log n) time if a way can be found to distinguish between simple read
operations and multiple-read operations, as in problem 3.20.

4.34 In procedure EREW SORT, why are steps 5 and 6 not executed simultaneously?
435 Derive an algorithm for sorting by enumeration on the EREW model. The algorithm

should use nl+'lk processors, where k is an arbitrary integer, and run in O(k log n) time.
436 Let the elements of the sequence S to be sorted belong to the set (0, 1, . . . , m - 1). A

sorting algorithm known as sorting by bucketing first distributes the elements among a
number of buckets that are then sorted individually. Show that sortingcan be completed in
O(1og n) time on the EREW model using n processors and O(mn) memory locations.

4.37 The amount of memory required for bucketing in problem 4.36 can be reduced when the
elements to be sorted are binary strings in the interval [0,2b - 11 for some b. The
algorithm consists of b iterations. During iteration i, i = 0,1, . . . , b - 1, each element to be
sorted is placed in one of two buckets depending on whether its ith bit is 0 or 1; the
sequence is then reconstructed using procedure ALLSUMS so that all elements with a 0
ith bit precede all the elements with a 1 ith bit. Show that in this case sorting can be
completed in O(b log n) time using O(n) processors and O(n) memory locations.

4.38 Assume that an interconnection network SIMD computer with n processors can sort a
sequence of length n in O(f (n)) time. Show that this network can simulate an algorithm
requiring time T on an EREW SM SIMD computer with n memory locations and n
processors in O(Tf (n)) time.

4.39 Design an asynchronous algorithm for sorting a sequence of length n by enumeration on a
multiprocessor computer with N processors.

4.40 Adapt procedure QUICKSORT to run on the model of problem 4.39.

4.8 B lBL lOGRAPHlCAL REMARKS

An extensive treatment of parallel sorting is provided in [Akl2]. Taxonomies of parallel sorting
algorithms can be found in [Bitton] and [Lakshmivarahan]. The odd-even sorting network
was first presented in [Batcher]. Other sorting networks are proposed in [Lee:], [Miranker],
[Tseng], [Winslow], and [Wong]. The theoretically fastest possible network for sorting using
O(n) processors is described in [Leighton] based on ideas appearing in [Ajtai]: It sorts a
sequence of length n in O(1og n) time and is therefore cost optimal. However, the asymptotic
expression for the running time of this network hides an enormous constant, which makes it
infeasible in practice.

Procedure ODD-EVEN TRANSPOSITION is attributed to [Demuth]. The idea on
which procedure MERGE SPLIT is based comes from [Baudet]. Other algorithms for sorting
on a linear array are described in [Akl 11, [Todd], and [Yasuura]. Parallel sorting algorithms
for a variety of interconnection-network SIMD computers have been proposed. These include
algorithms for the perfect shuffle ([Stone]), the mesh ([Kumar], [Nassimi 11, and [Thompson]),
the tree ([Bentley], [Horowitz 21, and [Orenstein]), the pyramid ([Stout]), and the cube
([Nassimi 21).

Sorting Chap. 4

It is particularly interesting to point out the difference between the tree- and mesh-
connected computers in their ability to sort a sequence S = {s,, s,, . . . , s,). Assume that a tree
with n leaf processors P, , P,, . . . , P, is available. Initially, Pi contains si. I t is required to sort S
such that Pi contains the ith element of the sorted sequence. Clearly, any parallel algorithm for
solving this problem requires Q(n) time in the worst case since all the values in the right subtree
of the root may have to be exchanged (through the root) with those in the left subtree. It is
shown in [Akl2] how an O(log n)-processor tree-connected computer can sort S in O(n) time for
an optimal cost of O(n log n). Now consider an n1i2 x n'12 mesh with processors P I , P,, . . . , P,
arranged in row-major order. Initially Pi contains si. Again, it is required to sort S such that Pi
contains the ith element of the sorted sequence. Suppose that the maximum and minimum
elements of S are initially in P , and P,, respectively. Since these two elements must be
exchanged for the outcome of the sorting to be correct, R(n1I2) steps are required to sort on the
mesh. An algorithm is described in [Akl 21 for sorting S on an n-processor mesh-connected
computer in O(n1I2) time. It is also shown in [Akl2] how an N-processor mesh can sort S with a
running time of

for an optimal cost of O(n log n) when N < log2n.
Procedure CRCW SORT is based on ideas appearing in [KuEera]. A proposal is made in

[Gottlieb] for a computer architecture implementing the concurrent-read, concurrent-write
features of the model in section 4.4. Procedure CREW SORT is adapted from [Shiloach]. Other
parallel sorting algorithms for the CREW model were proposed in [Hirschberg], [Kruskal],
and [Preparata]. The procedure in section 4.6.2 and procedure EREW SORT are from [Akl 31
and [Akl 11, respectively. Other issues of interest when studying parallel sorting are external
sorting, covered in [Akl4], [Bonnucelli], and [Even], and parallel probabilistic sorting
algorithms, examples of which appear in [Horowitz 23, [Reif], and [Reischuk]. The im-
portance of parallel sorting in simulating powerful models of parallel computation on weaker
ones is outlined in [Parberry]. A description of the sequential sorting procedure Mergesort
mentioned in problem 4.12 can be found in [Horowitz 11.

4.9 R E F E R E N C E S

[AJT AI]

Ajtai, M., Komlos, J., and Szemeredi, E., An O(n log n) sorting network, Proceedings of the
15th Annual ACM Symposium on Theory of Computing, Boston, Massachusetts, April 1983,
pp. 1-9, Association for Computing Machinery, New York, N.Y., 1983.

[A KL 11
Akl, S. G., Optimal parallel algorithms for computing convex hulls and for sorting,
Computing, Vol. 33, No. 1, 1984, pp. 1-11.

[A KL 21
Akl, S. G., Parallel Sorting Algorithms, Academic, Orlando, Fl., 1985.

[AKL 31
Akl, S. G., and Santoro, N., Optimal parallel merging and sorting without memory conflicts,
IEEE Transactions on Computers, Vol. C-36, No. 11, November 1987, pp. 1367-1369.

[AKL 41
Akl, S. G., and Schmeck, H., Systolic sorting in a sequential input/output environment,
Parallel Computing, Vol. 3, No. 1, March 1986, pp. 11-23.

Sec. 4.9 References 1 09

[BATCHER]
Batcher, K. E., Sorting networks and their applications, Proceedings of the AFIPS 1968
Spring Joint Computer Conference, Atlantic City, New Jersey, April 30-May 2, 1968, pp.
307-314, AFIPS Press, Montvale, N.J., 1968.

[BAUDET]
Baudet, G. M., and Stevenson, D., Optimal sorting algorithms for parallel computers, IEEE
Transactions on Computers, Vol. C-27, No. 1, January 1978, pp. 84-87.

[BENTLEY]
Bentley, J. L., and Brown, D. J., A general class of recurrence tradeoffs, Proc~eedings of the
21st Annual IEEE Symposium on Foundations of Computer Science, Syracuse, New York,
October 1980, pp. 217-228, IEEE Computer Society, Washington, D.C., 1980.

[BITTON]
Bitton, D., DeWitt, D. J., Hsiao, D. K., and Menon, J., A taxonomy of pa.rallel sorting,
Computing Surveys, Vol. 13, No. 3, September 1984, pp. 287-318.

[BONNUCELLI]
Bonnucelli, M. A., Lodi, E., and Pagli, L., External sorting in VLSI, IEEE Transactions on
Computers, Vol. C-33, No. 10, October 1984, pp. 931-934.

[DEMUTH]
Demuth, H. B., Electronic data sorting, Ph.D. thesis, Stanford University, Stanford,
California, October 1956.

[EVEN]
Even, S., Parallelism in tape sorting, Communications of the ACM, Vol. 17, No. 4, April 1974,
pp. 202-204.

[GOTTLIEB]
Gottlieb, A., Grishman, R., Kruskal, C. P., McAuliffe, K. P., Rudolph, L., and Snir, M., The
NYU Ultracomputer: Designing an MIMD shared memory parallel computer, IEEE
Transactions on Computers, Vol. C-32, No. 2, 1983, pp. 175-189.

[HIRSCHBERG]
Hirschberg, D. S., Fast parallel sorting algorithms, Communications of the ACM, Vol. 21, No.
8, August 1978, pp. 657-661.

[HOROWITZ 11
Horowitz, E., and Sahni, S., Fundamentals of Computer Algorithms, Computer Science Press,
Rockville, Md., 1978.

[HOROWITZ 23
Horowitz, E., and Zorat, A., Divide-and-conquer for parallel processing, IEEE Transactions
on Computers, Vol. C-32, No. 6, June 1983, pp. 582-585.

[KRUSKAL]
Kruskal, C. P., Searching, merging and sorting in parallel computations, IEEE Transactions
on Computers, Vol. C-32, No. 10, October 1983, pp. 942-946.

[KUCERA]
KuEera, L., Parallel computation and conflicts in memory access, information Processing
Letters, Vol. 14, April 1982, pp. 93-96.

[KUMAR]
Kumar, M., and Hirschberg, D. S., An efficient implementation of Batcher's odd-even merge
algorithm and its application in parallel sorting schemes, IEEE Transactions on Computers,
Vol. C-32, No. 3, March 1983, pp. 254-264.

11 0 Sorting Chap. 4

[LAKSHM~VARAHAN]
Lakshmivarahan, S., Dhall, S. K., and Miller, L. L., Parallel sorting algorithms, in Yovits, M.
C., Ed., Advances in Computers, Academic, New York, 1984, pp. 295-354.

[LEE]
Lee, D. T., Chang, H., and Wong, C. K., An on-chip compare/steer bubble sorter, IEEE
Transactions on Computers, Vol. C-30, No. 6, June 1981, pp. 396-405.

[LEIGHTON]
Leighton, F. T., Tight bounds on the complexity of parallel sorting, IEEE Transactions on
Computers, Vol. C-34, No. 4, April 1985, pp. 344-354.

[MIRANKER]
Miranker, G., Tang, L., and Wong, C. K., A "zero-time" VLSI sorter, IBM Journal of
Research and Development, Vol. 27, No. 2, March 1983, pp. 140-148.

[NASSIMI 11
Nassimi, D., and Sahni, S., Bitonic sort on a mesh-connected parallel computer, IEEE
Transactions on Computers, Vol. C-28, No. 1, January 1979, pp. 2-7.

[NASSIMI 21
Nassimi, D., and Sahni, S., Parallel permutation and sorting algorithms and a new
generalized connection network, Journal of the ACM, Vol. 29, No. 3, July 1982, pp. 642-667.

[ORENSTEIN]
Orenstein, J. A., Merrett, T. H., and Devroye, L., Linear sorting with O(log n) processors, BIT
VO~. 23, 1983, pp. 170-180.

[PARBERRY]
Parberry, I., Some practical simulations of impractical parallel computers, Parallel Comput-
ing, Vol. 4, 1987, pp. 93-101.

[PREPARATA]
Preparata, F. P., New parallel sorting schemes, IEEE Transactions on Computers, Vol. C-27,
No. 7, July 1978, pp. 669-673.

[REIF]
Reif, J. H., and Valiant, L. G., A logarithmic time sort for linear size networks, Journal ofthe
ACM, Vol. 34, No. 1, January 1987, pp. 60-76.

[REISCHUK]
Reischuk, R., A fast probabilistic parallel sorting algorithm, Proceedings of the 22nd Annual
IEEE Symposium on Foundations of Computer Science, Nashville, Tennessee, October
1981, pp. 212-219, IEEE Computer Society, Washington, D.C., 1981.

[SHILOACH]
Shiloach, Y., and Vishkin, V., Finding the maximum, merging and sorting in a parallel
computation model, Journal of Algorithms, Vol. 2, 1981, pp. 88-102.

[STONE]
Stone, H. S., Parallel processing with the perfect shuffle, IEEE Transactions on Computers,
Vol. C-20, No. 2, February 1971, pp. 153-161.

[STOUT]
Stout, Q. F., Sorting, merging, selecting and filtering on tree and pyramid machines,
Proceedings of the 1983 International Conference on Parallel Processing, Bellaire, Michigan,
August 1983, pp. 214-221, IEEE Computer Society, Washington, D.C., 1983.

Sec. 4.9 References 111

[THOMPSON]
Thompson, C. D., and Kung, H. T., Sorting on a mesh-connected parallel computer,
Communications of the ACM, Vol. 20, No. 4, April 1977, pp. 263-271.

[TODD]
Todd, S., Algorithms and hardware for a merge sort using multiple processors, IBM Journal
of Research and Development, Vol. 22, No. 5, September 1978, pp. 509-517.

[TSENG]
Tseng, S. S., and Lee, R. C. T., A new parallel sorting algorithm based upon min-mid-max
operations, BIT, Vol. 24, 1984, pp. 187-195.

[WINSLOW]
Winslow, L. E., and Chow, Y.-C., The analysis and design of some new sorting machines,
IEEE Transactions on Computers, Vol. C-32, No. 7, July 1983, pp. 677-683.

[WONG]
Wong, F. S., and Ito, M. R., Parallel sorting on a re-circulating systolic sorter, The Computer
Journal, Vol. 27, No. 3, 1984, pp. 260-269.

[YASUURA]
Yasuura, H., Tagaki, N., and Yajima, S., The parallel enumeration sorting scheme for VLSI,
IEEE Transactions on Computers, Vol. C-31, No. 12, December 1982, pp. 1192-1201.

Searching

5.1 INTRODUCTION

Searching is one of the most fundamental operations in the field of computing. It is
used in any application where we need to find out whether an element belongs to a list
or, more generally, retrieve from a file information associated with that element. In its
most basic form the searching problem is stated as follows: Given a sequence
S = { s , , s,, . . . , s,) of integers and an integer x, it is required to determine whether
x = s, for some s, in S.

In sequential computing, the problem is solved by scanning the sequence S and
comparing x with its successive elements until either an integer equal to x is found or
the sequence is exhausted without success. This is given in what follows as procedure
SEQUENTIAL SEARCH. As soon as an s, in S is found such that x = s,, the
procedure returns k; otherwise 0 is returned.

procedure SEQUENTIAL SEARCH (S, x, k)

Step 1: (1.1) i +- 1
(1.2) k + 0.

Step 2: while (i < n and k = 0) d o
i f si = x then k + i end if
i + i + 1

end while.

In the worst case, the procedure takes O(n) time. This is clearly optimal,since every
element of S must be examined (when x is not in S) before declaring failure.
Alternatively, if S is sorted in nondecreasing order, then procedure BINARY
SEARCH of section 3.3.2 can return the index of an element of S equal to x (or 0 if no
such element exists) in O(1og n) time. Again, this is optimal since this many bits are
needed to distinguish among the n elements of S.

In this chapter we discuss parallel searching algorithms. We begin by consider-
ing the case where S is sorted in nondecreasing order and show how searching can be
performed on the SM SIMD model. As it turns out, our EREW searching algorithm is

Sec. 5.2 Searching a Sorted Sequence 11 3

no faster than procedure BINARY SEARCH. On the other hand, the CREW
algorithm matches a lower bound on the number of parallel steps required to search a
sorted sequence, assuming that all the elements of S are distinct. When this
assumption is removed, a CRCW algorithm is needed to achieve the best possible
speedup. We then turn to the more general case where the elements of S are in random
order. Here, although the SM SIMD algorithms are faster than procedure
SEQUENTIAL SEARCH, the same speedup can be achieved on a weaker model,
namely, a tree-connected SIMD computer. Finally, we present a parallel search
algorithm for a mesh-connected SIMD computer that, under some assumptions
about signal propagation time along wires, is superior to the tree algorithm.

5.2 SEARCHING A SORTED SEQUENCE

We assume throughout this section that the sequence S = { s , , s,, . . . , s,) is sorted in
nondecreasing order, that is, s, < s, < . - . < s,. Typically, a file with n records is
available, which is sorted on the s field of each record. This file is to be searched using s
as the key; that is, given an integer x, a record is sought whose s field equals x. If such a
record is found, then the information stored in the other fields may now be retrieved.
The format of a record is illustrated in Fig. 5.1. Note that if the values of the s fields are
not unique and all records whose s fields equal a given x are needed, then the search
algorithm is continued until the file is exhausted. For simplicity we begin by assuming
that the si are distinct; this assumption is later removed.

5.2.1 EREW Searching

Assume that an N-processor EREW SM SIMD computer is available to search S for a
given element x, where 1 < N < n. To begin, the value of x must be made known to all
processors. This can be done using procedure BROADCAST in O(1og N) time. The
sequence S is then subdivided into N subsequences of length n/N each, and processor
Pi is assigned { s (~ - + s (~ - I)(,/,,,) + ,, . . . , Si (n lN) } . All processors now perform
procedure BINARY SEARCH on their assigned subsequences. This requires
O(log(n/N)) in the worst case. Since the elements of S are all distinct, at most one
processor finds an s, equal to x and returns k. The total time required by this EREW
searching algorithm is therefore O(1og N) + O(log(n/N)), which is O(log n). Since-this is
precisely the time required by procedure BINARY SEARCH (running on a single
processor!), no speedup is achieved by this approach.

Figure 5.1 Format of record in file to be
searched.

'i
I I I

OTHER INFORMATION

114 Searching Chap. 5

5.2.2 CREW Searching

Again, assume that an N-processor CREW SM SIMD computer is available to search
S for a given element x, where 1 < N 6 n. The same algorithm described for the
EREW computer can be used here except that in this case all processors can read x
simultaneously in constant time and then proceed to perform procedure BINARY
SEARCH on their assigned subsequences. This requires O(log(n/N)) time in the worst
case, which is faster than procedure BINARY SEARCH applied sequentially to the
entire sequence.

It is possible, however, to do even better. The idea is to use a parallel version of
the binary search approach. Recall that during each iteration of procedure BINARY
SEARCH the middle element s, of the sequence searched is probed and tested for
equality with the input x. If s, > x , then all the elements larger than s, are discarded;
otherwise all the elements smaller than s, are discarded. Thus, the next iteration is
applied to a sequence half as long as previously. The procedure terminates when the
probed element equals x or when all elements have been discarded. In the parallel
version, there are N processors and hence an (N + 1)-ary search can be used. At each
stage, the sequence is split into N + 1 subsequences of equal length and the N
processors simultaneously probe the elements at the boundary between successive
subsequences. This is illustrated in Fig. 5.2. Every processor compares the element s of
S it probes with x:

1. If s > x, then if an element equal to x is in the sequence at all, it must precede s;
consequently, s and all the elements that follow it (i.e., to its right in Fig. 5.2) are
removed from consideration.

2. The opposite takes place if s < x.

Thus each processor splits the sequence into two parts: those elements to be discarded
as they definitely do not contain an element equal to x and those that might and are
hence kept. This narrows down the search to the intersection of all the parts to be
kept, that is, the subsequence between two elements probed in this stage. This
subsequence, shown hachured in Fig. 5.2, is searched in the next stage by the same
process. This continues until either an element equal to x is found or all the elements
of S are discarded. Since every stage is applied to a sequence whose length is 1/(N + 1)
the length of the sequence searched during the previous stage less 1, O(log,+ ,(n + 1))
stages are needed. We now develop the algorithm formally and then show that this is
precisely the number of steps it requires in the worst case.

Let g be the smallest integer such that n 6 (N + 1)g - 1, that is,
g = rlog(n + l)/log(N + 1)1. It is possible to prove by induction that g stages are
sufficient to search a sequence of length n for an element equal to an input x. Indeed,
the statement is true for g = 0. Assume it is true for (N + - 1. Now, to search a
sequence of length (N + - 1, processor Pi, i = 1,2,. . . , N, compares x to sj where
j = i (N + as shown in Fig. 5.3. Following this comparison, only a subsequence
of length (N + l)g-' - 1 needs to be searched, thus proving our claim. This
subsequence, shown hachured in Fig. 5.3, can be determined as follows. Each

Sec. 5.2 Searching a Sorted Sequence 115

processor Pi uses a variable ci that takes the value left or right according to whether
the part of the sequence Pi decides to keep is to the left or right of the element it
compared to x during this stage. Initially, the value of each ci is irrelevant and can be
assigned arbitrarily. Two constants c, = right and c,, , = left are also wed. Follow-
ing the comparison between x and an element s j , of S, Pi assigns a value to ci (unless
sji = x, in which case the value of ci is again irrelevant). If ci # ci - , for some i ,
1 < i < N , then the sequence to be searched next runs from s, t~o s,, where
q = (i - 1)(N + + 1 and r = i (N + - 1. Precisely one processor updates q
and r in the shared memory, and all remaining processors can simultaneoiusly read the
updated values in constant time. The algorithm is given in what follows as procedure
CREW SEARCH. The procedure takes S and x as input: If x = s, for some k, then k is
returned; otherwise a 0 is returned.

procedure CREW SEARCH (S, x, k)

Step 1: {Initialize indices of sequence to be searched}
(1.1) q t 1
(1.2) r t n.

Step 2: {Initialize results and maximum number of stages}
(2.1) k c 0
(2.2) g + rlog(n + I) / IO~(N + 1)1.

Step 3: while (q < r and k = 0) do
(3.1) jo t q - 1
(3.2) for i = 1 to N do in parallel

(i) ji c (q - 1) + i(N + l)e-'
{P i compares x to sj and determines the part of the sequence to be kept}

(ii) if ji < r
then if sji = x

then k + ji
else if sj, > x

then ci t left
else ci + right
end if

end if
else (a) ji + r + 1

(b) ci + left
end if

{The indices of the subsequence to be searched in the next iteration are
computed}

(iii) i fc i#ci- , then(a) q t j i - l + 1
(b) r + j i - 1

end if
(iv) if (i = N and ci # ci+ ,) then q t ji + 1

end if
end for

(3.3) g + g - 1.
end while.

116 Searching Chap. 5

Figure 5.2 Searching sorted sequence with N processors.

Figure 5.3 Derivation of number of stages required to search sequence.

Analysis

Steps 1,2, 3.1, and 3.3 are performed by one processor, say, P,, in constant time. Step
3.2 also takes constant time. As proved earlier, there are at most g iterations of step 3.
It follows that procedure CREW SEARCH runs in O(log(n + l)/log(N + 1)) time, that
is, t(n) = O(log,+,(n + 1)). Hence c(n) = O(N log,+,(n + I)), which is not optimal.

Example 5.1

Let S = {1,4,6,9, 10, 11, 13, 14, 15, 18,20,23, 32,45,51) be the sequence to be searched
using a CREW SM SIMD computer with N processors. We illustrate two successful and
one unsuccessful searches.

1. Assume that N = 3 and that it is required to find the index k of the element in S
equal to 45 (i.e., x = 45). Initially, q = 1, r = 15, k = 0, and g = 2. During the first
iteration of step 3, P , computes j , = 4 and compares s, to x. Since 9 < 45,
c , = right. Simultaneously, P, and P, compares, and s,,, respectively, to x: Since
14 < 45 and 23 < 45, c, = right and c, = right. Now c, f c,; therefore q = 13 and
r remains unchanged. The new sequence to be searched runs from s, , t o s,,, as
shown in Fig. 5.4(a), and g = 1. In the second iteration, illustrated in Fig. 5.4(b), P I
computes j , = 12 + 1 and compares s,, to x : Since 32 < 45, c, = right. Simulta-
neously, P , compares s,, to x, and since they are equal, it sets k to 14 (c, remains
unchanged). Also, P , compares s,, to x : Since 51 > 45, c, = left. Now c, # c,:
Thus q = 12 + 2 + 1 = 15 and r = 12 + 3 - 1 = 14. The procedure terminates
with k = 14.

2. Say now that x = 9, with N still equal to 3. In the first iteration, PI compares s, to
x : Since they are equal, k is set to 4. All simultaneous and subsequent com-
putations in this iteration are redundant since the following iteration is not
performed and the procedure terminates early with k = 4.

Sec. 5.2 Searching a Sorted Sequence

Figure 5.4 Searching sequence of fifteen elements using procedure CREW SEARCH.

3. Finally, let N = 2 and x = 21. Initially, g = 3. In the first iteration P , computes
j, = 9 and compares s, to x: Since 15 < 21, c, = right. Simultaneously, P,
computes j, = 18: Since 18 > 15, j, points to an element outside the sequence.
Thus P, sets j , = 16 and c, = left. Now c, # c,: Therefore q = 10 and r = 15, that
is, the sequence to be searched in the next iteration runs from s,, to s , ,, and g = 2.
This is illustrated in Fig. 5 . q ~) . In the second iteration, P, computes j, = 9 + 3 and

118 Searching Chap. 5

compares s , , to x: since 23 > 21, c , = left. Simultaneously, P , computes j , = 15:
Since 51 > 21, c , = left. Now c , # c,, and therefore r = 1 1 and q remains
unchanged, as shown in Fig. 5.qd). In the final iteration, g = 1 and P I computes
j , = 9 + 1 and compares s , , to x: Since 18 < 21, c, = right. Simultaneously, P ,
computes j2 = 9 + 2 and compares s , , to x: Since 20 < 21, c , = right. Now
c , # c,, and therefore q = 12. Since q > r, the procedure terminates unsuccessfully
with k = 0.

We conclude our discussion of parallel searching algorithms for the CREW
model with the following two observations:

1. Under the assumption that the elements of S are sorted and distinct, procedure
CREW SEARCH, although not cost optimal, achieves the best possible running
time for searching. This can be shown by noting that any algorithm using N
processors can compare an input element x to at most N elements of S
simultaneously. After these comparisons and the subsequent deletion of ele-
ments from S definitely not equal to x, a subsequence must be left whose length
is at least

r(n - N)/(N + 1)1 2 (n - N)/(N + 1) = [(n + 1)/(N + I)] - 1.

After g repetitions of the same process, we are left with a sequence of length
[(n + 1)/(N + I)#] - 1. It follows that the number of iterations required by any
such parallel algorithm is no smaller than the minimum g such that

[(n + l)/(N + - 1 < 0,

which is

2. Two parallel algorithms were presented in this section for searching a sequence
of length n on a CREW SM SIMD computer with N processors. The first
required O(log(n/N)) time and the second O(log(n + l)/log(N + 1)). In both
cases, if N = n, then the algorithm runs in constant time. The fact that the
elements of S are distinct still remains a condition for achieving this constant
running time, as we shall see in the next section. However, we no longer need S
to be sorted. The algorithm is simply as follows: In one step each Pi, i = 1, 2,
. . . , n, can read x and compare it to si; if x is equal to one element of S, say, s,,
then P, returns k; otherwise k remains 0.

5.2.3 CRCW Searching

In the previous two sections, we assumed that all the elements of the sequence S to be
searched are distinct. From our discussion so far, the reason for this assumption may
have become apparent: If each si is not unique, then possibly more than one processor
will succeed in finding a member of S equal to x. Consequently, possibly several

Sec. 5.3 Searching a Random Sequence 11 9

processors will attempt to return a value in the variable k, thus causing a write
conflict, an occurrence disallowed in both the EREW and CREW models. Of course,
we can remove the uniqueness assumption and still use the EREW and CREW
searching algorithms described earlier. The idea is to invoke procedure {STORE (see
problem 2.13) whose job is to resolve write conflicts: Thus, in O(log N) time we can get
the smallest numbered of the successful processors to return the index k it has
computed, where s, = x. The asymptotic running time of the EREW search algorithm
in section 5.2.1 is not affected by this additional overhead. However, procedure
CREW SEARCH now runs in

t(n) = O(log(n + l)/log(N + 1)) + O(1og N).

In order to appreciate the effect of this additional O(log N) term, note that when
N = n, t(n) = O(1og n). In other words, procedure CREW SEARCH with n processors
is no faster than procedure BINARY SEARCH, which runs on one processor!

Clearly, in order to maintain the efficiency of procedure CREW SEARCH while
giving up the uniqueness assumption, we must run the algorithm on a CRCW SM
SIMD computer with an appropriate write conflict resolution rule. Whatever the rule
and no matter how many processors are successful in finding a member of S equal to
x, only one index k will be returned, and that in constant time.

5.3 SEARCHING A RANDOM SEQUENCE

We now turn to the more general case of the search problem. Here the elements of the
sequence S = {s,, s,, . . . , s,) are not assumed to be in any particular order and are not
necessarily distinct. As before, we have a file with n records that is to be searched using
the s field of each record as the key. Given an integer x, a record is sought whose s field
equals x; if such a record is found, then the information stored in the other fields may
now be retrieved. This operation is referred to as querying the file. Besides querying,
search is useful in file maintenance, such as inserting a new record and updating or
deleting an existing record. Maintenance, as we shall see, is particularly easy when the
s fields are in random order.

We begin by studying parallel search algorithms for shared-mernory SIMD
computers. We then show how the power of this model is not really needed for the
search problem. As it turns out, performance similar to that of SM SIMD algorithms
can be obtained using a tree-connected SIMD computer. Finally, we demonstrate that
a mesh-connected computer is superior to the tree for searching if signal propagation
time along wires is taken into account when calculating the running time of
algorithms for both models.

5.3.1 Searching on S M SIMD Computers

The general algorithm for searching a sequence in random order on a SM SIMD
computer is straightforward and similar in structure to the algorithm in section 5.2.1.

1 20 Searching Chap. 5

We have an N-processor computer to search S = {s,, s,, . . . , s,} for a given element x,
where 1 < N < n. The algorithm is given as procedure SM SEARCH:

procedure SM SEARCH (S, x , k)

Step 1: for i = 1 to N do in parallel
Read x

end for.

Step 2: for i = 1 to N do in parallel
(2.1) Si { ~ (i - l)(n/N)+ 1 r S (i - I) (n / N) + 2 , . . . r ~ i (n l N) J

(2.2) SEQUENTIAL SEARCH (S , , x , k i)
end for.

Step 3: for i = 1 to N do in parallel
if ki > 0 then k t ki end if

endfor.

Analysis

We now analyze procedure SM SEARCH for each of the four incarnations of the
shared-memory model of SIMD computers.

5.3.1 .I EREW. Step 1 is implemented using procedure BROADCAST and
requires O(1og N) time. In step 2, procedure SEQUENTIAL SEARCH takes O(n/N)
time in the worst case. Finally, procedure STORE (with an appropriate conflict
resolution rule) is used in step 3 and runs in O(log N) time. The overall asymptotic
running time is therefore

and the cost is

c(n) = O(N log N) + O(n),

which is not optimal.

5.3.1.2 ERCW. Steps 1 and 2 are as in the EREW case, while step 3 now
takes constant time. The overall asymptotic running time remains unchanged.

5.3.1 -3 CREW. Step 1 now takes constant time, while steps 2 and 3 are as in
the EREW case. The overall asymptotic running time remains unchanged.

5.3.1.4 CRCW. Both steps 1 and 3 take constant time, while step 2 is as in
the EREW case. The overall running time is now O(n/N), and the cost is

which is optimal.

Sec. 5.3 Searching a Random Sequence 1 21

In order to put the preceding results in perspective, let us consider. a situation
where the following two conditions hold:

1. There are as many processors as there are elements in S, that is, N = n.
2. There are q queries to be answered, that is, q values of x are queuecl waiting for

processing.

In the case of the EREW, ERCW, and CREW models, the time to process one query
is now O(1og n). For q queries, this time is simply multiplied by a factor of q. This is of
course an improvement over the time required by procedure SEQUENTIAL
SEARCH, which would be on the order of qn. For the CRCW compute]:, procedure
SM SEARCH now takes constant time. Thus q queries require a constant multiple of
q time units to be answered.

Surprisingly, a performance slightly inferior to that of the CRCW algorithm but
still superior to that of the EREW algorithm can be obtained using a much weaker
model, namely, the tree-connected SIMD computer. Here a binary tree with O(n)
processors processes the queries in a pipeline fashion: Thus the q queries require a
constant multiple of log n + (q - 1) time units to be answered. For large: values of q
(i.e., q > log n), this behavior is equivalent to that of the CRCW algoritl-~m. We now
turn to the description of this tree algorithm.

5.3.2 Searching on a Tree

A tree-connected SIMD computer with n leaves is available for searching a file of n
records. Such a tree is shown in Fig. 5.5 for n = 16. Each leaf of the tree stores one
record of the file to be searched. The root is in charge of receiving input from the
outside world and passing a copy of it to each of its two children. It is also responsible
for producing output received from its two children to the outside world. As for the
intermediate nodes, each of these is capable of:

1. receiving one input from its parent, making two copies of it, and sending one
copy to each of its two children; and

2. receiving two inputs from its children, combining them, and passing the result to
its parent.

The next two sections illustrate how the file stored in the leaves can be queried and
maintained.

5.3.2.1 Querying. Given an integer x, it is required to search the file of
records on the s field for x, that is, determine whether there is a value in
S = {s,, s,, . . . , s,) equal to x. Such a query only requires a yes or no answer. This is
the most basic form of querying and is even simpler than the one that we have been
concerned with so far in this chapter. The tree-connected computer handles this query

Searching Chap. 5

ROOT A

INTERMEDIATE

LEAF

Figure 5.5 Tree-connected computer for searching.

in three stages:

Stage I : The root reads x and passes it to its two children. In turn, these send x
to their children. The process continues until a copy of x reaches each leaf.
Stage 2: Simultaneously, all leaves compare the s field of the record they store to
x: If they are equal, the leaf produces a 1 as output: otherwise a 0 is produced.
Stage 3: The outputs of the leaves are combined by going upward in the tree:
Each intermediate node computes the logical or of its two inputs (i.e., 0 or 0 = 0,
0 or 1 = 1, 1 or 0 = 1, and 1 or 1 = 1) and passes the result to its parent. The
process continues until the root receives two bits, computes their logical or, and
produces either a 1 (for yes) or a 0 (for no).

It takes O(1og n) time to go down the tree, constant time to perform the comparison at
the leaves, and again O(1og n) time to go back up the tree. Therefore, such a query is
answered in O(log n) time.

Example 5.2

Let S = {25,14,36,18,15, 17,19,17) and x = 17. The three stages above are illustrated in
Fig. 5.6.

Assume now that q such queries are queued waiting to be processed. They can
be pipelined down the tree since the root and intermediate nodes are free to handle the
next query as soon as they have passed the current one along to their children. The
same remark applies to the leaves: As soon as the result of one comparison has been

Sec. 5.3 Searching a Random Sequence

(a) STAGE 1

(b) STAGE 2

(c) STAGE 3
Figure 5.6 Searching sequence of eight
elements using tree.

produced, each leaf is ready to receive a new value of x. The results are also pipelined
upward: The root and intermediate nodes can compute the logical or of the next pair
of bits as soon as the current pair has been cleared. Typically, the root and
intermediate nodes will receive data flowing downward (queries) and upward (results)
simultaneously: We assume that both can be handled in a single time unit; otherwise,
and in order to keep both flows of data moving, a processor can switch :its attention
from one direction to the other alternately. It takes O(1og n) time for the answer to the

124 Searching Chap. 5

first query to be produced at the root. The answer to the second query is obtained in
the following time unit. The answer to the last query emerges q - 1 time units after the
first answer. Thus the q answers are obtained in a total of O(log n) + O(q) time.

We now examine some variations over the basic form of a query discussed so far.

1. Position If a query is successful and element s, is equal to x, it may be desired
to know the index k. Assume that the leaves are numbered 1 , . . . , n and that leaf i
contains si. Following the comparison with x, leaf i produces the pair (1, i) if si = x;
otherwise it produces (0, i). All intermediate nodes and the root now operate as
follows. If two pairs (1, i) and (0, j) are received, then the pair (1, i) is sent upward.
Otherwise, if both pairs have a 1 as a first element or if both pairs have a 0 as a first
element, then the pair arriving from the left son is sent upward. In this way, the root
produces either

(i) (1 , k) where k is the smallest index of an element in S equal to x or
(ii) (0, k) indicating that no match for x was found and, therefore, that the value of k

is meaningless.

With this modification, the root in example 5.2 would produce (1,6).
This variant of the basic query can itself be extended in three ways:

(a) When a record is found whose s field equals x, it may be desirable to obtain the
entire record as an answer to the query (or perhaps some of its fields). The
preceding approach can be generalized by having the leaf that finds a match
return a triple of the form (1, i, required information). The intermediate nodes
and root behave as before.

(b) Sometimes, the positions of all elements equal to x in S may be needed. In this
case, when an intermediate node, or the root, receives two pairs (1, i) and (1, j),
two pairs are sent upward consecutively. In this way the indices of all members
of S equal to x will eventually emerge from the root.

(c) The third extension is a combination of (a) and (b): All records whose s fields
match x are to be retrieved. This is handled by combining the preceding two
solutions

It should be noted, however, that for each of the preceding extensions care must be
taken with regards to timing if several queries are being pipelined. This is because the
result being sent upward by each node is no longer a single bit but rather many bits of
information from potentially several records (in the worst case the answer consists of
the n entire records). Since the answer to a query is now of unpredictable length, it is
no longer guaranteed that a query will be answered in O(1og n) time, that the period is
constant, or that q queries will be processed in O(log n) + O(q) time.

2. Count Another variant of the basic query asks for the number of records
whose s field equals x. This is handled exactly as the basic query, except that now the

Sec. 5.3 Searching a Random Sequence 125

intermediate nodes and the root compute the sum of their inputs (instead d the logical
or). With this modification, the root in example 5.2 would produce a 2.

3. Closest Element Sometimes it may be useful to find the element of S whose
value is closest to x. As with the basic query, x is first sent to the leaves.. Leaf i now
computes the absolute value of si - x, call it a,, and produces (i, a,) as output.

Each intermediate node and the root now receive two pairs (i, a,) and (j, aj): The
pair with the smaller a component is sent upward. With this modification and x = 38
as input, the root in example 5.2 would produce (3,2) as output. Note that the case of
two pairs with identical a components is handled either by choosing one of the two
arbitrarily or by sending both upward consecutively.

4. Rank The rank of an element x in S is defined as the number of ellements of S
smaller than x plus 1. We begin by sending x to the leaves and then having each leaf i
produce a 1 if si < x, and a 0 otherwise. Now the rank of x in S is computed by making
all intermediate nodes add their inputs and send the result upward. The root adds 1 to
the sum of its two inputs before producing the rank. With this modification, the root's
output in example 5.2 would be 3.

It should be emphasized that each of the preceding variants, if car~efully timed,
should have the same running time as the basic query (except, of course, when the
queries being processed do not have constant-length answers as pointed out earlier).

5.3.2.2 Maintenance. We now address the problem of maintaining a file
of records stored at the leaves of a tree, that is, inserting a new record and updating or
deleting an existing record.

1. Insertion In a typical file, records are inserted and deleted continually. It is
therefore reasonable to assume that at any given time a number of leaves are
unoccupied. We can keep track of the location of these unoccupied leaves by storing
in each intermediate node and at the root

(i) the number of unoccupied leaves in its left subtree and
(ii) the number of unoccupied leaves in its right subtree.

A new record received by the root is inserted into an unoccupied leaf as follows:

(i) The root passes the record to the one of its two subtrees with unoccupied leaves.
If both have unoccu,pied leaves, the root makes an arbitrary decision; if neither
does, the root signals an overflow situation.

(ii) When an intermediate node receives the new record, it routes it to its subtree
with unoccupied leaves (again, making an arbitrary choice, if necessary).

(iii) The new record eventually reaches an unoccupied leaf where it is stored.

Note that whenever the root, or an intermediate node, sends the new record to a
subtree, the number of unoccupied leaves associated with that subtreee is decreased by

126 Searching Chap. 5

1. It should be clear that insertion is greatly facilitated by the fact that the file is not to
be maintained in any particular order.

2. Update Say that every record whose s field equals x must be updated with
new information in (some of) its other fields. This is accomplished by sending x and
the new information to all leaves. Each leaf i for which si = x implements the change.

3. Deletion If every record whose s field equals x must be deleted, then we begin
by sending x to all leaves. Each leaf i for which si = x now declares itself as unoccupied
by sending a 1 to its parent. This information is carried upward until it reaches the
root. On its way, it increments by 1 the appropriate count in each node of the number
of unoccupied leaves in the left or right subtree.

Each of the preceding maintenance operations takes O(1og n) time. As before, q
operations can be pipelined to require O(1og n) + O(q) time in total.

We conclude this section with the following observations.

1. We have obtained a search algorithm for a tree-connected computer that is
more efficient than that described for a much stronger model, namely, the EREW SM
SIMD. Is there a paradox here? Not really. What our result indicates is that we
managed to find an algorithm that does not require the full power of the shared-
memory model and yet is more efficient than an existing EREW algorithm. Since any
algorithm for an interconnection network SIMD computer can be simulated on the
shared-memory model, the tree algorithm for searching can be turned into an EREW
algorithm with the same performance.

2. It may be objected that our comparison of the tree and shared-memory
algorithms is unfair since we are using 2n - 1 processors on the tree and only n on the
EREW computer. This objection can be easily taken care of by using a tree with n/2
leaves and therefore a total of n - 1 processors. Each leaf now stores two records and
performs two comparisons for every given x.

3. If a tree with N leaves is available, where 1 < N < n, then n/N records are
stored per leaf. A query now requires

(i) O(log N) time to send x to the leaves,
(ii) O(n/N) time to search the records within each leaf for one with an s field equal to

x, and
(iii) O(1og N) time to send the answer back to the root,

that is, a total of O(1og N) + O(n/N). This is identical to the time required by the
algorithms that run on the more powerful EREW, ERCW, or CREW SM SIMD
computers. Pipelining, however, is not as attractive as before: Searching within each
leaf no longer requires constant time and q queries are not guaranteed to be answered
in O(1og n) + O(q) time.

Sec. 5.3 Searching a Random Sequence 127

4. Throughout the preceding discussion we have assumed that the wire delay,
that is, the time it takes a datum to propagate along a wire, from one level of the tree
to the next is a constant. Thus for a tree with n leaves, each query or maintenance
operation under this assumption requires a running time of O(1og n) to be processed.
In addition, the time between two consecutive inputs or two consecutive outputs is
constant: In other words, searching on the tree has a constant period (provided, of
course, that the queries have constant-length answers). However, a direct hardware
implementation of the tree-connected computer would obviously have connections
between levels whose length grows exponentially with the level number. As Fig. 5.5
illustrates, the wire connecting a node at level i to its parent at level i + 1 has length
proportional to 2'. The maximum wire length for a tree with n leaves is O(n) and occurs
at level log n - 1. Clearly, this approach is undesirable from a practical point of view,
as it results in a very poor utilization of the area in which the processors and wires are
placed. Furthermore, it would yield a running time of O(n) per query if the
propagation time is taken to be proportional to the wire length. In orde:r to prevent
this, we can embed the tree in a mesh, as shown in Fig. 5.7. Figure 5.7 illustrates an n-

INTERMEDLATE
NODE

Figure 5.7 Tree-connected computer embedded in mesh.

Searching Chap. 5

node tree, with n = 31, where

(i) the maximum wire length is O(n1I2),
(ii) the area used is O(n), and

(iii) the running time per query or maintenance operation is O(n1l2) and the period is
O(n1I2), assuming that the propagation time of a signal across a wire grows
linearly with the length of the wire.

This is a definite improvement over the previous design, but not sufficiently so to
make the tree the preferred architecture for search problems. In the next section we
describe a parallel algorithm for searching on a mesh-connected SIMD computer
whose behavior is superior to that of the tree algorithm under the linear propagation
time assumption.

5.3.3 Searching on a Mesh

In this section we show how a two-dimensional array of processors can be used to
solve the various searching problems described earlier. Consider the n-processor
mesh-connected SIMD computer illustrated in Fig. 5.8 for n = 16, where each
processor stores one record of the file to be searched. This architecture has the
following characteristics:

1. The wire length is constant, that is, independent of the size of the array;

2. the area used is O(n); and
3. the running time per query or maintenance operation is O(n1I2) and the period is

constant regardless of any assumption about wire delay.

Clearly, this behavior is a significant improvement over that of the tree
architecture under the assumption that the propagation time of a signal along a wire is
linearly proportional to the length of that wire. (Of course, if the wire delay is assumed
to be a constant, then the tree is superior for the searching problem since log n < nli2
for sufficiently large n.)

5.3.3.1 Querying. In order to justify the statement in 3 regarding the
running time and period of query and maintenance operations on the mesh, we
describe an algorithm for that architecture that solves the basic query problem;
namely, given an integer x, it is required to search the file of records on the s field for x.
We then show that the algorithm produces a yes or no answer to such a query in
O(n1I2) time and that q queries can be processed in O(q) + O(n'12) time. Let us denote
by siqj the s field of the record held by processor P(i, j). The algorithm consists of two
stages: unfolding and folding.

Unfolding. Processor P(1,l) reads x. If x = s,,,, it produces an output b,,,
equal to 1; otherwise b,,, = 0. It then communicates (b,,,, x) to P(1,2). If x = s,,, or
b,,, = 1, then bIT2 = 1; otherwise b,,, = 0. Now simultaneously, the two row

Sec. 5.3 Searching a Random Sequence

INPUTIOUTPUT
4 1 1) - p(1,2) - 3 - P(1.4)

Figure 5.8 Mesh-connected computer for searching.

neighbors P (1 , l) and P(1 ,2) send (b ,,,, x) and (b , , , , x) to P (2 , l) and P(2,2) ,
respectively. Once b,, , and b,,, have been computed, the two column neighbors
P(1 ,2) and P(2,2) communicate (b,,,, x) and (b,,,, x) to P(1,3) and P(2,3), respectively.
This unfolding process, which alternates row and column propagation, cointinues until
x reaches P(n'I2, n1I2).

Folding. At the end of the unfolding stage every processor has had a chance to
"see" x and compare it to the s field of the record it holds. In this second stage, the
reverse action takes place. The output bits are propagated from row to row and from
column to column in an alternating fashion, right to left and bottom to top, until the
answer emerges from P (l , 1). The algorithm is given as procedure MESH SEARCH:

procedure MESH SEARCH (S, x, answer)

Step 1: {P(1, 1) reads the input)
if x = s,, , then b,,, + 1

else b, , , + 0
end if.

Step 2: {Unfolding}
for i = 1 to n1I2 - 1 do

(2.1) for j = 1 to i do in parallel
(i) P(j, i) transmits (bj,i, x) to P(j, i + 1)
(ii) if (X = s ~ , ~ + , or bj,i = 1) then bjqi+ , + 1

else bj,i+ , + 0
end if

end for

Searching Chap. 5

(2.2) for j = 1 to i + 1 do in parallel
(i) P(i, j) transmits (bi,j, x) to P(i + 1, j)
(ii) i f (x = s i+ l , j or bi.j = 1) then bi+l. j+ 1

else bi+l. j 6 0
end if

end for
end for.

Step 3: {Folding}
for i = n1I2 downto 2 do

(3.1) for j = 1 to i do in parallel
P(j, i) transmits bj,; to P(j, i - 1)

end for
(3.2) for j = 1 to i - 1 do in parallel

bj,i- 1 bj.i
end for

(3.3) if (b i , i l = l or bi, i=l)then bi,i-l+-l
else bi,i- , t 0

end if
(3.4) for j = 1 to i - 1 do in parallel

P(i, j) transmits b , , to P(i - 1, j)
end for

(3.5) for j = 1 to i - 2 do in parallel
bi- l , j + bi.j

end for
(3.6) i f (b ,-,, i - l = 1 or bi.i-l = 1)then bi- l , i - l + l

else bi_, , i - l t 0
end if

end for.

Step 4: {P(l, l) produces the output}
if b,,, = 1 then answer + yes

else answer t no
end if.

Analysis

As each of steps 1 and 4 takes constant time and steps 2 and 3 consist of nl i2 - 1
constant-time iterations, the time to process a query is O(n1'2). Notice that after the
first iteration of step 2, processor P(1,l) is free to receive a new query. The same
remark applies to other processors in subsequent iterations. Thus queries can be
processed in pipeline fashion. Inputs are submitted to P(1,l) at a constant rate. Since
the answer to a basic query is of fixed length, outputs are also produced by P(l, 1) at a
constant rate following the answer to the first query. Hence the period is constant.

Example 5.3

Let a set of 16 records stored in a 4 x 4 mesh-connected SIMD computer be as shown in
Fig. 5.9. Each square in Fig. 5.9(a) represents a processor and the number inside it is the s

Sec. 5.3 Searching a Random Sequence

Figure 5.9 Searching sequence of sixteen elements using procedure MESH
SEARCH.

field of the associated record. Wires connecting the processors are omitted for simplicity.
It is required to determine whether there exists a record with s field equal to 15 (i.e.,
x = 15). Figures 5.9(b)-5.9(h) illustrate the propagation of 15 in the arra:y. Figure 5.9(i)
shows the relevant b values at the end of step 2. Figures 5.9(j)-5.9(0) illustrate the folding
process. Finally Fig. 5.9(p) shows the result as produced in step 4. Note that in Fig. 5.9(e)
processor P(1,l) is shown empty indicating that it has done its job propagating 15 and is
now ready to receive a new query.

Some final comments are in order regarding procedure MESH SEARCH.

1. N o justification was given for transmitting bi,j along with x during the unfolding
stage. Indeed, if only one query is to be answered, no processor needs to
communicate its b value to a neighbor: All processors can compute and retain
their outputs; these can then be combined during the folding stage. However, if

132 Searching Chap. 5

several queries are to be processed in pipeline fashion, then each processor must
first transmit its current b value before computing the next one. In this way the
biVj are continually moving, and no processor needs to store its b value.

2. When several queries are being processed in pipeline fashion, the folding stage of
one query inevitably encounters the unfolding stage of another. As we did for the
tree, we assume that a processor simultaneously receiving data from opposite
directions can process them in a single time unit or that every processor
alternately switches its attention from one direction to the other.

3. It should be clear that all variations over the basic query problem described in
section 5.3.2.1 can be easily handled by minor modifications to procedure
MESH SEARCH.

5.3.3.2 Maintenance. All three maintenance operations can be easily
implemented on the mesh.

1. Insertion Each processor in the top row of the mesh keeps track of the
number of unoccupied processors in its column. When a new record is to be inserted,
it is propagated along the top row until a column is found with an unoccupied
processor. The record is then propagated down the column and inserted in the first
unoccupied processor it encounters. The number of unoccupied processors in that
column is reduced by 1.

2. Updating All records to be updated are first located using procedure MESH
SEARCH and then the change is implemented.

3. Deletion When a record is to be deleted, it is first located, an indicator is
placed in the processor holding it signifying it is unoccupied, and the count at the
processor in the top row of the column is incremented by 1.

5.4 P R O B L E M S

5.1 Show that C2(log n) is a lower bound on the number of steps required to search a sorted
sequence of n elements on an EREW SM SIMD computer with n processors.

5.2 Consider the following variant of the EREW SM SIMD model. In one step, a processor
can perform an arbitrary number of computations locally or transfer an arbitrary number
of data (to or from the shared memory). Regardless of the amount of processing -
(computations or data transfers) done, one step is assumed to take a constant number of
time units. Note, however, that a processor is allowed to gain access to a unique memory
location during each step (as customary for the EREW model). Let n processors be
available on this model to search a sorted sequence S = {s,, s,, . . . , s,} of length n for a
given value x. Suppose that any subsequence of S can be encoded to fit in one memory
location. Show that under these conditions the search can be performed in O(10g"~n) time.
[Hint: Imagine that the data structure used to store the sequence in shared memory is a
binary tree, as shown in Fig. 5.1qa) for n = 31. This tree can be encoded as shown in Fig.
5.10(b).]

Sec. 5.4 Problems

Figure 5.10 Data structures for problem 5.2.

5.3 Prove that R(l~g' '~n) is a lower bound on the number of steps required to search a sorted
sequence of n elements using n processors on the EREW SM SIMD computer of problem
5.2.

5.4 Let us reconsider problem 5.2 but without the assumption that arbitrary subsequences of
S can be encoded to fit in one memory location and communicated in one step. Instead, we
shall store the sequence in a tree with d levels such that a node at level i contains d - i
elements of S and has d - i + 1 children, as shown in Fig. 5.11 for n = 23. Each node of
this tree is assigned to a processor that has sufficient local memory to store the elements of
S contained in that node. However, a processor can read only one element of S at every
step. The key x to be searched for is initially available to the processor in charge of the
root. An additional array in memory, with as many locations as there are processors,
allows processor Pi to communicate x to P j by depositing it in the location a.ssociated with
Pj . Show that O(n) processors can search a sequence of length n in O(log ,n/log log n).

Searching Chap. 5

Figure 5.11 Data structure for problem 5.4.

5.5 Let M(N,r, s) be the number of comparisons required by an N-processor CREW SM
SIMD computer to merge two sorted sequences of length r and s, respectively. Prove that
M(N, 1,s) = riog(s + I) ~ o ~ (N + 1)i.

5.6 Let 1 < r < N and r < s. Prove that

5.7 Let 1 < N d r < s. Prove that

5.8 Consider an interconnection-network SIMD computer with n processors where each
processor has a fixed-size local memory and is connected to each of the other n - 1
processors by a two-way link. At any given step a processor can perform any amount of
computations locally but can communicate at most one input to at most one other
processor. A sequence S is stored in this computer one element per processor. It is required
to search S for an element x initially known to one of the processors. Show that Q(1og n)
steps are required to perform the search.

5.9 Assume that the size of the local memory of the processors in the network of problem 5.8 is
no longer fixed. Show that if each processor can send or receive one element of S or x at a
time, then searching S for some x can be done in O(log nllog log n) time.

5.10 Reconsider the model in problem 5.8 but without any restriction on the kind of
information that can be communicated in one step from one processor to another. Show
that in this case the search can be performed in O(logl'*n) time.

5.11 Let the model of computation described in problem 2.9, that is, a linear array of N
processors with a bus, be available. Each processor has a copy of a sorted sequence S of n
distinct elements. Describe an algorithm for searching S for a given value x on this model
and compare its running time to that of procedure CREW SEARCH.

5.12 An algorithm is described in example 1.4 for searching a file with n entries on a CRCW SM
SIMD computer. The n entries are not necessarily distinct or sorted in any order. The

Sec. 5.5 Bibliographical Remarks 135
I .

algorithm uses a location F in shared memory to determine whether early termination is
possible. Give a formal description of this algorithm.

5.13 Give a formal description of the tree algorithm for searching described in section 5.3.2.1.
5.14 Given a sequence S and a value x, describe tree algorithms for solving; the following

extensions to the basic query:
(a) Find the predecessor of x in S, that is, the largest element of S smaller than x.
(b) Find the successor of x in S, that is, the smallest element of S larger than x.

5.15 A file of n records is stored in the leaves of a tree machine one record per leaf. Each record
consists of several fields. Given ((i, xi), (j, xj), . . . , (m, x,)), it is required to find the records
with the ith field equal to xi, the jth field equal to xi, and so on. Describe an algorithm for
solving this version of the search problem.

5.16 Consider a tree-connected SIMD computer where each node contains a record (not just
the leaves). Describe algorithms for querying and maintaining such a file of records.

5.17 Repeat problem 5.14 for a mesh-connected SIMD computer.
5.18 Consider the following modification to procedure MESH SEARCH. As usual, P(1,l)

receives the input. During the unfolding stage processor P(i, j) can send data simulta-
neously to P(i + 1, j) and P(i, j + 1). When the input reaches P(nl/', nl/'), this processor
can compute the final answer and produce it as output (i.e., there is no folding stage).
Describe the modified procedure formally and analyze its running time.

5.19 Repeat problem 5.11 for the case where the number of processors is n and each processor
stores one element of a sequence S of n distinct elements.

5.20 A binary sequence of length n consisting of a string of 0's followed by a string of 1's is given.
It is required to find the length of the string of 0's using an EREW SM SIMD computer
with N processors, 1 < N < n. Show that this can be done in O(log(n/N)) time.

5.21 In a storage and retrieval technique known as hashing, the location of a dlata element in
memory is determined by its value. Thus, for every element x, the address of x is f (x),
where f is an appropriately chosen function. This approach is used when the data space
(set of potential values to be stored) is larger than the storage space (memory locations) but
not all data need be stored at once. Inevitably, collisions occur, that is, f (x) = f(y) for
x # y, and several strategies exist for resolving them. Describe a parallel algorithm for the
hashing function, collision resolution strategy, and model of computation of your choice.

5.22 The algorithms in this chapter addressed the discrete search problem, that is, searching for
a value in a given sequence. Similar algorithms can be derived for the contirluous case, that
is, searching for points at which a continuous function takes a given value. Describe
parallel algorithms for locating (within a given tolerance) the point at which a certain
function (i) assumes its largest value and (ii) is equal to zero.

5.23 It was shown in section 5.2.2 that procedure CREW SEARCH achieves th~e best possible
running time for searching. In view of the lower bound in problem 5.1, show that no
procedure faster than MULTIPLE BROADCAST of section 3.4 exists for simulating a
CREW algorithm on an EREW computer.

5.5 B lBL lOGRAPHlCAL R E M A R K S

The problem of searching a sorted sequence in parallel has attracted a good de:al of attention
since searching is an often-performed and time-consuming operation in most database,
information retrieval, and office automation applications. Algorithms similar to procedure

136 Searching Chap. 5

CREW SEARCH for searching on the EREW and CREW models, as well as variations of these
models, are described in [Coraor], [Kruskal], [Munro], and [Snir]. In [Baer] a parallel
computer is described that consists of N processors connected via a switch to M memory
blocks. During each computational step several processors can gain access to several memory
blocks simultaneously, but no more than one processor can gain access to a given memory
block (recall Fig. 1.4). A sorted sequence is distributed among the memory blocks. Various
implementations of the binary search algorithm for this model are proposed in [Baer]. A brief
discussion of how to speed up information retrieval operations through parallel processing is
provided in [Salton I].

Several algorithms for searching on a tree-connected computer are described in
[Atallah], [Bentley], [Bonuccelli], [Chung], [Leiserson 11, CLeiserson21, [Ottman],
[Somani], and [Song]. Some of these algorithms allow for records to be stored in all nodes of
the tree, while others allow additional connections among the nodes (such as, e.g., connecting
the leaves as a linear array). The organization of a commercially available tree-connected
computer for database applications is outlined in [Seaborn]. Also, various ways to implement
tree-connected computers in VLSI are provided in [Bhatt] and [Schmeck 11. An algorithm
analogous to procedure MESH SEARCH can be found in [Schmeck 21. The idea that the
propagation time of a signal along a wire should be taken as a function of the length of the wire
in parallel computational models is suggested in [Chazelle] and [Thompson].

Other parallel algorithms for searching on a variety of architectures are proposed in the
literature. It is shown in [Kung 23, for example, how database operations such as intersection,
duplicate removal, union, join, and division can be performed on one- and two-dimensional
arrays of processors. Other parallel search algorithms are described in [Boral], [Carey],
[Chang], [DeWitt I], [DeWitt 23, [Ellis I], [Ellis 21, [Fisher], [Hillyer], [Kim], [Lehman],
[Potter], [Ramamoorthy], [Salton 21, [Schuster], [Stanfill], [Stone], [Su], [Tanaka], and
[Wong]. In [Rudolph] and [Weller] the model of computation is a so-called parallel pipelined
computer, which consists of N components of M processors each. Each component can initiate
a comparison every 1/M units of time; thus up to N M comparisons may be in progress at one
time. The algorithms in [Rudolph] and [Weller] implement a number of variations of binary
search. Several questions related to querying and maintaining files on an MIMD computer are
addressed in [Kung 11, [Kwong I], and [Kwong 21. Parallel hashing algorithms are presented
in [Miihlbacher]. Finally, parallel search in the continuous case is the subject of [Gal] and
[Karpl.

5.6 R E F E R E N C E S

[ATALLAH]
Atallah, M. J., and Kosaraju, S. R., A generalized dictionary machine for VLSI, IEEE
Transactions on Computers, Vol. C-34, No. 2, February 1985, pp. 151-155.

[BAER]
Baer, J.-L., Du, H. C., and Ladner, R. E., Binary Search in a multiprocessing environment,
IEEE Transactions on Computers, Vol. C-32, No. 7, July 1983, pp. 667-676.

[BENTLEY]
Bentley, J. L., and Kung, H. T., Two papers on a tree-structured parallel computer, Technical
Report NO. CMU-CS-79-142, Department of Computer Science, Carnegie-Mellon Univers-
ity, Pittsburgh, August 1979.

Sec. 5.6 References 1 37

[BHATT]
Bhatt, S. N., and Leiserson, C. E., How to assemble tree machines, Proceedings of the 14th
Annual ACM Symposium on Theory of Computing, San Francisco, California, May 1982,
pp. 77-84, Association for Computing Machinery, New York, N.Y., 1982.

[BONUCCELLI]
Bonuccelli, M. A., Lodi, E., Lucio, F., Maestrini, P., and Pagli, L., A VLSI tree machine for
relational data bases, Proceedings of the 10th Annual ACM International Symposium on
Computer Architecture, Stockholm, Sweden, June 1983, pp. 67-73, Association for Comput-
ing Machinery, New York, N.Y., 1983.

[BORAL]
Boral, H., and DeWitt, D. J., Database machines: An idea whose time has passed? A critique
of the future of database machines, in Leilich, H. O., and Missikoff, M., E:ds., Database
Machines, Springer-Verlag, Berlin, 1983.

[CAREY]
Carey, M. J., and Thompson, C. D., An efficient implementation of search trees on
rlog N + 11 processors, IEEE Transactions on Computers, Vol. C-33, No. 11, November 1984,
pp. 1038-1041.

[CHANG]
Chang, S.-K., Parallel balancing of binary search trees, IEEE Transactions on Computers, Vol.
C-23, No. 4, April 1974, pp. 441-445.

[CHAZELLE]
Chazelle, B., and Monier, L., A model of computation for VLSI with related complexity
results, Journal of the ACM, Vol. 32, No. 3, July 1985, pp. 573-588.

[CHUNG]
Chung, K. M., Lucio, F., and Wong, C. K., Magnetic bubble memory structures for efficient
sorting and searching, in Lavington, S. H., Ed., Information Processing 80, North-Holland,
Amsterdam, 1980.

[CORAOR]
Coraor, L. D., A multiprocessor organization for large data list searches, Ph.D. thesis,
Department of Electrical Engineering, University of Iowa, Iowa City, July 1978.

[DEWITT 11
DeWitt, D. J., DIRECT-a multiprocessor organization for supporting relational database
management systems, IEEE Transactions on Computers, Vol. C-28, No. 6, June 1979, pp. 395-
406.

[DEWITT 21
DeWitt, D. J., and Hawthorn, P. B., A performance evaluation of database machine
architectures, Proceedings of the 7th International Conference on Very Larg~e Data Bases,
Cannes, France, September 1981, pp. 199-213, VLDB Endowment, Cannes, France, 1981.

[ELLIS 11
Ellis, C., Concurrent search and insertion in 2-3 trees, Acta lnformatica, Vol. 14, 1980, pp. 63-
86.

[ELLIS 21
Ellis, C., Concurrent search and insertion in AVL trees, IEEE Transactions on Computers,
Vol. C-29, No. 9, September 1980, pp. 81 1-817.

[FISHER]
Fisher, A. L., Dictionary machines with a small number of processors, Proct:edings of the

1 38 Searching Chap. 5

11th Annual ACM International Symposium on Computer Architecture, Ann Arbor,
Michigan, June 1984, pp. 151-156, Association for Computing Machinery, New York, N.Y.,
1984.

[GAL]
Gal, S., and Miranker, W. L., Optimal sequential and parallel search for finding a root,
Journal of Combinatorial Theory (A), Vol. 23, 1977, pp. 1-14.

[HILLYER]
Hillyer, B. K., Shaw, D. E., and Nigam, A., NOV-VON's performance on certain database
benchmarks, IEEE Transactions on Software Engineering, Vol. SE-12, NO. 4, April 1986, pp.
577-583.

[K ARP]
Karp, R. M., and Miranker, W. L., Parallel minimax search for a maximum, Journal of
Combinatorial Theory, Vol. 4, 1968, pp. 19-35.

[KIM]
Kim, W., Gajski, D., and Kuck, D. J., A parallel-pipelined query processor, ACM
Transactions on Database Systems, Vol. 9, No. 2, June 1984, pp. 214-242.

[KRUSKAL]
Kruskal, C. P., Searching, merging, and sorting in parallel computation, IEEE Transactions
on Computers, Vol. C-32, No. 10, October 1983, pp. 942-946.

[K UNG 11
Kung, H. T., and Lehman, P. L., Concurrent manipulation of binary search trees, ACM
Transactions on Database Systems, Vol. 5, No. 3, September 1980, pp. 354-382.

[K UNG 21
Kung, H. T., and Lehman, P. L., Systolic (VLSI) arrays for relational database operations,
Technical Report No. CMU-CS-80-114, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, 1980.

[KWONG 11
Kwong, Y. S., and Wood, D., Concurrency in B-trees, S-trees and T-trees, Technical Report
No. 79-CS-17, Unit for Computer Science, McMaster University, Hamilton, Ontario, 1979.

[KWONG 21
Kwong, Y. S., and Wood, D., On B-trees: Routing schemes and concurrency, Technical
Report No. 80-CS-5, Unit for Computer Science, McMaster University, Hamilton, Ontario,
1980.

[L EHMAN]
Lehman, P. L., and Yao, S. B., Efficient locking for concurrent operations on B-trees, ACM
Transactions on Database Systems, Vol. 6, No. 4, December 1981, pp. 650-670.

[LEISERSON 11
Leiserson, C. E., Systolic priority queues, Technical Report No. CMU-CS-79-115, Depart-
ment of Computer Science, Carnegie-Mellon University, Pittsburgh, 1979.

[LEISERSON 21
Leiserson, C. E., Area-Eficient VLSI Computation, MIT Press, Cambridge, Mass., 1983.

[M~~HLBACHER]
Miihlbacher, J. R., Full table scatter storage parallel searching, Computing, Vol. 26, 1986, pp.
9- 18.

Sec. 5.6 References 139

[MUNRO]
Munro, J. I., and Robertson, E. L., Parallel algorithms and serial data structures., Proceedings
of the 17th Annual Allerton Conference on Communications, Control and Computing,
Monticello, Illinois, October 1979, pp. 21-26, University of Illinois, Urbana-Champaign,
Illinois, 1979.

[OTTMAN]
Ottman, T. A., Rosenberg, A. L., and Stockmeyer, L. J., A dictionary machine (for VLSI),
IEEE Transactions on Computers, Vol. C-31, No. 9, September 1982, pp. 892-897.

[POTTER]
Potter, J. L., Programming the MPP, in Potter, J. L., Ed., The Massively Parallel Processor,
MIT Press, Cambridge, Mass., 1985, pp. 218-229.

[RAMAMOORTHY]
Ramamoorthy, C. V., Turner, J. L., and Wah, B. W., A design of a fast cellula~r associative
memory for ordered retrieval, IEEE Transactions on Computers, Vol. C-27, No. 9, September
1978, pp. 800-815.

[RUDOLPH]
Rudolph, D., and Schlosser, K.-H., Optimal searching algorithms for parallel pipelined
computers, in Feilmeier, M., Joubert, J., and Schendel, U., Eds., Parallel Computing 83,
North-Holland, Amsterdam, 1984.

[SALTON 11
Salton, G., Automatic information retrieval, Computer, Vol. 13, No. 9, September 1980, pp.
41-56.

[SALTON 21
Salton, G., and Buckley, C., Parallel text search methods, Communications of the ACM, Vol.
31, No. 2, February 1988, pp. 202-215.

[SCHMECK 11
Schmeck, H., On the maximum edge length in VLSI layouts of complete binary trees,
Information Processing Letters, Vol. 23, No. 1, July 1986, pp. 19-23.

[SCHMECK 23
Schmeck, H., and Schroder, H., Dictionary machines for different models of VLSI, IEEE
Transactions on Computers, Vol. C-34, No. 2, February 1985, pp. 151-155.

[SCHUSTER]
Schuster, S. A., Ngyuen, H. B., and Ozkarahan, E. A., RAP.2: An associative processor for
databases and its applications, IEEE Transactions on Computers, Vol. C-28, No. 6, June 1979,
pp. 446-458.

[SEABORN]
Seaborn, T., The genesis of a database computer, Computer, Vol. 17, No. 11, November 1984,
pp. 42-56.

[SNIR]
Snir, M., On parallel searching, SIAM Journal on Computing, Vol. 14, NO. 3, Aul:ust 1985, pp.
688-708.

[SOMANI]
Somani, A. K., and Agarwal, V. K., An efficient VLSI dictionary machine, Proce:edings of the
11th Annual ACM International Symposium on Computer Architecture, Ann Arbor,
Michigan, June 1984, pp. 142-150, Association for Computing Machinery, New York, N.Y.,
1984.

140 Searching Chap. 5

[SONG]
Song, S. W., A highly concurrent tree machine for database applications, Proceedings of the
1980 International Conference on Parallel Processing, Harbor Springs, Michigan, August
1980, pp. 259-268, IEEE Computer Society, Washington, D.C., 1980.

[STANFILL]
Stanfill, C., and Kahle, B., Parallel free text search on the connection machine system,
Communications of the ACM, Vol. 29, No. 12, December 1986, pp. 1229-1239.

[STONE]
Stone, H. S., Parallel querying of large databases: A case study, Computer, Vol. 20, No. 10,
October 1987, pp. 11-21.

CSul
Su, S. Y. W., Associative programming in CASSM and its applications, Proceedings of the
3rd International Conference on Very Large Data Bases, Tokyo, Japan, October 1977, pp.
213-228, VLDB Endowment, Tokyo, Japan, 1977.

[TANAKA]
Tanaka, Y., Nozaka, Y., and Masuyama, A., Pipeline searching and sorting modules as
components of a data flow database computer, in Lavington, S. H., Ed., Information
Processing 80, North-Holland, Amsterdam, 1980.

[THOMPSON]
Thompson, C. D., The VLSI complexity of sorting, IEEE Transactions on Computers, Vol. C-
32, No. 12, December 1983, pp. 1171-1 184.

[WELLER]
Weller, D. L., and Davidson, E. S., Optimal searching algorithms for parallel-pipelined
computers, in Goos, G., and Hartmanis, J., Ed., Parallel Processing, Springer-Verlag, Berlin,
1975, pp. 291-305.

[WONG]
Wong, C. K., and Chang, S.-K., Parallel generation of binary search trees, IEEE Transactions
on Computers, Vol. C-23, No. 3, March 1974, pp. 268-271.

Generating Permutations
and Combinations

6.1 INTRODUCTION

The enumeration of combinatorial objects occupies an important place in computer
science due to its many applications in science and engineering. In this chapter we
describe a number of parallel algorithms for the two fundamental problems of
generating permutations and combinations. We begin with some definitions.

Let S be a set consisting of n distinct items, say, the first n positive integers; thus
S = {1,2,. . . , n). An m-permutation of S is obtained by selecting m distinct integers out
of the n and arranging them in some order. Thus for n = 10 and m = 4, a 4-
permutation might be (5 7 9 2). Two m-permutations are distinct if they differ with
respect to the items they contain or with respect to the order of the items. The number
of distinct m-permutations of n items is denoted by "P,, where

Thus for n = 4, there are twenty-four distinct 3-permutations. Note that vvhen m = n,
"Pn = n!.

Now let x = (x, x, . . . x,) and y = (y, y, . . . y,) be two m-permutations of S. We
say that x precedes y in lexicographic order if there exists an i , 1 < i < fin, such that
x j = yj for all j < i and xi < y,. The 3-permutations of {1,2,3,4) in lexicographic
order are

(1231, (1 2 % (1 3 % (1 3 %

(1 4 21, (1 4 3), (2 1 3), (2 1 41,

(2 3 I), (2 3 4), (2 4 I), (2 4 31,

Note that, since S = (1, 2, 3, 41, lexicographic order coincides with increasing

142 Generating Permutations and Combinations Chap. 6

numerical order. Had the elements of S been letters of the alphabet, lexicographic
order would have been equivalent to the order used to list words in a dictionary.

An m-combination of S is obtained by selecting m distinct integers out of the n
and arranging them in increasing order. Thus for n = 6 and m = 3, one 3-combination
is (2 4 5). Two m-combinations are distinct if they differ with respect to the items they
contain. The number of distinct m-combinations of n items is denoted by "C, [and
sometimes C)], where

Thus for n = 4, there are four distinct 3-combinations. Since m-combinations are a
special case of m-permutations, the definition of lexicographic order applies to them as
well. The 3-combinations of {1,2,3,4) in lexicographic order are

It should be clear that each of the two integers "P, and "C, can be computed
sequentially in O(m) time.

This chapter addresses the problems of generating all m-permutations and m-
combinations of n items in lexicographic order. We begin by describing a number of
sequential algorithms in section 6.2. Two of these algorithms are concerned with
generating m-permutations and m-combinations in lexicographic order, respectively.
The other algorithms in section 6.2 implement two numbering systems that associate a
unique integer with each m-permutation and each m-combination, respectively. Three
parallel m-permutation generation algorithms for the EREW SM SIMD model of
computation are described in section 6.3. The first of these algorithms is a direct
parallelization of the sequential algorithm in section 6.2. It uses m processors and runs
in O("P,log m) time. The second algorithm is based on the numbering system for m-
permutations described in section 6.2 and is both adaptive and cost optimal. It uses N
processors, where 1 < N Q "P,/n, and runs in O(YP,/Nlm) time. The third algorithm
applies to the case where m = n; it uses N processors, where 1 < N Q n, and runs in
O(rn!/Nln) time for an optimal cost of O(n! n). Section 6.4 is devoted to two parallel m-
combination generation algorithms for EREW SM SIMD computers. The first uses m
processors and runs in O("C,log m) time. This algorithm is neither adaptive nor cost
optimal. The second algorithm enjoys both of these properties and is based on the
numbering system for m-combinations described in section 6.2. It uses N processors,
where 1 < N Q "C,/n, and runs in O(rnCm/Nlm) time.

6.2 SEQUENTIAL ALGORITHMS

In this section we describe a number of sequential algorithms. The first algorithm
generates all m-permutations of n items in lexicographic order. We also show how all
m-permutations of n items can be put into one-to-one correspondence with the
integers 1,. . . , "P,. Two algorithms, one for mapping a given permutation to an

Sec. 6.2 Sequential Algorithms 143

integer and another that performs the inverse mapping, are described. We: then move
to combination-related algorithms. Three algorithms are described: The first gen-
erates all m-combinations of n items in lexicographic order; the second maps a given
combination to a unique integer 1,. . . , "C,; and the third generates a unique
combination corresponding to a given integer 1,. . . , "C,. All the algorithms presented
in this section will then be used in our development of parallel permutation and
combination generation algorithms. We continue to assume that S = (1:. 2,. . . , n).

6.2.1 Generating Permutations Lexicographically

Our algorithm for generating all m-permutations of {1,2,. . . , n) proceeds as follows.
Beginning with the permutation (1 2 . . . m) all m-permutations are generated in
lexicographic order, until the last permutation, namely, (n n - 1 . . . n -- m + 1), is
generated. Given (p, p, . . . p,) the next permutation is obtained by calling ,a procedure
NEXT PERMUTATION. This procedure uses a bit array u = u,, u,, . . . , u, as
follows:

(i) When the procedure begins execution all the entries of u are 1.
(ii) For each element pi in the given permutation (p, p, . . . p,), if pi = j, then uj is set

to 0.
(iii) When the procedure terminates, all entries of u are 1.

In order to generate the next permutation, the procedure begins by determining
whether the current permutation is updatable. A permutation (p, p, . . . p,) is up-
datable if for at least one of its elements pi there exists a j such that pi .< j < n and
uj = 1. Thus the only permutation that is not updatable is (n n - 1 . . . n - m + 1).
Having determined that a permutation (p, p, . . . p,) is updatable, the rightmost
element pi and the smallest index j for which the preceding condition holds are
located: pi is made equal to j and uj to 0. All the elements pi+ ,, pi+,, . . . , pm to the
right of pi are now updated. This is done as follows: p i+ , , 1 < k < m - i, is made equal
to s if us is the kth position in u that is equal to 1. The algorithm is given as
procedure SEQUENTIAL PERMUTATIONS followed by procedure NEXT
PERMUTATION, which it calls:

procedure SEQUENTIAL PERMUTATIONS (n, m)

Step 1: (1.1) (p,p, . . . p,) 6 (1 2.. . m)
(1.2) produce (p , p, . . . p,) as output
(1.3) u, , u 2 , . . . , u,, t (1, 1,. . . , 1).

Step 2: for i = 1 to ("P, - 1) do
NEXT PERMUTATION (n, m, p,, p,, . . . , p,)

end for.

1 44 Generating Permutations and Combinations Chap. 6

procedure NEXT PERMUTATION (n, m, p , , p,, . . . , p,)
if(p,p z . . . p ,) Z (n n - l . . . n - m + l)
then (1) for i = 1 to m do

u t o
p,

end for
(2) f + n
(3) {Find the largest unused integer)

while u, # 1 do
f - f - 1

end while
(4) k t m + 1
(5) i e 0
(6) {Find rightmost updatable element)

while i = 0 do
(6.1) k t k - 1
(6.2) up*+ 1
(6.3) if p, < f

then {update p,)
(i) find smallest j such that

p, < j < n and u j = 1
(ii) i t k
(iii) pi t j
(iv) up t O

else {laigest unused integer is set equal to p,)
f +Pk

end if
end while

(7) {Update elements to the right of pi)
for k = 1 to m - i do

if u, is kth position in u that is 1
then pi+, + s
end if

end for
(8) {Reinitialize array u }

for k = 1 to i do
u e l

' k

end for
(9) produce (p, p , . . . p,) as output

end if.

Analysis. Procedure SEQUENTIAL PERMUTATIONS consists of one
execution of step 1 requiring O(n) time and "P , - 1 executions of step 2. In step 2 each
call to procedure NEXT PERMUTATION performs O(m) steps. This can be seen as
follows. Steps 1, 3, 8, and 9 take O(m) time, while steps 2, 4, and 5 require constant
time. Since only m positions of array u are 0 after step 1, both steps 6 and 7 take O(m)
steps. The overall running time of procedure SEQUENTIAL PERMUTATIONS is
O("P,m). This behavior is optimal in view of the fact that n("P,m) time is required to
produce "P, lines of output, each m elements long.

Sec. 6.2 Sequential Algorithms

6.2.2 Numbering Permutations

We now show that a one-to-one correspondence exists between the integers 1,. . . , "P,
and the set of m-permutations of {1,2,. . . , m) listed in lexicographic order. Specifi-
cally, we define a function rankp with the following properties:

(i) Let (p, p,. . . p,) be one of the "P, m-permutations of {1,2,. . . ,n); then
rankp(p,, p,, . . . ,p,) is an integer in {1,2,. . . , "P,).

(ii) Let (p, p, .. . p,) and (q, 9, . . . q,) be two m-permutations of (1, 2, . .., n);
then (p, p, . . . p,) precedes (q, q, . . . q,) lexicographically if a.nd only if
rankp(p,, p,, . . . , p,) < rankp(q1, 92,. . . ,q,).

(iii) Let d = rankp(p,,p,,. . . ,p,); then (p, p,. . . p,) can be obtained from
rankp-'(d), that is, rankp is invertible, as can be deduced from (i) and (ii).

For the permutation (p, p, . . . p,) define the sequence {r,, r,, . . . , r,) as follows:

i -1 1 if pi < pj,
ri = pi - i + 1 [pi < pj] where [pi < pj1 =

j= l 0 otherwise.

The string r, r, . . . r, can be seen as a mixed radix integer where

Expressing r, r, . . . rm as a decimal number gives us the integer corresponding to
(PI ~2 . . . ~m):

Let d = rankp(p,, p,, . . . , p,); the permutation (p, p, . . . p,) can be obtained from d as
follows. A sequence (r,, r,, . . . , r,) is computed from

Then (p, p2 . . . p,) is defined recursively by

where di is the smallest nonnegative integer such that

1 46 Generating Permutations and Combinations Chap. 6

Functions rankp and rankp-' are given below as procedures RANKP and
RANKPINV, respectively.

procedure RANKP (n, m, P I , p,, . . . , P,, d)

Step 1: for i = 1 to m do
(1.1) d t - i
(1.2) for j = 1 to i - 1 do

if pi < pj then d t d + 1 end if
end for

(1.3) si t pi + d
end for.

Step 2: d t s,.

Step 3: i + 1.

Step 4: for j = m - 1 downto 1 do
(4.1) i + (n - j) x i
(4.2) d t d + (s j x i)

end for.

Step 5: d t d + 1.

procedure RANKPINV (n, rn, d, p,, p,, . . . , p,)

Step 1: d + d - 1.

Step 2: for i = 1 to n do
si c 0

end for.

Step 3: a +- 1.

Step 4: for i = m - 1 downto 1 do
a + - a x @ - m + i)

end for.

Step 5: for i = 1 to rn do
(5.1) b + Ld/a]
(5.2) d t d - (a x b)
(5.3) if n > i then a +- a/(n - i) end if
(5.4) k t 0
(5.5) j +- 0
(5.6) {Find the (b + 1)st position in s equal t o 0)

while k < b + 1 do
(i) j + j + 1

(ii) if sj = 0 then k + k + 1 end if
end while

(5.7) Pi + j
(5.8) s j t 1

end for.

Sec. 6.2 Sequential Algorithms 147

Analysis. In procedure RANKP, steps 2, 3, and 5 take constant time while
step 4 consists of a constant time loop executed m times. Step 1 consists of two nested
O(m) time loops plus two constant time steps. The procedure therefore requires O(m2)
time. The running time of procedure RANKPINV is dominated by step 5, which
requires O(mn) time.

6.2.3 Generating Combinations Lexicographically

We now give a sequential algorithm for generating all m-combinations of (l , 2 , . . . , n)
in lexicographic order. The algorithm begins by generating the initial combination,
namely (1 2. . . m). Then, every one of the "C, - 1 subsequent m-combinations is
derived from its predecessor (c, c2 . . . c,) as follows. First observe that the last
combination to be generated is ((n - m + l)(n - m + 2). . . n). A combination
(c, c2 ... c,) is therefore updatable if for some j, 1 < j < m, cj < n - m + j. If
(c, c2 . . . c,) is updatable, then the largest j satisfying the above condition is
determined. The next combination in lexicographic order can now be obtained by

1. incrementing cj by one, and
2. setting cj+, c cj + 1, c ~ + ~ c c ~ + ~ + 1,. . . ,c, c c,-I + 1.

The algorithm is given below as procedure SEQUENTIAL COMBINATIONS along
with procedure NEXT COMBINATIONS which it calls.

procedure SEQUENTIAL COMBINATIONS (n, m)

Step 1: (1.1) (c, c, . . . c,) t (1 2 . . . m)
(1.2) produce (c, c, . .. c,) as output.

Step 2: for i = 1 to "C, - 1 do
NEXT COMBINATION (n, m, c,, c,, . . . , c,)

end for.

procedure NEXT COMBINATION (n, m, c , , c,, . . . , c,)

Step 1: j + m.

Step 2: while 0' > 0) do
i f c j < n - - m + j
then

(2.1) cj+ cj + 1
(2.2) for i = j + 1 to m do

ci 4- C i - l + 1
end for

(2.3) produce (c, c,. . . c,) as output
e l s e j t j - 1
end if

end while.

148 Generating Permutations and Combinations Chap. 6

Analysis. Procedure NEXT COMBINATION scans a given m-
combination once from right to left and then (from an updatable position) left
to right. This takes O(m) steps in the worst case. Procedure SEQUENTIAL
COMBINATIONS requires O(m) time in step 1 to produce the initial permutation.
Step 2 consists of "C, - 1 iterations each of which is a call to procedure NEXT
COMBINATION and thus requires O(m) time. The overall running time of procedure
SEQUENTIAL COMBINATIONS is O("C,m). This behavior is optimal since
R("C,m) steps are required to produce "C, lines of output, each m elements long.

6.2.4 Numbering Combinations

As we did with m-permutations, we now show that a one-to-one correspondence exists
between the integers 1,. . . , "C, and the set of m-combinations of {1,2,. . . , n) listed in
lexicographic order. Let (c, c, . . . c,) represent one such combination (where, by
definition, c, < c, < . . . < em). We define

complement(n, c,, c,, . . . , c,) = (dl d, . . . dm)

as the complement of (c, c, . . . c,) with respect to (1 ,2 , . . . , n), where

d, = (n + 1) -

The following function takes n and (c, c, . . . c,) as input and returns (dl d, . . . dm) as
output in O(m) time.

function COMPLEMENT (n, c,, c2,. . . , c,)

Step I: for i = 1 to m do
di t (n + 1) - c,-,+

end for.

Step 2: COMPLEMENT +-(dl d, . . .dm).

Now let the reverse of (c, c, . . . c,) be given by (c, em-, . . . c, c,). The mapping

m

order(c,, c,, . . . ,c,) = 2 " - 'C i
i = l

has the following properties:

1. if (c, C, .. . em) and (c; c;. . . ck) are two m-combinations of { l ,2, . . . , n} and the
reverse of (c, c, . . . c,) precedes the reverse of (c; c; . . . ck) in lexicographic
order, then

order(c,, c,, . . . , c,) < order(c;, c;, . . . , ck);

Sec. 6.2 Sequential Algorithms 1 49

2. order(1, 2,. . . , m) = 0 and order((n - m + I), (n - m + 2), . . . , n) = "C, - 1 im-
plying that the transformation order maps the " C, different m-combinations
onto (O,l,. . . , "C, - 1) while preserving reverse lexicographic order.

The following function takes (c, c,. . . c,) as input and returns order
(c,, c,, . . . ,em) as output in O(m2) time:

function ORDER (c,, c,, . . . , c,)

Step 1: sum t 0.
Step 2: for i = 1 to m do

sumtsum + "- 'Ci
end for.

Step 3: ORDERtsum.

Using order and complement, we can define the following one-to-one mapping
of the "C, possible combinations onto {1,2,. . . , "C,), which preserves lexicographic
ordering:

rankc(n, c,, c,, . . . ,em) = "C, - order(complement(n, c,, c,, . . . , c,)).

Thus rankc(n, 1, 2,. . . , m) = 1, rankc(n, 1, 2, . . . , m, m + 1) = 2, . . . , rankc(n,
(n - m + I), (n - m + 2), . . . , n) = "C,. The following procedure is an implementation
of the preceding mapping: It takes n and the combinations (c, c, . . . c,) as input and
returns the ordinal position h of the latter in O(m2) time.

procedure RANKC (n, c,, c,, . . .,em, h)

Step 1: h t "C,.

Step 2: (dl d, . . . dm) + COMPLEMENT(& c,, c,, . . . , c,).
Step 3: h t h - ORDER(d,, d,, . . . ,dm).

We now turn to the question of inverting the rankc mapping. Specifically, given
an integer h, where 1 < h < "C,, it is required to determine the combination
(cl c2 .. . c,) such that rankc(n, c,, c,, . . . , c,) = h. We begin by defining the inverse of
order with respect to {1,2,. . . , n} as follows. Let order(c,, c,, . . . , c,) = g. Then

orderinverse(n, m, g) = (c, c, . . . c,)
where ci is equal to the largest j such that

(i) i < j < n and
(ii) (g - ck-lck)>~-lci,

The following function is an implementation of the preceding mapping. It takes n, m,
and g as input and returns a combination (c, c, . . . c,) as output in O(mn) time.

Generating Permutations and Combinations Chap. 6

function ORDERINV(n, m, g)

Step 1: for i = m downto 1 do
(1.1) j + n
(1.2) c; +- 0
(1.3) t t n - ' C i
(1.4) while (c, = 0) do

(i) if g 2 t
then c, t j
end if

(ii) t t (t x - i))/j
('.' 111) J '+j-l

end while
(1.5) g+-g-"-'C,

end for.

Step 2: ORDERINV t (c, c,. . . em). [7

We are finally in a position to define the inverse of rankc. If rankc(n, c,,
c,, . . . ,em) = h, then

rankc-'(n, m, h) = complement(n, orderinverse(n, m, "C, - h).

The following procedure RANKCINV takes n, m, and h as input and returns the
combination (c, c, . . . c,) as output in O(mn) time.

procedure RANKCINV(n, m, h, c,, c,, . . . , c,)

Step 1: (dl d, . . . d,)tORDERINV(n, m, "C, - h).

Step 2: (c, c,. . . c,)+COMPLEMENT(n, d l , d,, . . . ,dm).

6.3 GENERATING PERMUTATIONS IN PARALLEL

We set the stage in the previous section to address the problem of generating
permutations in parallel. Our first algorithm is a parallel version of the algorithm in
section 6.2.1.

6.3.1 Adapting a Sequential Algorithm

We begin by making a few observations regarding procedure NEXT PERMU-
TATION.

1. Given an m-permutation (p, p, . . . p,) the procedure first checks whether it is
updatable.

2. If the permutation is updatable, then its rightmost element p, is checked first to
determine whether it can be incremented; if it can, then the procedure
increments it and terminates.

Sec. 6.3 Generating Permutations in Parallel 151

3. Determining whether p, can be incremented requires scanning no more than m
positions of array u whose entries indicate which of the integers {1,2, . . . , n}
currently appear in (p , p, . . . p,) and which do not. This scanning also yields the
new value of p, in case the latter can be incremented.

4. If the rightmost element cannot be incremented, then the procedure finds the
first element to the left of p, that is smaller than its right neighbor. This element,
call it p,, is incremented by the procedure and all elements to its right are
updated.

5. Determining the new value of p, requires scanning no more than m positions
of u.

9. Updating all positions to the right of p, requires scanning no more than the j r s t
m positions of u.

These observations indicate that the algorithm in section 6.2.1 lends itself quite
naturally to parallel implementation. Assume that m processors are available on an
EREW SM SIMD computer. We give our first parallel m-permutation generator as
procedure PARALLEL PERMUTATIONS. The procedure takes n and m as input
and produces all "P, m-permutations of (l ,2 , . . . , n). It assumes that processor Pi has
access to position i of an output register where each successive permutation is
produced. There are three arrays in shared memory:

1. p = p,, p,, . . . , p,, which stores the current permutation.
2. u = u,, u,, . . . , u,, where ui = 0 if i is in the current permutation (p , p, . . . p,);

otherwise ui = 1. Initially, ui = 1 for 1 < i < n.
3. x = x l r x , , . . . , X , is used to store intermediate results.

Procedure PARALLEL PERMUTATIONS also invokes the following four
procedures for EREW SM SIMD computers:

1. Procedure BROADCAST (a, m, x) studied in chapter 2, which uses an array
x , , x,, . . . , x , to distribute the value of a to m processors P, , P,, . . . , P,.

2. Procedure ALLSUMS (x l , x, , . . . , x,) also studied in chapter 2, which uses m
processors to compute the prefix sums of the array x , , x,, . . . , x , and replace xi with
x , + x 2 + ... + x i for 1 < i Gn.

3. Procedure MINIMUM (x,, x,, . . . , x,) given in what follows, which uses m
processors to find the smallest element in the array x , , x,, . . . , x , and return it in x , :

procedure MINIMUM (x,, x2,. . . , x,)
for j = 0 to (log m - 1) do

for i = 1 to m in step of 2 j+ ' do in parallel
(1) Pi obtains through shared memory
(2) if < x i then xi + xi+ ,, end if

end for
end for.

1 52 Generating Permutations and Combinations Chap. 6

4. Procedure MAXIMUM (x , , x, , . . . , x,), which uses m processors to find thc
largest element in the array x , , x, , . . . , x , and return it in x , . This procedure is
identical to procedure MINIMUM, except that step 2 now reads

if > X , then x , + x,+z, end if.

5. Procedure PARALLEL SCAN (p,, n), which is helpful in searching for the
next available integer to increment a given element p, of an m-permutation
(p l p2 . . . p,) of {1,2,. . . , n). Given p, and n, array u in shared memory is used to
determine which of the m integers p, + 1, p, + 2,. . . , p, + m satisfy the two conditions
of

(i) being smaller than or equal to n and
(ii) being not present in (p , p, . . . p,)

and are therefore available for incrementing p,. Array x in shared memory is used to
keep track of these integers.

procedure PARALLEL SCAN (p,, n)

for i = 1 to m do in parallel
if p , + i < n and 1
then xi +- p, + i
else xi t co
end if

end for.

From chapter 2 we know that procedures BROADCAST and ALLSUMS run
in O(1og m) time. Procedures MINIMUM and MAXIMUM clearly require O(1og m)
time as well. Procedure PARALLEL SCAN takes constant time. We are now ready to
state procedure PARALLEL PERMUTATIONS:

procedure PARALLEL PERMUTATIONS (n, m)

Step 1: (1.1) for i = 1 to m do in parallel
(i) Pi 1

(ii) produce pi as output
end for

(1.2) {Initialize array u}
for i = 1 to rn/ml do

for j = 1 to m do in parallel
(i) k +- (i - l)m + j

(ii) if k < n then u, t 1 end if
end for

end for.

Sec. 6.3 Generating Permutations in Parallel

Step 2: for t = 1 to ("P, - 1) do
(2.1) for i = 1 to m do in parallel

"P,'O

end for
(2.2) {Check whether rightmost element of (p, p, . . . p,) can be in-

cremented; i.e., if there is a j, p, < j < n, such that j # p, for
l < k < m - 1)
(i) BROADCAST (p,, m, x)
(ii) PARALLEL SCAN (p,, n)

(2.3) {If several j satisfying the condition in (2.2) are found, the smallest is
assigned to p,}
(i) {The smallest of the xi is found and placed in x,}

MINIMUM (x,, x,, . . . ,x,)
(ii) if x, # co then (a) u-,_ +- 1

(b) Pm X I

(c) k t m - 1
(d) Go to step (2.7)

end if
(2.4) {Rightmost element cannot be incremented; find rightmost element

p, such that P, < pk+ ,)
(i) for i = 1 to m - 1 do in parallel

if pi < pi+, then xi +- i
else xi + - 1

end if
end for

(ii) {The largest of the xi is found and placed in x ,)
MAXIMUM (x,, x,, . . . , x,)

(iii) k + x,
(iv) BROADCAST (k, m, x)
(v) BROADCAST (p,, m, x)

(2.5) {Increment p,: the smallest available integer larger than p, is
assigned to pk)
(i) for i = k to m do in parallel

u -1
p,

end for
(ii) PARALLEL SCAN (p,, n)
(iii) MINIMUM (x,, x,, . . . , x,)
(iv) pk xl

(4 upk+o
(2.6) {Find the smallest m - k integers that are available and assign their

values to p,, , , p,, ,, . . . , p,, respectively. This reduces to finding
the first m - k positions of u that are equal to 1)

(i) Eor i = 1 to m do in parallel
Xi + U i

end for
(ii) ALLSUMS (x,, x,, . . . , x,)
(iii) for i = 1 to m do in parallel

i f x i < (m - k) a n d u i = 1
then p,,,, +- i
end if

end for

Generating Permutations and Combinations Chap. 6

(2.7) {Clean up array u and output current m-permutation)
(i) for i = 1 to k do in parallel

u C l
p.

end for
(ii) for i = 1 to m do in parallel

produce pi as output
end for

end for.

Analysis. Step 1 takes O(n/m) time. There are "P, - 1 iterations of step 2,
each requiring O(1ogm) time, as can be easily verified. The overall running time of
PARALLEL PERMUTATIONS is therefore O("P,log m). Since m processors are
used, the procedure's cost is O("P,m log m).

Example 6.1

We illustrate the working of procedure PARALLEL PERMUTATIONS by showing
how a permutation is updated. Let S = {1,2,3,4,5) and let (p , p2 p3 p,) = (5 1 4 3) be a 4-
permutation to be updated during an iteration of step 2. In step 2.1 array u is set up as
shown in Fig. 6.l(a). In step 2.2, p, = 3 is broadcast to all four processors to check
whether any of the integers p, + 1, p, + 2, p, + 3, and p, + 4 is available. The processors
assign values to array x as shown in Fig. 6.l(b). This leads to the discovery in step 2.3 that
p, cannot be incremented. In step 2.4 the processors assign values to array x to indicate
the positions of those elements in the permutation that are smaller than their right
neighbor, as shown in Fig. 6.l(c). The largest entry in x is determined to be 2; this means
that p, is to be incremented and all the positions to its right are to be updated. Now 2 and
p, are broadcast to the four processors. In step 2.5 array u is updated to indicate that the
old values of p,, p,, and p, are now available, as shown in Fig. 6.l(d). The processors now
check whether any of the integers p , + 1, p, + 2, p, + 3, and p, + 4 is available and
indicate their findings by setting up array x as shown in Fig. 6.l(e). The smallest entry in x
is found to be 2: p, is assigned the value 2 and u , is set to 0, as shown in Fig. 6.l(f). In step
2.6 the smallest two available integers are found by setting array x equal to the first four
positions of array u. Now procedure ALLSUMS is applied to array x with the result
shown in Fig. 6.l(g). Since x, < 4 - 2 and u , = 1, p , + , is assigned the value 1. Similarly,
since x, = 4 - 2 and u , = 1, p, +, is assigned the value 3. Finally, in step 2.7 positions 2
and 5 of array u are set to 1 and the 4-permutation (p, p, p, p,) = (5 2 1 3) is produced as
output.

Discussion. We conclude this section with two remarks on procedure
PARALLEL PERMUTATIONS.

1. The procedure has a cost of O("P,m log m), which is not optimal in view of the
O("P,m) operations sufficient to generate all m-permutations of n items by
procedure SEQUENTIAL PERMUTATIONS.

2. The procedure is not adaptive as it requires the presence of m processors in
order to function properly. As pointed out earlier, it is usually reasonable to
assume that the number of processors on a shared memory parallel computer is
not only fixed but also smaller than the size of the typical problem.

Sec. 6.3 Generating Permutations in Parallel

Figore 6.1 Updating permutation using
procedure PARALLEL PERMUTA -
TIONS.

The preceding remarks lead naturally to the following questions:

1. Can a parallel permutation algorithm be derived that uses N processors, where
1 < N < "P,?

2. Would the algorithm be cost optimal?

These two questions are answered affirmatively in the following section.

156 Generating Permutations and Combinations Chap. 6

6.3.2 An Adaptive Permutation Generator

In this section we describe an adaptive and cost-optimal parallel algorithm for
generating all m-permutations of { l ,2, . . . , n). The algorithm is designed to run on an
EREW SM SIMD computer with N processors P I , P,, . . . , P,, where 1 < N 6 "P,. It
makes use of procedure NEXT PERMUTATION and RANKPINV described in
section 6.2. The idea of the algorithm is to let each processor generate a subset of the
permutations lexicographically. Furthermore, all the permutations generated by Pi
precede in lexicographic order those generated by Pi+,, 1 < i < N. Thus Pi begins
with the jth permutation, where j = (i - l)rnPm/N1 + 1, and then generates the next
rPm/N1 - 1 permutations. The algorithm is given as procedure ADAPTIVE
PERMUTATIONS:

procedure ADAPTIVE PERMUTATIONS (n, m)

for i = 1 to N do in parallel
(1) j + (i - 1) r n P m / N 1 + 1
(2) if j < "P , then

(2.1) RANKPINV (n, m, j, P I , P Z , . . . , P,)
(2.2) produce the jth permutation (p , p, . . . p,) as output
(2.3) for i = 1 to r P , / N 1 - 1 do

NEXT PERMUTATION (n, m, p , , P , , . . . , P,)
end for

end if
end for.

Analysis. Step 1 requires O(m) operations. Generating the jth permutation
in step 2.1 takes O(mn) operations and producing it as output in step 2.2 another O(m).
There are rnPm/N1 - 1 iterations of step 2.3 each involving O(m) operations. The
overall running time of procedure ADAPTIVE PERMUTATIONS is therefore
dominated by the larger of O(mn) and O(rnPm/Nlm). Assuming that n d rnPm/N1, that
is, 1 < N d "Pm/n, the procedure runs in O(r"Pm/Nlm) time with an optimal cost of
O("Pmm).

Three points are worth noting regarding procedure ADAPTIVE PERMU-
TATIONS.

The first two are:

1. Once the values of n and m are made known to all the processors, using
procedure BROADCAST, say, the shared memory is no longer needed. Indeed
the processors, once started, independently execute the same algorithm and
never need to communicate among themselves.

2. Steps 2.1-2.3 may not be executed at all by some processors. This is illustrated
by the following example.

Sec. 6.3 Generating Permutations in Parallel 1 57

Example 6.2

Let n = 5, m = 3, and N = 13. Thus PP,/N1 = = 5. Processor P I computes j = 1,
uses procedure RANKPINV to generate the first permutation in lexicographic order,
namely, (1 2 3), and then calls procedure NEXT PERMUTATION four times to generate
(1 2 4), (1 2 5), (1 3 2), and (1 3 4). Simultaneously, P, generates the sixth through the tenth
permutations, namely, (1 3 5), (1 4 2), (1 4 3), (1 4 5), and (1 5 2). Similarly, P,, P,, . . . , PI,
each generates five 3-permutations. As for PI,, it computes j = 12 x 5 + 1 = 61, finds it
larger than 5P,, and consequently does not execute steps 2.1-2.3.

The third point regarding procedure ADAPTIVE PERMUTATIONS is:

3. Although step 2.3 is iterated FP,/N1 - 1 times by the processors that execute
it, fewer permutations than this number may be generated. This is illustrated by
the following example.

Example 6.3

Again let n = 5 and m = 3 but this time assume that N = 7. Thus r5P,/71 = 9. Each of
processors P I , . . . , P, generates nine 3-permutations. Processor P,, however, generates
only six 3-permutations, namely, the fifty -fifth through the sixtieth. During each of the
final three iterations of step 2.3 executed by P,, procedure NEXT PERMUTATION
detects that (p , p2p3) = (543), that is, the last permutation has been reached, and
consequently does nothing.

6.3.3 Parallel Permutation Generator for Few Processors

Sometimes only few processors can be used to generate all m-permutations of n items.
Assume, for example, that N processors are available, where 1 < N < n. A surpris-
ingly simple parallel algorithm can be developed for this situation. The algorithm runs
on an EREW SM SIMD computer and is adaptive and cost optimal. Unlike
procedure ADAPTIVE PERMUTATIONS, however, it does not make use of the
numbering system of section 6.2.2. We illustrate the algorithm for the special case
where m = n, that is, when all n! permutations of n items are to be generated.

Let S = { 1 2 , n , as before, and consider the permutation
(12 ... i - 1 i i + 1 ... n)ofS.Foreachi, l < i < n,ann- lpermutationisdefinedas
follows:

For ease of presentation, we begin by assuming that N = n, that is, that there are
as many processors available as items to permute. The idea is to let processor Pi, for
1 < i < n, begin with the permutation (i 1 2 . . . i - 1 i + 1 . . . n) and generate all
subsequent permutations in lexicographic order, which have i in the first position.
There are exactly (n - I)! such permutations.

1 58 Generating Permutations and Combinations Chap. 6

In general, for N processors, where 1 < N < n, each processor generates [n ! / N 1
permutations. In other words, each processor does the job of r n / N) processors in the
informal description of the previous paragraph. The algorithm is given as procedure
FULL PERMUTATIONS:

procedure FULL PERMUTATIONS (n)

for j = 1 to N do in parallel
for i = (j - 1) r / N] + 1 to j r n lN1 do

if i < n then
(1) (p , p 2 . . . p n - ,) = (1 2 . . . i - l i i + l . . . n) - i
(2) produce (i p , p, . . . p,- ,) as output
(3) for k = 1 to ((n - l)! - 1) do

NEXT PERMUTATION (n, n, i, p , , p,, . . . , p , - ,)
end for

end if
end for

end for.

Analysis. Procedure NEXT PERMUTATION is called r n / N l [(n - I)! - 11
times, each call requiring O (n) steps to generate a permutation. Steps 1 and 2 are also
executed r n / N l (times and require O(n) time. The overall running time of procedure
FULL PERMUTATIONS is therefore

Since p(n) = N, the procedure has an optimal cost of c (n) = O (n ! n) .

6.4 GENERATING COMBINATIONS I N PARALLEL

We now turn to the problem of generating all "C, m-combinations of S = { l , 2,. . . , n }
in lexicographic order. On the surface, this may appear to be a special case of the
problem addressed in the previous section; indeed each m-combination is an m-
permutation. It is not clear, however, how an algorithm for generating m-
permutations, such as procedure PARALLEL PERMUTATIONS, for example, can
be made to e f i c i e n t l y generate combinations o n l y . It appears therefore that a special
approach will have to be developed for this problem. In this section we describe two
algorithms for generating m-combinations in parallel. Both algorithms are designed to
run on the EREW SM SIMD model of computation.

6.4.1 A Fast Combination Generator

We begin by restating the following properties of m-combinations of n items, listed in
lexicographic order.

Sec. 6.4 Generating Combinations in Parallel 159

Property 1. For 1 < m < n, the first combination in lexicographic order is
(1 2 . . . m), and the last one is (n - m + 1 n - m + 2 . . . n).

Property 2. Denote the last combination by (x , x , . . . x,). If (y , y , . . . y,) is
one of the other possible combinations, then

(i) y , < y , < . . . < ym and yi < xi for 1 < i < m.
(ii) If there is a subscript i, 2 < i < m, such that all y's from yi to y, equal x i to x,,

respectively, and y i - , < x i - ,, then the next successive combination is given by
(y i y ; . . . y a) where y ; = y j for l < j < i - 2 , and y ; = ~ ~ - ~ + j - i + 2 for
i - 1 < j < m. Otherwise, the next successive combination is given by
(Y , Y ~ . . . Y , - , Y m + 1) .

The preceding discussion leads naturally to our first parallel combination
generator. The first combination generated is (1 2 . . . m). Now, if (y , y, . . . y,) is the
combination just generated, then the next successive combination is given by property
2(ii). The algorithm uses five arrays b, c, x , y, and z , each of length m, in shared
memory. The ith position of each of these arrays is denoted by hi, ci, x i , y,, and z i ,
respectively. The first of these arrays, array b, is used for broadcasting. Array c is
simply an output buffer where every new combination generated is placed. The last
three arrays are used to store intermediate results:

1. Array x holds the last combination, namely,

x i = n - m + i for 1 < i < m .

2. Array y holds the current combination being generated.
3. Array z keeps track of those positions in y that have reached their limiting

values; thus for 1 < i < m

p. =
if yi = x i ,

' false otherwise.

The algorithm is given in what follows as procedure PARALLEL
COMBINATIONS. It uses m processors PI, P, , . . . , P, and invokes procedure
BROADCAST.

procedure PARALLEL COMBINATIONS (n, m)

Step 1: {Initialization)
for i = 1 to m do in parallel

(1.1) xi t n - m + i
(1.2) yi t i
(1.3) if yi = xi then zi + hue

else zi + false
end if

(1.4) ci + i
end for.

160 Generating Permutations and Combinations Chap. 6

Step 2: {The value of z, if broadcast}
BROADCAST (z, , rn, b).

Step 3: while z, = false do
(3.1) k t O
(3.2) {Find rightmost element of current combination that has not reached its

limiting value}
for i = 2 to rn do in parallel

if zi-, = false and zi = true
then (i) yi- , + yi-, + 1

(ii) k t i
end if

end for
(3.3) BROADCAST (k, m, b)
(3.4) {If no element has reached its limiting value, increment y,; otherwise update

all elements from y, to y,)
if k = 0 then y, + y, + 1
else (i) BROADCAST (y,- ,, m, b)

(ii) for i = k to m do in parallel
yi+yk- , + (i - k + 1)

end for
end if

(3.5) for i = 1 to rn do in parallel
(i) ci + Yi

(ii) if yi = xi then zi = true
else zi = false

end if
end for

(3.6) BROADCAST (z , , m, b)
end while.

Note that step 3.1 is executed by one processor, say, P,. Also, in step 3.2 at most
one processor finds zi-, = false and zi = true and updates y i_ , and k. Finally in the
then part of step 3.4 only one processor, say, P,, increments y,.

Analysis. Steps 1, 3.1,3.2, and 3.5 take constant time. In steps 2, 3.3, 3.4, and
3.6 procedure BROADCAST requires O(1og m) time. Since step 3 is executed ("C, - 1)
times, the overall running time of procedure PARALLEL COMBINATIONS is
O("C,log m), and its cost O("C,m log m), which is not optimal.

Example 6.4

The behavior of PARALLEL COMBINATIONS is illustrated in Fig. 6.2 for the case
where n = 5 and m = 3. The figure shows the contents of each of the arrays y, z, and c as
well as the value of k after each step of the procedure where they are modified by an
assignment. Note that t and f represent true and false, respectively. Also,
(x, x, x,) = (3 4 5) throughout. C]

AFTER STEP yl y2 y3 z1 z2 z3 c1 c2 c3 k

1 1 2 3 f f f 1 2 3

Figure 6.2 Generating combinations of three out of five items using procedure
PARALLEL COMBINATIONS.

1 62 Generating Permutations and Combinations Chap. 6

Discussion. When stating desirable properties of algorithms in chapter 2,
we said that

(i) a parallel algorithm should be adaptive, that is, capable of modifying its
behavior according to the number of processors actually available on the
parallel computer being used,

(ii) its running time should vary with the number of processors used, and
(iii) its cost should be optimal.

Procedure PARALLEL COMBINATIONS does not satisfy any of the preceding
criteria:

(i) It requires the availability of m processors.
(ii) Although quite fast, its running time does not decrease with an increasing

number of processors.

(iii) Its cost exceeds the O("C,m) operations sufficient to generate all m combinations
of n items by procedure SEQUENTIAL COMBINATIONS.

The purpose of the next section is to exhibit an algorithm satisfying these three
desirable properties.

6.4.2 An Adaptive Combination Generator

We conclude our treatment of combination generators by describing an adaptive and
cost-optimal parallel algorithm for generating all m-combinations of { I , 2,. . . , n}. The
algorithm is designed to run on an EREW SM SIMD computer with N processors PI,
P, , . . . , P,, where 1 < N < "C, . It makes use of procedures NEXT COMBINATION
and RANKCINV described in section 6.2. The idea of the algorithm is to let each
processor generate a subset of the combinations lexicographically. Furthermore, all
the combinations generated by Pi precede in lexicographic order those generated by
Pi+l, 1 < i < N. Thus Pi begins with the jth combination, where j =
(i - l) p C , / N 1 + 1 and then generates the next r"C,/N1 - 1 combinations. The
algorithm, which is similar to the one in section 6.3.2, is given as procedure
ADAPTIVE COMBINATIONS:

procedure ADAPTIVE COMBINATIONS (n, m)

for i = 1 to N do in parallel
(1) j + (i - 1) pC, /N1 + 1
(2) if j < "C , then

(2.1) RANKCINV (n, m, j, c , , c,, . . . , c,)
(2.2) produce the jth combination (c , c , . . . c,) as output
(2.3) for i = 1 to pC, /N1 - 1 do

NEXT COMBINATION (n, m, c , , c,, . . . , c,)
end for

end if
end for.

Sec. 6.5 Problems 1 63

Analysis. Step 1 requires O(m) operations. Generating the j th combination
in step 2.1 takes O(mn) operations and producing it as output in step 2.2 another
O(mn). Each of the r C , / N 1 - 1 iterations of step 2.3 involves O(m) operations. The
overall running time of procedure ADAPTIVE COMBINATIONS is therefore
dominated by the larger of O(mn) and O(r"C,/Nlrn). Assuming that n < r C m / N 1 , that
is, 1 < N < "C,/n, the procedure runs in O (r C , / N l m) time with an optimal cost of
O("C,m).

The three comments made in section 6.3.3 regarding procedure ADAPTIVE
PERMUTATIONS are also valid here:

1. The shared memory is only needed to broadcast n and m.
2. Steps 2.1-2.3 may not be executed a t all by some processors.

3. Fewer than r C , / N 1 - 1 combinations may be generated in step 2.3.

Example 6 5

Let n = 7, m = 1, and N = 5. Then r7C,/51 = 2. Processor P, computes j = 1 and
generates the first two combinations. Processors P, and P, compute j = 3 and j = 5,
respectively, and each generates an additional two combinations. Processor P, computes
j = 7 and succeeds in generating the one and last combination. Processor P, computes
j = 9 and since 9 > 'C , , it does not execute step 2.

6.5 P R O B L E M S

6.1 In procedure PARALLEL PERMUTATIONS, the processors make extensive use of the
shared memory to communicate. Design a parallel algorithm for generating all m-
permutations of n items in O("P,logm) time using rn processors that never need to
communicate (through shared memory or otherwise). Once the values of n and m have
been made known to the processors, the latter operate independently and generate all "P,
permutations lexicographically.

6.2 Once the algorithm in problem 6.1 has been developed, it is not difficult to make it
adaptive. Given N processors, 1 c N < "P,,,, the modified algorithm would run in
O("P,m log m/N) time, which would not be cost optimal. On the other hand, procedure
ADAPTIVE PERMUTATIONS is both adaptive and cost optimal. Design an adaptive
and cost-optimal parallel algorithm for generating permutations that uses neither the
shared memory nor the numbering system of section 6.2.2.

6.3 Is it possible to design a parallel algorithm for generating all m-permutations of n items on
the EREW SM SIMD model of computation in O("P,) time using m processors? Would
the permutations be in lexicographic order?

6.4 Procedure ADAPTIVE PERMUTATIONS is cost optimal only when the number of
processors N lies in the range 1 < N < "P,/n. Can the procedure be modified (or a new
procedure designed) to extend this range of optimality? Is there a parallel algorithm that is
cost optimal for all values of N from 2 to "P,?

6.5 Can you generalize procedure FULL PERMUTATIONS to generate all m-permutations,
where m can take any value from 1 to n?

6.6 Consider the sorting networks described in chapter 4. These networks can be used as
permutation generators as follows. Let S = {I, 2,3,4,5} and assume that we wish to

164 Generating Permutations and Combinations Chap. 6

generate the permutation (5 3 2 1 4) from the initial permutation (1 2 3 4 5). We begin by
assigning each integer in the initial permutation an index (or subscript) indicating its
position in the desired permutation. This gives (142, 3,4, 5,). The sequence of indices can
now be sorted on a sorting network: When two indices are to be swapped, each carries its
associated integer along. The result is (5, 3,2, 144,) as required. For a given n, can all n!
permutations be generated in this fashion? Would they be in lexicographic order? Analyze
the running time, number of processors, and cost of your algorithm.

6.7 Repeat problem 6.6 for each of the interconnection networks described in chapter 1.

6.8 Is there any advantage to using the approach in problem 6.6 on the shared-memory SIMD
model of computation? How would the resulting algorithm compare with those in section
6.3?

6.9 A permutation network is a circuit that is hard wired to effect a particular permutation of its
input. It takes n inputs and produces n outputs. An example of a permutation network for
n = 4 is shown in Fig. 6.3. For input (1 2 3 4) the network produces (2 4 1 3). Feeding
(2 4 1 3) back into the network (using the dotted lines) yields (4 3 2 1). Repeating the
process yields (3 1 4 2) and then (1 2 3 4), that is, the original permutation. This means that
the network in Fig. 6.3 is capable of producing only four of the twenty-four permutations
of four items. Can you design a network capable of generating all permutations?

6.10 The permutation network in Fig. 6.3 is an example of a single-stage network. A two-stage
network is illustrated in Fig. 6.4 for n = 4. In general, multistage networks can be designed.
How many permutations does the network of Fig. 6.4 (with feedback as shown in dotted
lines) generate? Can you design a network capable of generating all 4! permutations? How
many stages would it have?

6.11 Modify procedure PARALLEL COMBINATIONS to run using N processors, where
1 < N < m . Show that the running time of the modified procedure is
O("C,(m/N + log N)), which is cost optimal for n < m/log N.

6.12 In procedure PARALLEL COMBINATIONS, the processors make extensive use of the
shared memory to communicate. Design a parallel algorithm for generating all m-
combinations of n items in O("C,log m) time using m processors that never need to
communicate (through the shared memory or otherwise). Once the value of n and m have
been made known to the processors, the latter operate independently and generate all "C,
combinations lexicographically.

!.. -...............................J ' Figure 6.3 Permutation network.

Sec. 6.5 Problems

Figure 6.4 Two-stage permutation

6.13 Once the algorithm in problem 6.12 has been developed, it is not difficult to make it
adaptive. Given N processors, 1 < N < "C,, the modified algorithm would run in
O("C,m log m/N) time, which would not be cost optimal. On the other hand, procedure
ADAPTIVE COMBINATIONS is both adaptive and cost optimal. Design an adaptive
and cost-optimal parallel algorithm for generating combinations that uses neither the
shared memory nor the numbering system in section 6.2.4.

6.14 Is it possible to design a parallel algorithm for generating all m-combinations of n items on
the EREW SM SIMD model of computation in O("Cm) time using m processors? Would
the combinations be in lexicographic order?

6.15 Establish the validity of property 2 in section 6.4.1 by induction on the index i.
6.16 Procedure ADAPTIVE COMBINATIONS is cost optimal only when the number of

processors N lies in the range 1 < N < "C,/n. Can this procedure be modified (or a new
procedure designed) to extend this range of optimality? Is there a parallel algorithm that is
cost optimal for all values of N from 2 to "C,?

6.17 An n-permutation of {I, 2,. . . , n} is said to be a derangement if for each i, 1 < i < n, integer
i does not appear in position i in the permutation. Thus for n = 5, (2 5 4 3 1) is a
derangement. In all there are

n! (1 - (l/l!) + (1/2!) - . . . + (- l)"(l/n!))

derangements of n items. Design a parallel algorithm to generate derangements and
analyze its running time, number of processors used, and cost.

6.18 Given an integer n, it is possible to represent it as the sum of one or more positive integers
ai :

This representation is called a partition if the order of the ai is of no consequence. Thus
two partitions of an integer n are distinct if they differ with respect to the ai they contain.

166 Generating Permutations and Combinations Chap. 6

For example, there are seven distinct partitions of the integer 5:

Design a parallel algorithm for generating all partitions of an integer n.

6.19 For a given integer n, the representation

is said to be a composition if the order of the ai is important. Thus two compositions of an
integer n are distinct if they differ with respect to the ai they contain and the order in which
the ai are listed. For example, there are sixteen compositions of the integer 5:

Design a parallel algorithm for generating all compositions of an integer n.

6.20 A partition (or composition) a , + a , + . . . + a, of an integer n is said to be restricted if the
value of m is given. Thus, form = 2, there are two partitions of the integer 5, namely, 4 + 1
and 3 + 2, and four compositions, namely, 4 + 1, 1 + 4, 3 + 2, and 2 + 3. Design parallel
algorithms that, for given n and m, generate all restricted partitions and all restricted
compositions, respectively.

6.6 B l B L l O G R A P H l C A L R E M A R K S

The problem of generating permutations has a long history, and dozens of sequential
algorithms exist for its solution. This history is traced in [Sedgewick] along with a review of the
different approaches. A sequential algorithm, different from the one in section 6.2.1, for
generating all m-permutations of n items is described in [Rohl]. The numbering system in
section 6.2.2 is based on ideas from [Knott 23. Many sequential algorithms have also been
proposed for generating all m-combinations of n items. A number of these are compared in
[Akl 21. The combination generator (section 6.2.3) and numbering system (section 6.2.4) are
based on ideas from [Mifsud] and [Knott 11, respectively.

There has been surprisingly little reported in the literature on fast generation of
permutations and combinations in parallel. The algorithm in section 6.3.1 is based on that in
section 6.2.1, and neither has appeared elsewhere. Both procedures ADAPTIVE
PERMUTATIONS and FULL PERMUTATIONS are from [Akl3]. An adaptive but not
cost-optimal parallel algorithm for generating all "P, permutations is described in [Gupta]. It
runs on an EREW SM SIMD computer with N processors, I < N < "P,, in
O(rP,/Nlm log m) time. Other algorithms are described in [Chen] and [Mor].

Another approach to generating m-permutations is through the use of so-called
permutation networks. Examples of such networks are provided in [Benei], [Clos], [Golomb],
[Lawrie], [Lenfant 11, [Lenfant 21, [Nassimi 21, [Nassimi 31, [Orcutt], [Siegel], and [Wu].
Some permutation generators are application dependent: They generate only those per-
mutations that are needed to solve the problem at hand. Some of these are described in
[Batcher], [Fraser], [Nassimi 11, and [Pease]. The two approaches mentioned in this
paragraph are restricted in at least one of the following three ways:

Sec. 6.7 References 167

1. They are based on a hard-wired interconnection of a predefined number of processors
that can generate permutations for a fixed-size input only.

2. They are capable of generating only a subset of all possible permutations.
3. They typically require O(n) processors and O(logn) steps, where a 2 1, to generate one

permutation of an input of length n: All permutations are therefore generated in
O(n! logn) steps for a cost of O(n! n logn), which is not optimal.

By contrast the algorithms in sections 6.3.2 and 6.3.3 are

1. adaptive, that is, the number of available processors bears no relation to the size of the
input to be permuted;

2. capable of generating all possible permutations of a given input; and
3. cost optimal.

Procedure PARALLEL COMBINATIONS is based on an algorithm in [Chan], while
procedure ADAPTIVE COMBINATIONS is from [Akl 31. Sequential algorithms for generat-
ing derangements, partitions, and compositions are given in [Akl l] and [Page]. Other
problems involving the generation of combinatorial objects for which no parallel algorithms are
known are described in [Liu], [Nijenhuis], and [Reingold].

6.7 R E F E R E N C E S

[AKL 11
Akl, S. G., A new algorithm for generating derangements, BIT Vol. 20, No. 1, 1980, pp. 2-7.

[AKL 21
Akl, S. G., A comparison of combination generation methods, ACM Transactions on
Mathematical Software, Vol. 7, No. 1, March 1981, pp. 42-45.

[AKL 33
Akl, S. G., Adaptive and optimal parallel algorithms for enumerating permutations and
combinations, The Computer Journal, Vol. 30, No. 5, 1987, pp. 433-436.

[BATCHER]
Batcher, K. E., The flip network in STARAN, Proceedings of the 1976 International
Conference on Parallel Processing, Detroit, Michigan, August 1976, pp. 65-71, IEEE
Computer Society, Washington, D.C., 1976.

[BENES]
BeneS, V. E., Mathematical Theory of Connecting Networks and Telephone TrafJic, Academic,
New York, 1965.

[CHAN]
Chan, B., and Akl, S. G., Generating combinations in parallel, 817; Vol. 26, No. 1, 1986, pp.
2-6.

[CHEN]
Chen, G. H., and Chern, M.-S., Parallel generation of permutations and combinations, BIT,
Vol. 26, 1986, pp. 277-283.

168 Generating Permutations and Combinations Chap. 6

[CLOS]
Clos, C., A study of non-blocking switching networks, Bell System Technical Journal, Vol. 32,
1953, pp. 406-424.

[FRASER]
Fraser, D., Array permutation by index digit permutation, Journal of the ACM, Vol. 23, No.
2, April 1976, pp. 298-308.

[GOLOMB]
Golomb, S. W., Permutations by cutting and shuffling, SIAM Review, Vol. 3, No. 4, October
1961, pp. 293-297.

[GUPTA]
Gupta, P., and Bhattacharjee, G. P., Parallel generation of permutations, The Computer
Journal, Vol. 26, No. 2, 1983, pp. 97-105.

[KNOTT 11
Knott, G. D., A numbering system for combinations, Communications of the ACM, Vol. 17,
No. 1, January 1974, pp. 45-46.

[KNOTT 2)
Knott, G. D., A numbering system for permutations of combinations, Communications of the
ACM, Vol. 19, No. 6, June 1976, pp. 355-356.

[LAWRIE]
Lawrie, D. H., Access and alignment of data in an array processor, IEEE Transactions on
Computers, Vol. C-24, No. 12, December 1975, pp. 1145-1 155.

[L ENFANT 11
Lenfant, J., Parallel permutations of data: A Benes network control algorithm for frequently
used permutations, IEEE Transactions on Computers, Vol. 27, NO. 7, July 1978, pp. 637-647.

[L ENFANT 23
Lenfant, J., and Tahe, S., Permuting data with the Omega network, Acta Informatica, Vol. 21,
1985, pp. 629-641.

CL1ul
Liu, C . L., Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968.

[MIFSUD]
Mifsud, C. J., Algorithm 154: Combination in lexicographical order, Communications of the
ACM, Vol. 6, No. 3, March 1963, p. 103.

CM0Rl
Mor, M., and Fraenkel, A. S., Permutation generation on vector processors, The Computer
Journal, Vol. 25, No. 4, 1982, pp. 423-428.

[NASSIM~ 11
Nassimi, D., and Sahni, S., Data broadcasting in SIMD computers, IEEE Transactions on
Computers, Vol. C-30, No. 2, February 1981, pp. 282-288.

[NASSIMI 21
Nassimi, D., and Sahni, S., A self-routing Benes network and parallel permutation
algorithms, IEEE Transactions on Computers, Vol. C-30, No. 5, May 1981, pp. 332-340.

[NASSIMI 31
Nassimi, D., and Sahni, S., Parallel permutation and sorting algorithms and a new
generalized connection network, Journal of the ACM, Vol. 29, July 1982, pp. 642-677.

Sec. 6.7 References

[N~JENHUIS]
Nijenhuis, A., and Wilf, H. S., Combinatorial Algorithms, Academic, New York, 1978.

[ORCUTT]
Orcutt, S. E., Implementation of permutation functions in Illiac IV-type computers, IEEE
Transactions on Computers, Vol. C-25, No. 9, September 1976, pp. 929-936.

[PAGE]
Page, E. S., and Wilson, L. B., An Introduction to Computational Combinatorics, Cambridge
University Press, Cambridge, England, 1979.

[PEASE]
Pease, M. C., The indirect binary n-cube microprocessor array, IEEE Transactions on
Computers, Vol. C-26, No. 5, May 1977, pp. 458-473.

[REINGOLD]
Reingold, E. M., Nievergelt, J., and Deo, N., Combinatorial Algorithms, Prentice-Hall,
Englewood Cliffs, N.J., 1977.

[ROHL]
Rohl, J. S., Generating permutations by choosing, The Computer Journal, Vol. 21, No. 4,
1978, pp. 302-305.

[SEDGEWICK]
Sedgewick, R., Permutation generation methods, ACM Computing Surveys, Vol. 19, No. 2,
June 1977, pp. 137-164.

[SIEGEL]
Siege], H. J., Interconnection Networks for Large-Scale Parallel Processing, Heath, Lexington,
Mass., 1985.

[Wul
Wu, C.-L., and Feng, T.-Y., The universality of the shuffle-exchange network, IEEE
Transactions on Computers, Vol. C-30, No. 5, May 1981, pp. 324-332.

Matrix Operations

7.1 INTRODUCTION

Problems involving matrices arise in a multitude of numerical and nonnumerical
contexts. Examples range from the solution of systems of equations (see chapter 8) to
the representation of graphs (see chapter 10). In this chapter we show how three
operations on matrices can be performed in parallel. These operations are matrix
transposition (section 7.2), matrix-by-matrix multiplication (section 7.3), and matrix-
by-vector multiplication (section 7.4). Other operations are described in chapters 8
and 10. One particular feature of this chapter is that it illustrates the use of all the
interconnection networks described in chapter 1, namely, the one-dimensional array,
the mesh, the tree, the perfect shuffle, and the cube.

7.2 TRANSPOSITION

An n x n matrix A is given, for example:

it is required to compute the transpose of A:
r 1

In other words, every row in matrix A is now a column in matrix AT. The elements of A
are any data objects; thus aij could be an integer, a real, a character, and so on.

Sec. 7.2 Transposition 171

Sequentially the transpose of a matrix can be computed very easily as shown in
procedure TRANSPOSE. The procedure transposes A in place, that is, it returns AT in
the same memory locations previously occupied by A.

procedure TRANSPOSE (A)

for i = 2 to n do
f o r j = l t o i - 1 d o

aij - aji
end for

end for.

This procedure runs in O(n2) time, which is optimal in view of the R(n2) steps required
to simply read A.

In this section we show how the transpose can be computed in parallel on three
different models of parallel computation, namely, the mesh-connected, shuffle-
connected, and the shared-memory SIMD computers.

7.2.1 Mesh Transpose

The parallel architecture that lends itself most naturally to matrix operations is the
mesh. Indeed, an n x n mesh of processors can be regarded as a matrix and is
therefore perfectly fitted to accommodate an n x n data matrix, one element per
processor. This is precisely the approach we shall use to compute the transpose of an
n x n matrix A initially stored in an n x n mesh of processors, as shown in Fig. 7.1 for
n = 4. Initially, processor P(i , j) holds data element aij ; at the end of the
computation P(i , j) should hold aji . Note that with this arrangement R(n) is a
lower bound on the running time of any matrix transposition algorithm. This is seen
by observing that a, , cannot reach P(n, 1) in fewer than 2n - 2 steps.

The idea of our algorithm is quite simple. Since the diagonal elements are not
affected during the transposition, that is, element a,, of A equals element a,, of AT, the
data in the diagonal processors will stay stationary. Those below the diagonal are sent
to occupy symmetrical positions above the diagonal (solid arrows in Fig. 7.1).
Simultaneously, the elements above the diagonal are sent to occupy symmetrical
positions below the diagonal (dashed arrows in Fig. 7.1). Each processor P(i , j) has
three registers:

1. A(i, j) is used to store aij initially and aji when the algorithm terminates;
2. B(i, j) is used to store data received from P(i, j + 1) or P(i - 1 , j) , that is, from its

right or top neighbors; and
3. C(i, j) is used to store data received from P(i, j - 1) or P(i + 1, j) , that is, from its

left or bottom neighbors.

The algorithm is given as procedure MESH TRANSPOSE. Note that the contents of
registers A(i, i), initially equal to a,,, 1 < i < n, are not affected by the procedure.

Matrix Operations Chap. 7

Figure 7.1 Matrix to be transposed, stored in mesh of processors.

procedure MESH TRANSPOSE (A)

Step 1: do steps 1.1 and 1.2 in parallel
(1.1) for i = 2 to n do in parallel

for j = 1 to i - 1 do in parallel
C(i - 1, j) + (a i j , j, i)

end for
end for

(1.2) for i = 1 to n - 1 do in parallel
for j = i + 1 to n do in parallel

B(i, j - 1) 6 (a i j , j, i)
end for

end for.

Step 2: do steps 2.1, 2.2, and 2.3 in parallel
(2.1) for i = 2 to n do in parallel

for j = 1 to i - 1 do in parallel
while P(i, j) receives input from its neighbors do

(i) if (a,,, m, k) is received from P(i + 1, j)
then send it to P(i - 1, j)
end if

Sec. 7.2 Transposition

(ii) if (a,,, m, k) is received from P(i - 1, j)
t h e n i f i = m a n d j = k

then A(i, j) + a,, {a,, has reached its destination}
else send (a,,, m, k) to P(i + I, j)
end if

end if
end while

end for
end for

(2.2) for i = 1 to n do in parallel
while P(i, i) receives input from its neighbors do
(i) if (a,,, m, k) is received from P(i + 1, i)

then send it to P(i, i + 1)
end if

(ii) if (a,,, m, k) is received from P(i, i + 1)
then send it to P(i + 1, i)
end if

end while
end for

(2.3) for i = 1 to n - 1 do in parallel
for j = i + 1 to n do in parallel

while P(i, j) receives input from its neighbors do
(i) if (a,,, m, k) is received from P(i, j + 1)

then send it to P(i, j - 1)
end if

(ii) if (a,,, m, k) is received from P(i, j - 1)
t h e n i f i = m a n d j = k

then A(i, j) + a,, {a,, has reached its destination}
else send (a,,, m, k) to P(i, j + 1)
end if

end if
end while

end for
end for.

Analysis. Each element ai j , i > j, must travel up its column until it reaches
PO', j) and then travel along a row until it settles in PO', i). Similarly for aij, j > i . The
longest path is the one traversed by a,, (or a,,), which consists of 2(n - 1) steps. The
running time of procedure MESH TRANSPOSE is therefore

which is the best possible for the mesh. Since p(n) = n2, the procedure has a cost of
O(n3) , which is not optimal.

Example 7.1

The behavior of procedure MESH TRANSPOSE is illustrated in Fig. 7.2 for the input
matrix

(a) INITIALLY

X
1
-4

1
2

I X h

Figure 7.2 Transposing matrix using procedure MESH TRANSPOSE.

X

-4 -
- 5

-
-4

- 5 -I 2

1
2

-4

Y
3

-6

- 5

1

- 5

Y

-

-6

- 5

Y

3

(b) STEP 1

-6

2

z

(c) FIRST ITERATION OF STEP 2 (d) SECOND ITERATION OF STEP 2

3

- -6

(e) THIRD ITERATION OF STEP 2

3

-

z

z

Sec. 7.2 Transposition

The contents of registers A, B, and C in each processor are shown. Note that for clarity
only the aij component of (aij, j, i) is shown for registers B and C. Also when either B or C
receives no new input, it is shown empty.

7.2.2 Shuffle Transpose

We saw in the previous section that procedure MESH TRANSPOSE computes the
transpose of an n x n matrix in O(n) time. We also noted that this running time is the
fastest that can be obtained on a mesh with one data element per processor. However,
since the transpose can be computed sequentially in O(n2) time, the speedup achieved
by procedure MESH TRANSPOSE is only linear. This speedup may be considered
rather small since the procedure uses a quadratic number of processors. This section
shows how the same number of processors arranged in a different geometry can
transpose a matrix in logarithmic time.

Let n = 2q and assume that an n x n matrix A is to be transposed. We use for
that purpose a perfect shuffle interconnection with n2 processors Po, P I , . . . , P22q - l .

Element aij of A is initially stored in processor P,, where k = 2q(i - 1) + (j - I), as
shown in Fig. 7.3 for q = 2.

We claim that after exactly q shuffle operations processor P, contains element
aj i . To see this, recall that if P, is connected to P,, then m is obtained from k by
cyclically shifting to the left by one position the binary representation of k. Thus Pooo,
is connected to itself, Poool to Poolo, Poolo to Polo0, . . . , Plool to Pool , , P l o l 0 to

Figure 7 3 Matrix to be transposed, stored in perfect shuffle-connected computer.

176 Matrix Operations Chap. 7

Po,o , , . . . , and P , , , , to itself. Now consider a processor index k consisting of 24 bits.
If k = 2q(i - 1) + (j - I), then the q most significant bits of k represent i - 1 while the
q least significant bits represent j - 1. This is illustrated in Fig. 7.4(a) for q = 5, i = 5,
and j = 12. After q shuffles (i.e., q cyclic shifts to the left), the element originally held by
P , will be in the processor whose index is

as shown in Fig. 7.4(b). In other words aij has been moved to the position originally
occupied by a j i The algorithm is given as procedure SHUFFLE TRANSPOSE. In it
we use the notation 2k mod (22q - 1) to represent the remainder of the division of 2k
by 2 2 4 - 1.

procedure SHUFFLE TRANSPOSE (A)

for i = 1 to q do
for k = 1 to 224 - 2 do in parallel

P, sends the element of A it currently holds to P2kmOd(22s- ,,
end for

end for.

Analysis. There are q constant time iterations and therefore the procedure
runs in t(n) = O(1og n) time. Since p(n) = n2, c(n) = O(n2 logn), which is not optimal.
Interestingly, the shuffle interconnection is faster than the mesh in computing the
transpose of a matrix. This is contrary to our original intuition, which suggested that
the mesh is the most naturally suited geometry for matrix operations.

q MOST SIGNIFICANT BlTS q LEAST SIGNIFICANT BlTS
REPRESENTING (i - 1) REPRESENTING (j - 1)

q MOST SIGNIFICANT BlTS q LEAST SIGNIFICANT BlTS
REPRESENTING (j - 1) REPRESENTING (i - 1)

Figure 7.4 Derivation of number of shufRes required to transpose matrix.

Sec. 7.2 Transposition

Figure 7 5 Transposing matrix using procedure SHUFFLE TRANSPOSE.

Example 7.2

The behavior of procedure SHUFFLE TRANSPOSE is illustrated in Fig. 7.5 for the case
where q = 2. For clarity, the shuffle interconnections are shown as a mapping from the set
of processors to itself.

7.2.3 EREW Transpose

Although faster than procedure MESH TRANSPOSE, procedure SHUFFLE
TRANSPOSE is not cost optimal. We conclude this section by describing a cost-

Matrix Operations Chap. 7

Figure 7.6 Transposing matrix using pro-
cedure EREW TRANSPOSE.

optimal algorithm for transposing an n x n matrix A. The algorithm uses (nZ - n)/2
processors and runs on an EREW SM SIMD computer. Matrix A resides in the
shared memory. For ease of exposition, we assume that each processor has two indices
i and j, where 2 < i ,(n and 1 < j < i - 1. With all processors operating in parallel,
processor Pij swaps two elements of A, namely, aij and aj i . The algorithm is given as
procedure EREW TRANSPOSE.

procedure EREW TRANSPOSE (A)

for i = 2 to n do in parallel
for j = 1 to i - 1 do in parallel

aij ++ aji
end for

end for.

Analysis. It takes constant time for each processor to swap two elements.
Thus the running time of procedure EREW TRANSPOSE is t(n) = O(1). Since
p(n) = O(n2), c(n) = 0(n2) , which is optimal.

Example 7.3

The behavior of procedure EREW TRANSPOSE is illustrated in Fig. 7.6 for n = 3. The
figure shows the two elements swapped by each processor.

7.3 MATRIX-BY-MATRIX MULTIPLICATION

In this section we assume that the elements of all matrices are numerals, say, integers.
The product of an rn x n matrix A by an n x k matrix B is an rn x k matrix C whose

Sec. 7.3 Matrix-by-Matrix Multiplication

elements are given by

A straightforward sequential implementation of the preceding definition is given by
procedure MATRIX MULTIPLICATION.

procedure MATRIX MULTIPLICATION (A, B, C)

for i = 1 to m do
fo r j= 1 to kdo

(1) cij + 0
(2) for s = 1 to n do

cij + cij + (a, x bsi)
end for

end for
end for.

Assuming that m < n and k < n, it is clear that procedure MATRIX
MULTIPLICATION runs in O(n3) time. As indicated in section 7.6, however, there
exist several sequential matrix multiplication algorithms whose running time is O(nx),
where 2 < x < 3. It is not known at the time of this writing whether the fastest of these
algorithms is optimal. Indeed, the only known lower bound on the number of steps
required for matrix multiplication is the trivial one of R(n2). This lower bound is
obtained by observing that n2 outputs are to be produced, and therefore any
algorithm must require at least that many steps. In view of this gap between n2 and nx,
2 < x < 3, we will find ourselves unable to exhibit cost-optimal parallel algorithms for
matrix multiplication. Rather, we present algorithms whose cost is matched against
the running time of procedure MATRIX MULTIPLICATION.

7.3.1 Mesh Multiplication

As with the problem of transposition, again we feel compelled to use a mesh-
connected parallel computer to perform matrix multiplication. Our algorithm uses
m x k processors arranged in a mesh configuration to multiply an m x n matrix A by
an n x k matrix B. Mesh rows are numbered 1, . . . , m and mesh columns 1, . . . , k.
Matrices A and B are fed into the boundary processors in column 1 and row 1,
respectively, as shown in Fig. 7.7 for m = 4, n = 5, and k = 3. Note that row i of matrix
A lags one time unit behind row i - 1 for 2 < i < m. Similarly, column j of matrix B
lags one time unit behind column j - 1 for 2 < j < k. This ensures that a , meets bsj in
processor P(i , j) at the right time. At the end of the algorithm, element cij of the
product matrix C resides in processor P(i, j). Initially ci j is zero. Subsequently, when
P(i, j) receives two inputs a and b, it

(i) multiplies them,
(ii) adds the result to c i j ,

Matrix Operations Chap. 7

P(4, l) P(4.2) P(4.3)

Figure 7.7 Two matrices to be multiplied, being fed as input to mesh of processors.

(iii) sends a to P(i, j + 1) unless j = k, and
(iv) sends b to P(i + 1, j) unless i = m.

The algorithm is given as procedure MESH MATRIX MULTIPLICATION.

procedure MESH MATRIX MULTIPLICATION (A , B, C)

for i = 1 to m do in parallel
for j = 1 to k do in parallel

(1) cij t 0
(2) while P(i, j) receives two inputs a and b do

(i) cij t cij + (a x b)
(ii) if i < m then send b to P(i + 1, j)

end if

Sec. 7.3 Matrix-by-Matrix Multiplication

(iii) if j < k then send a to P(i, j + 1)
end if

end while
end for

end for.

Analysis. Elements a,, and b , , take m + k + n - 2 steps from the beginning
of the computation to reach P(m, k). Since P(m, k) is the last processor to terminate,
this many steps are required to compute the product. Assuming that m < n and k < n,
procedure MESH MATRIX MULTIPLICATION therefore runs in time t(n) = O(n).
Since p(n) = O(nZ), c(n) = O(n3), which matches the running time of the sequential
procedure MATRIX MULTIPLICATION. It should be noted that the running time
of procedure MESH MATRIX MULTIPLICATION is the fastest achievable for
matrix multiplication on a mesh of processors assuming that only boundary
processors are capable of handling input and output operations. Indeed, under this
assumption Q(n) steps are needed for the input to be read (by the processors in row 1
and column 1, say) and/or for the output to be produced (by the processors in row m
and column k, say).

Example 7.4

The behavior of procedure MESH MATRIX MULTIPLICATION is illustrated in Fig.
7.8 for

- 5 - 6
A = [: 3 and B = [- 7 -g].

The value of ci j after each step is shown inside P(i, j) .

7.3.2 Cube Multiplication

The running time of procedure MESH MATRIX MULTIPLICATION not only is
the best achievable on the mesh, but also provides the highest speedup over the
sequential procedure MATRIX MULTIPLICATION using nZ processors. Neverthe-
less, we seek to obtain a faster algorithm, and as we did in section 7.2.2, we shall turn
to another architecture for that purpose. Our chosen model is the cube-connected
SIMD computer introduced in chapter 1 and that we now describe more formally.

Let N = zg processors Po, P, , . . . , P , , - , be available for some g 3 1. Further, let
i and i(,) be two integers, 0 < i, i(,) < 2g - 1 , whose binary representations differ only . . .
in position b, 0 < b < g. In other words, if i g - , . . . I , , , I , E , - ~ . . . i l iO is the binary

. ., .
representation of i , then i , - , . . . I , , , I , 1 , - , . . . i , io is the binary representation of i',),
where ib is the binary complement of bit i,. The cube connection specifies that every
processor Pi is connected to processor Pp, by a two-way link for all 0 < b < g. The g
processors to which Pi is connected are called P,'s neighbors. An example of such a
connection is illustrated in Fig. 7.9 for the case g = 4. Now let n = 2q. We use a cube-
connected SIMD computer with N = n3 = 23q processors to multiply two n x n
matrices A and B. (We assume for simplicity of presentation that the two matrices

Figure 7.8 Multiplying two matrices using procedure MESH MATRIX
MULTIPLICATION.

Figure 7.9 Cube-connected
with sixteen processors.

computer

Sec. 7.3 Matrix -by -Matrix Multiplication 1 83

have the same number of rows and columns.) It is helpful to visualize the processors as
being arranged in an n x n x n array pattern. In this array, processor P, occupies
position (i, j, k), where r = in2 + jn + k and 0 < i, j, k < n - 1 (this is referred to as
row-major order). Thus if the binary representation of r is r3,-, r3,-, . . . ro, then the
binary representations of i, j, and k are r3,-, . . . r,,, r,,-, . . . r,, and r,-, ro,
respectively. Each processor P, has three registers A,, B,, and C,, also denoted
A(i, j, k), B(i, j, k), and C(i, j, k), respectively. Initially, processor P, in position (0, j, k),
0 < j < n, 0 < k < n, contains ajk and bjk in its registers A, and B,, respectively. The
registers of all other processors are initialized to zero. At the end of the computation,
C should contain cjk, where

The algorithm is designed to perform the n3 multiplications involved in computing the
n2 entries of C simultaneously. It proceeds in three stages.

Stage I : The elements of matrices A and B are distributed over the n3

processors. As a result, A(i, j , k) = aj i and B(i,j, k) = b,.
Stage 2: The products C(i, j , k) = A(i, j, k) x B(i, j, k) are computed.
Stage 3: The sums X;:,' C(i, j, k) are computed.

The algorithm is given as procedure CUBE MATRIX MULTIPLICATION. In it we
denote by { N , r m = d} the set of integers r, 0 ,< r < N - 1, whose binary represen-
tation is r3,- . . . rm+ d rm- . . . ro.

procedure CUBE MATRIX MULTIPLICATION (A, B, C)

Step 1: for m = 3q - 1 downto 2q do
for all r in {N, r, = 0) do in parallel

(1 . 1) Arc.) = A,
(1.2) Brlrn) = Br

end for
end for.

Step 2: for m = q - 1 downto 0 do
for all r in { N , r, = r,,,,) do in parallel

Arim) e A,
end for

end for.
Step 3: for m = 29 - 1 downto q do

for all r in (N , r, = r,,,) do in parallel
B,cw t B,

end for
end for.

Step 4: for r = 1 to N do in parallel
C, +- A, x B,

end for.

Matrix Operations Chap. 7

Step 5: for m = 2q to 3q - 1 do
for r = 1 to N do in parallel

c, + c, + c,cm1

end for
end for.

Stage 1 of the algorithm is implemented by steps 1-3. During step 1, the data initially
in A(0, j, k) and B(0, j, k) are copied into the processors in positions (i, j, k), where
1 d i < n, so that at the end of this step A(i, j, k) = ajk and B(i, j, k) = bjk for 0 ,1<n . < '
Step 2 copies the contents of A(i, j, i) into the processors in position (i , j, k), so that at
the end of this step A(i,j, k) = a j i , 0 < k < n. Similarly, step 3 copies the contents of
B(i,i, k) into the processors in position (i,j, k), so that at the end of this step
B(i, j, k) = b,,, 0 < j c n. In step 4 the product C(i, j, k) = A(i, j, k) x B(i, j, k) is com-
puted by the processors in position (i, j, k) for all 0 < i, j, k < n simultaneously. Finally,
in step 5, the n2 sums

are computed simultaneously.

Analysis. Steps 1, 2, 3, and 5 consist of q constant time iterations, while step
4 takes constant time. Thus procedure CUBE MATRIX MULTIPLICATION runs
in O(q) time, that is, t(n) = O(1ogn). We now show that this running time is the fastest
achievable by any parallel algorithm for multiplying two n x n matrices on the cube.
First note that each c,, is the sum of n elements. It takes Q(1og n) steps to compute this
sum on any interconnection network with n (or more) processors. To see this, let s be
the smallest number of steps required by a network to compute the sum of n numbers.
During the final step, at most one processor is needed to perform the last addition and
produce the result. During step s - 1 at most two processors are needed, during step
s - 2 at most four processors, and so on. Thus after s steps, the maximum number of
useful additions that can be performed is

Given that exactly n - 1 additions are needed to compute the sum of n numbers, we
have n - 1 d 2" - 1, that is, s 3 log n.

Since p(n) = n3, procedure CUBE MATRIX MULTIPLICATION has a cost of
c(n) = O(n3 logn), which is higher than the running time of sequential procedure
MATRIX MULTIPLICATION. Thus, although matrix multiplication on the cube is
faster than on the mesh, its cost is higher due to the large number of processors it uses.

Sec. 7.3 Matrix -by -Matrix Multiplication

Example 7.5

Let n = 2' and assume that the two 4 x 4 matrices to be multiplied are

There are N = 2, processors available on a cube-connected SIMD computer Po, P I , . . . ,
P,,. The processors are arranged in a three-dimensional array as shown in Fig. 7.1qa).
(Note that this three-dimensional array is in fact a six-dimensional cube with connections
omitted for simplicity.) Each of i, j, k contributes two bits to the binary representation
r , r , r , r , r , ro of the index r of processor P,: i = r,r,, j = r,r,, and k = r,r,. Initially the
matrices A and B are loaded into registers Po, . . . , P I , , as shown in Fig. 7.1qb).

Since q = 2, step 1 is iterated twice: once for m = 5 and once for m = 4. In the first
iteration, all processors whose binary index r , r , r , r , r , r , is such that r , = 0 copy their
contents into the processors with binary index r ~ r , r , r , r , r , (i.e., r; = 1). Thus Po, . . . ,
P , , copy their initial contents into P3,, . . . , P,,, respectively, and simultaneously P I , ,
. . . , P , , copy their initial contents (all zeros) into P,,, . . . , P,,, respectively. In the second
iteration, all processors whose binary index r , r , r , r , r , r , is such that r , = 0 copy their
contents into the processors with binary index r , rkr , r , r , r , (i.e., rk = 1). Thus Po, . . . ,
P , , copy their contents into P I , , . . . , P , , , respectively, and simultaneously P,,, . . . , P,,
copy their new contents (acquired in the previous iteration) into P,,, . . . , P,,,
respectively. At the end of step 1, the contents of the sixty-four processors are as shown in
Fig. 7.1qc).

There are two iterations of step 2: one for m = 1 and one for m = 0. During the first
iteration all processors with binary index r , r4r3 r , r , ro such that r , = r , copy the
contents of their A registers into those of processors with binary index r , r , r , r , r', r,.
Thus, for example, Po and P I copy the contents of their A registers into the A registers of
P , and P,, respectively. During the second iteration all processors with binary index
r , r , r , r , r , r , such that r , = r , copy the contents of their A registers into the A registers
of processors with binary index r , r , r , r , r , rb. Again, for example, Po and P , copy the
contents of their A registers into the A registers of P I and P,, respectively. At the end of
this step one element of matrix A has been replicated across each "row" in Fig. 7.10(a).
Step 3 is equivalent except that it replicates one element of matrix B across each
"column." The contents of the sixty-four processors at the end of steps 2 and 3 are shown
in Fig. 7.10(d). In step 4, with all processors operating simultaneously, each processor
computes the product of its A and B registers and stores the result in its C register. Step 5
consists of two iterations: one for m = 4 and one for m = 5. In the first iteration the
contents of the C registers of processor pairs whose binary indices differ in bit r , are
added. Both processors keep the result. The same is done in the second iteration for
processors differing in bit r , . The final answer, stored in Po, . . . , P I , is shown in Fig.
7.1qe).

Sec. 7.3 Matrix-by-Matrix Multiplication

(e)
Figure 7.10 Multiplying two matrices using procedure CUBE MATRIX MULTIPLICATION.

7.3.3 CRCW Multiplication

We conclude this section by presenting a parallel algorithm for matrix multi-
plication that is faster and has lower cost than procedure CUBE MATRIX
MULTIPLICATION. The algorithm is designed to run on a CRCW SM SIMD
computer. We assume that write conjlicts are resolved as follows: When several
processors attempt to write in the same memory location, the sum of the numbers to
be written is stored in that location. The algorithm is a direct parallelization of
sequential procedure MATRIX MULTIPLICATION. It uses m x n x k processors
to multiply an m x n matrix A by an n x k matrix B. Conceptually the processors may
be thought of as being arranged in a m x n x k array pattern, each processor having
three indices (i, j, s), where 1 < i < m, 1 < j < n, and 1 < s < k . Initially matrices A
and B are in shared memory; when the algorithm terminates, their product matrix C is .
also in shared memory. The algorithm is given as procedure CRCW MATRIX
MULTIPLICATION.

procedure CRCW MATRIX MULTIPLICATION (A, B, C)

for i = 1 to m do in parallel
for j = 1 to k do in parallel

for s = 1 to n do in parallel
(1) ci j + 0
(2) cij + a, x bSj

end for
end for

end for.

Analysis. It is clear that procedure CRCW MATRIX MULTIPLICATION
runs in constant time. Since p(n) = n3,

1 88 Matrix Operations Chap. 7

which matches the running time of sequential procedure MATRIX MULTI -
PLICATION.

Example 7.6

A CRCW SM SIMD computer with sixty-four processors can multiply the two matrices
A and B of example 7.5 in constant time. All sixty-four products shown in Fig. 7.1qd) are
computed simultaneously and stored (i.e., added) in groups of four in the appropriate
position in C. Thus, for example, P , , P , , P3 , and P, compute 17 x (-7), 23 x (-18),
27 x (- 13), and 3 x (-20), respectively, and store the results in c , ,, yielding
c , , = -944.

7.4 MATRIX-BY-VECTOR MULTIPLICATION

The problem addressed in this section is that of multiplying an m x n matrix A by an
n x 1 vector U to produce an m x 1 vector < as shown for m = 3 and n = 4:

The elements of V are obtained from

This of course is a special case of matrix-by-matrix multiplication. We study it
separately in order to demonstrate the use of two interconnection networks in
performing matrix operations, namely, the linear (or one-dimensional) array and the
tree. In addition, we show how a parallel algorithm for matrix-by-vector multiplica-
tion can be used to solve the problem of convolution.

7.4.1 Linear Array Multiplication

Our first algorithm for matrix-by-vector multiplication is designed to run on a linear
array with m processors P I , P2 , . . . , P,. Processor Pi is used to compute element ui of
t! Initially, ui is zero. Matrix A and vector U are fed to the array, as shown in Fig. 7.1 1,
for n = 4 and m = 3. Each processor Pi has three registers a, u, and u. When Pi receives
two inputs ai j and u j , it

(i) stores ai j in a and uj in u,

(ii) multiplies a by u

(iii) adds the result to ui, and
(iv) sends uj to P i - , unless i = 1.

Sec. 7.4 Matrix-by-Vector Multiplication

Figure 7.11 Matrix and vector to be
multiplied, being fed as input to linear
array.

Note that row i of matrix A lags one time unit behind row i + 1 for 1 < i < m - 1.
This ensures that aij meets uj at the right time. The algorithm is given as procedure
LINEAR MV MULTIPLICATION.

procedure LINEAR MV MULTIPLICATION (A, U, V)

for i = 1 to m do in parallel
(1) vi t 0
(2) while Pi receives two inputs a and u do

(2.1) vi t vi + (a x u)
(2.2) if i > 1 then send u to P i -

end if
end while

end for.

Analysis. Element a , , takes m + n - 1 steps to reach PI. Since P , is the last
processor to terminate, this many steps are required to compute the product.
Assuming m < n, procedure LINEAR MV MULTIPLICATION therefore runs in
time t(n) = O(n). Since m processors are used, the procedure has a cost of O(n2), which
is optimal in view of the R(nZ) steps required to read the input sequentially.

Example 7.7

The behavior of procedure LINEAR MV MULTIPLICATION for

A = [: 3 and 0 = [i]
is illustrated in Fig. 7.12.

Matrix Operations Chap. 7

Figure 7.12 Multiplying matrix by vector
using procedure LINEAR MV MULTI -

(d) PLICATION.

7.4.2 Tree Multiplication

As observed in the previous section, matrix-by-vector multiplication requires
m + n - 1 steps on a linear array. It is possible to reduce this time to m - 1 + log n by
performing the multiplication on a tree-connected SIMD computer. The arrangement
is as shown in Fig. 7.13 for m = 3 and n = 4. The tree has n leaf processors PI, P,, . . . ,
P,, n - 2 intermediate processors P, + ,, P, + ,, . . . , P2,- ,, and a root processor P,, _ ,.
Leaf processor Pi stores ui throughout the execution of the algorithm. The matrix A is
fed to the tree row by row, one element per leaf. When leaf processor Pi receives aj i , it
computes ui x aji and sends the product to its parent. When intermediate or root
processor P, receives two inputs from its children, it adds them and sends the result to
its parent. Eventually oj emerges from the root. If the rows of A are input at the leaves
in consecutive time units, then the elements of V are also produced as output from the
root in consecutive time units. The algorithm is given as procedure TREE MV
MULTIPLICATION.

procedure TREE MV MULTIPLICATION (A, U, V)

do steps 1 and 2 in parallel
(1) for i = 1 to n do in parallel

f o r j = l tomdo
(1.1) compute ui x aji
(1.2) send result to parent
end for

end for

Sec. 7.4 Matrix-by-Vector Multiplication

1 a1 2 a1 3 a1 4

a21 a22 a23 a24 Figure 7.13 Tree-connected computer for
a3 1 a32 a33 a34 matrix-by-vector multiplication.

(2) for i = n + 1 to 2n - 1 do in parallel
while Pi receives two inputs do

(2.1) compute the sum of the two inputs
(2.2) if i < 2n - 1 then send the result to parent

else produce the result as output
end if

end while
end for.

Analysis. I t takes log n steps after the first row of A has been entered at the
leaves for v, to emerge from the root. Exactly m - 1 steps later, v, emerges from the
root. Procedure TREE MV MULTIPLICATION thus requires m - 1 + log n steps
for a cost of O(n2) when m ,< n. The procedure is therefore faster than procedure
LINEAR MV MULTIPLICATION while using almost twice as many processors. It
is cost optimal in view of the R(n2) time required to read the input sequentially.

Example 7.8

The behavior of procedure TREE MV MULTIPLICATION is illustrated in Fig. 7.14 for
the same data as in example 7.7.

7.4.3 Convolution

We conclude this section by demonstrating one application of matrix-by-vector
multiplication algorithms. Given a sequence of constants {w,, w,, . . . , w,) and an

Matrix Operations Chap. 7

Figure 7.14 Multiplying matrix by vector
using procedure TREE MV MULTI -

(d) PLICATION.

input sequence {x, , x,, . . . , x,), it is required to compute the output sequence { Y , , y,,
. . . , y,,-,) defined by

This computation, known as convolution, is important in digital signal processing. It
can be formulated as a matrix-by-vector multiplication. This is shown for the case
n = 3:

Sec. 7.5 Problems

7.5 P R O B L E M S

7.1 Procedure MESH TRANSPOSE requires that the destination (j, i) of each element aij be
sent along with it during the computation of the transpose of a matrix A. Design an
algorithm for transposing a matrix on a'mesh where it is not necessary for each element to
carry its new destination along.

7.2 Is the running time of procedure SHUFFLE TRANSPOSE the smallest achievable when
transposing a matrix on a shuffle-connected SIMD computer?

7.3 Can the transpose of an n x n matrix be obtained on an interconnection network, other
than the perfect shuffle, in O(log n) time?

7.4 Is there an interconnection network capable of simulating procedure EREW
TRANSPOSE in constant time?

7.5 Assume that every processor of an n x n mesh-connected computer contains one element
of each of two n x n matrices A and B. Use a "distance" argument to show that, regardless
of input and output considerations, this computer requires R(n) time to obtain the product
of A and B.

7.6 Modify procedure MESH MULTIPLICATION so it can be used in a pipeline fashion to
multiply several pairs of matrices. By looking at Fig. 7.7, we see that as soon as processor
P(1,l) has multiplied a , , and b , ,, it is free to receive inputs from a new pair of matrices.
One step later, P(1,2) and P(2,l) are ready, and so on. The only problem is with the results
of the previous computation: Provision must be made for ci j , once computed, to vacate
P(i, j) before the latter becomes involved in computing the product of a new matrix pair.

7.7 Consider an n x n mesh of processors with the following additional links: (i) the rightmost
processor in each row is directly connected to the leftmost, (ii) the bottommost processor
in each column is directly connected to the topmost. These additional links are called
wraparound connections. Initially, processor P(i, j) stores elements aij and bij of two
matrices A and B, respectively. Design an algorithm for multiplying A and B on this
architecture so that at the end of the computation, P(i, j) contains (in addition to aij and
bi j) element cij of the product matrix C.

7.8 Repeat problem 7.7 for the mesh under the same initial conditions but without the
wraparound connections.

7.9 Design an algorithm for multiplying two n x n matrices on a mesh with fewer than n2

processors.
7.10 Design an algorithm for multiplying two n x n matrices on an n x n mesh of trees

architecture (as described in problem 4.2).
7.11 Extend the mesh of trees architecture to three dimensions. Show how the resulting

architecture can be used to multiply two n x n matrices in O(1ogn) time using n3

processors. Show also that m pairs of n x n matrices can be multiplied in O(m + 2 log n)
steps.

7.12 Assume that every processor of a cube-connected computer with nZ processors contains
one element of each of two n x n matrices A and B. Use a "distance" argument to show
that, regardless of the number of steps needed to evaluate sums, this computer requires
n(1ogn) time to obtain the product of A and B.

7.13 Design an algorithm for multiplying two n x n matrices on a cube with n2 processors in
O(n) time.

1 94 Matrix Operations Chap. 7

7.14 Combine procedure CUBE MATRIX MULTIPLICATION and the algorithm in
problem 7.13 to obtain an algorithm for multiplying two n x n matrices on a cube with
n2m processors in O((n/m) + logm) time, where 1 < m < n.

7.15 Design an algorithm for multiplying two matrices on a perfect shuffle-connected SIMD
computer.

7.16 Repeat problem 7.15 for a tree-connected SIMD computer.
7.17 I t is shown in section 7.3.2 that n processors require Q(1ogn) steps to add n numbers.

Generalize this bound for the case of k processors, where k < n.
7.18 Modify procedure CRCW MATRIX MULTIPLICATION to run on an EREW SM

SIMD computer. Can the modified procedure be made to have a cost of O(n3)?
7.19 Design an M I M D algorithm for multiplying two matrices.
7.20 Given m n x n matrices A , , A,, . . . , A,, design algorithms for two different intercon-

nection networks to compute the product matrix

C = A , x A , x . . . x A,.

7.21 Let w be a primitive nth root of unity, that is, w" = 1 and wi # 1 for 1 < i < n. The Discrete
Fourier Transform (DFT) of the sequence {a,, a , , . . . , a,- ,} is the sequence {b,, b, , . . . ,
b,- ,) where

n- 1

bi = C ai x wij for 0 < j < n.
i = O

Show how the D F T computation can be expressed as a matrix-by-vector product.
7.22 The inverse of an n x n matrix A is an n x n matrix A-' such that

A x A-' = A-' x A = I , where I is an n x n identity matrix whose entries are 1 on the
main diagonal and 0 elsewhere. Design a parallel algorithm for computing the inverse of a
given matrix.

7.23 A q-dimensional cube-connected SIMD computer with n = zq processors Po, P , , . . . , P,- ,
is given. Each processor Pi holds a datum x i . Show that each of the following
computations can be done in O(log n) time:
(a) Broadcast xo to P I , P, , . . . , P,- ,.
(b) Replace x , with xo + x , + ... + x , _ , .
(c) Replace xo with the smallest (or largest) of x,, x , , . . . , x , - , .

7.24 An Omega network is a multistage interconnection network with n inputs and n outputs. It
consists of k = log n rows numbered 1,2, . . . , k with n processors per row. The processors
in row i are connected to those in row i + 1, i = 1, 2, . . . , k - 1, by a perfect shufRe
interconnection. Discuss the relationship between the Omega network and a k-
dimensional cube.

7.6 B lBL lOGRAPHlCAL R E M A R K S

A mesh algorithm is described in [Ullman] for computing the transpose of a matrix that, unlike
procedure MESH TRANSPOSE, does not depend directly on the number of processors on the
mesh. Procedure SHUFFLE TRANSPOSE is based on an idea proposed in [Stone 11.

For references to sequential matrix multiplication algorithms with O(nX) running time,
2 < x < 3, see [Gonnet], [Strassen], and [Wilf]. A lower bound on the number of parallel steps
required to multiply two matrices is derived in [Gentleman]. Let f (k) be the maximum number

Sec. 7.7 References 195

of processors to which a datum originally in a given processor can be transmitted in k or fewer
routing steps. A mesh-connected computer, for example, has f(k) = 2kZ + 2k + 1. It is shown in
[Gentleman] that multiplying two n x n matrices requires at least s routing steps, where
f(2s) 2 n2. It follows that matrix multiplication on a mesh requires R(n) steps. Several mesh
algorithms besides procedure MESH MATRIX MULTIPLICATION are proposed in the
literature whose running time matches this bound. Such algorithms appear in [Flynn],
[Preparata], [Ullman], and [Van Scoy 11. Algorithms for the mesh with wraparound
connections and two- and three-dimensional mesh of trees are described in [Cannon], [Nath],
and [Leighton], respectively. The idea of procedure CUBE MATRIX MULTIPLICATION
originated in [Dekel], where a number of other matrix multiplication algorithms for the cube
and perfect shufAe interconnection networks are described. The Zylogn) lower bound on
computing the sum of n numbers is adapted from [Munro]. Matrix multiplication algorithms
for the cube and other interconnection networks and their applications are proposed in
[Cheng], [Fox], [Horowitz], [Hwang 11, [Hwang 21, [Kung 23, [Mead], [Ramakrishnan],
and [Varman]. Algorithms for shared-memory computers similar to procedure CRCW
MATRIX MULTIPLICATION can be found in [Chandra], [Horowitz], [Savage 11, and
[Stone 21. A discussion of various implementation issues regarding parallel matrix multiplica-
tion algorithms is provided in [Clint].

Matrix-by-vector multiplication algorithms for a number of computational models
appear in [Kung 11, [Mead], and [Nath]. Parallel algorithms and lower bounds for a variety of
matrix operations arising in both numerical and nonnumerical problems are described in
[Abelson], [Agerwala], [Borodin 11, [Borodin 23, [Chazelle], [Csanky], [Eberly], [Fishburn],
[Fortes], [Guibas], [Hirschberg], [Kronsjo], [KuEera], [Kulkarni], [Kung 23, [Leiserson],
[Lint], [Mead], [Navarro], [Pease 11, [Quinn], [Savage 23, and [Van Scoy 21.

The computational abilities of the Omega network [Lawrie] and its relationship to other
interconnection networks such as the generalized-cube [Siegel2], indirect binary n-cube [Pease
21, Staran yip [Batcher], and SW-banyan [Goke] are investigated in [Siege] 11.

7.7 R E F E R E N C E S

[ABELSON]
Abelson, H., Lower bounds on information transfer in distributed computations, Proceed-
ings of the 19th Annual IEEE Symposium on Foundations of Computer Science, Ann Arbor,
Michigan, October 1978, pp. 151-158, IEEE Computer Society, Washington, D.C., 1978.

[AGERWALA]
Agerwala, T., and Lint, B. J., Communication in parallel algorithms for Boolean matrix
multiplication, Proceedings of the 1978 International Conference on Parallel Processing,
Bellaire, Michigan, August 1978, pp. 146-153, IEEE Computer Society, Washington, D.C.,
1978.

[BATCHER]
Batcher, K. E., The flip network in STARAN, Proceedings of the 1976 International
Conference on Parallel Processing, Detroit, Michigan, August 1976, pp. 65-71, IEEE
Computer Society, Washington, D.C., 1976.

[BORODIN 11
Borodin, A., and Munro, J. I., The Computational Complexity of Algebraic and Numeric
Problems, American Elsevier, New York, 1975.

196 Matrix Operations Chap. 7

[BORODIN 21
Borodin, A., von zur Gathen, J., and Hopcroft, J. E., Fast parallel matrix and GCD
computations, Information and Control, Vol. 52, 1982, pp. 241-256.

[CANNON]
Cannon, L. E., A cellular computer to implement the Kalman filter algorithm, Ph.D. thesis,
Montana State University, Bozeman, Montana, 1969.

[CHANDRA]
Chandra, A. K., Maximal parallelism in matrix multiplication, IBM Technical Report
RC6193, Thomas J. Watson Research Center, Yorktown Heights, N.Y., September 1976.

[CHAZELLE]
Chazelle, B., and Monier, L., Optimality in VLSI, Technical Report No. CMU-CS-81-141,
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, September 1981.

[CHENC]
Cheng, K. H. and Sahni, S., VLSI systems for band matrix multiplication, Parallel
Computing, Vol. 4, 1987, pp. 239-258.

[CLINT]
Clint, M., Perrot, R. H., Holt, C. M., and Stewart, A., The influence of hardware and software
considerations on the design of synchronous parallel algorithms, Software Practice and
Experience, Vol. 13, No. 10, 1983, pp. 961-974.

[CSANKY]
Csanky, L., Fast parallel matrix inversion algorithms, SIAM Journal on Computing, Vol. 5 ,
No. 4, December 1976, pp. 618-623.

[DEKEL]
Dekel, E., Nassimi, D., and Sahni, S., Parallel matrix and graph algorithms, SIAM Journal on
Computing, Vol. 10, No. 4, November 1981, pp. 657-675.

[EBERLY]
Eberly, W., Very fast parallel matrix and polynomial arithmetic, Proceedings of the 25th
Annual IEEE Symposium on Foundations of Computer Science, Singer Island, Florida,
October 1984, pp. 21-30, IEEE Computer Society, Washington, D. C., 1984.

[FISHBURN]
Fishburn, J. P., Analysis of speedup in distributed algorithms, Ph.D. thesis, Computer
Sciences Department, University of Wisconsin-Madison, Madison, May 1981.

[FLYNN]
Flynn, M. J., and Kosaraju, S. R., Processes and their interactions, Kybernetics, Vol. 5, 1976,
pp. 159-163.

[FORTES]
Fortes, J. A. B., and Wah, B. W., Eds., Special Issue on Systolic Arrays, Computer, Vol. 20,
No. 7, July 1987.

[Fox1
Fox, G. C., Otto, S. W., and Hey, A. J. G., Matrix algorithms on a hypercube I: Matrix
multiplication, Parallel Computing, Vol. 4, 1987, pp. 17-3 1.

Gentleman, W. M., Some complexity results for matrix computations on parallel processors,
Journal of the ACM, Vol. 25, No. 1, January 1978, pp. 112-115.

Sec. 7.7 References 197

[G ~ K E I
Goke, L. R., and Lipovski, G. J., Banyan networks for partitioning multiprocessor systems,
Proceedings of the 1st Annual ACM International Symposium on Computer Architecture,
Gainesville, Florida, December 1973, pp. 21-28, Association for Computing Machinery,
New York, N.Y., 1973.

[GONNET]
Gonnet, G. H., Handbook of Algorithms and Data Structures, Addison-Wesley, Reading,
Mass., 1984.

[GUIBAS]
Guibas, L. J., Kung, H. T., and Thompson, C. D., Direct VLSI implementation of
combinatorial algorithms, Proceedings of the Conference on Very Large Scale Integration,
California Institute of Technology, Pasadena, California, January 1979, pp. 509-525,
California Institute of Technology, Pasadena, California, 1979.

[HIRSCHBERG]
Hirschberg, D. S., Parallel algorithms for the transitive closure and the connected compo-
nents problems, Proceedings of the 8th Annual ACM Symposium on Theory of Computing,
Hershey, Pennsylvania, May 1976, pp. 55-57, Association for Computing Machinery, New
York, N.Y., 1976.

[HOROWTZ]
Horowitz, E., and Zorat, A., Divide-and-conquer for parallel processing, IEEE Transactions
on Computers, Vol. C-32, No. 6, June 1983, pp. 582-585.

[HWANG 11
Hwang, K., and Cheng, Y.-H., Partitioned matrix algorithms for VLSI arithmetic systems,
IEEE Transactions on Computers, Vol. C-31, No. 12, December 1982, pp. 1215-1224.

[HWANC 21
Hwang, K., and Briggs, F. A., Computer Architecture and Parallel Processing, McGraw-Hill,
New York, 1984.

[KRONSJO]
Kronsjo, L., Computational Complexity of Sequential and Parallel Algorithms, Wiley,
Chichester, England, 1985.

[KUCERA]
KuEera, L., Parallel computation and conflicts in memory access, Information Processing
Letters, Vol. 14, No. 2, April 1982, pp. 93-96.

[KULKARNI]
Kulkarni, A. V., and Yen, D. W. L., Systolic processing and an implementation for signal and
image processing, IEEE Transactions on Computers, Vol. C-31, No. 10, October 1982, pp.
1000-1009.

[K UNG 11
Kung, H. T., Let's design algorithms for VLSI systems, Technical Report No. CMU-CS-79-
151, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, January
1979.

[K UNG 21
Kung, H. T., The structure of parallel algorithms, in Yovits, M. C., Ed., Advances in
Computers, Academic, New York, 1980, pp. 65-112.

[LAWRIE]
Lawrie, D. H., Access and alignment of data in an array processor, IEEE Transactions on
Computers, Vol. C-24, No. 12, December 1975, pp. 1145-1 155.

1 98 Matrix Operations Chap. 7

[LEIGHTON]
Leighton, F. T., Complexity Issues in VLSI, MIT Press, Cambridge, Mass., 1983.

[LEISERSON]
Leiserson, C. E., Area-Efficient VLSI Computation, MIT Press, Cambridge, Mass., 1983.

[L INT]
Lint, B. J., Communication issues in parallel algorithms and computers, Ph.D. thesis,
University of Texas at Austin, Austin, Texas, May 1979.

[M EAD]
Mead, C. A., and Conway, L. A,, Introduction to VLSI Systems, Addison-Wesley, Reading,
Mass., 1980.

[MUNRO]
Munro, J. I., and Paterson, M., Optimal algorithms for parallel polynomial evaluation,
Journal of Computer and System Sciences, Vol. 7, 1973, pp. 189-198.

[NATH]
Nath, D., Maheshwari, S. N., and Bhatt, P. C. P., Efficient VLSI networks for parallel
processing based on orthogonal trees, IEEE Transactions on Computers, Vol. C-32, No. 6,
June 1983, pp. 569-581.

[NAVARRO]
Navarro, J. J., Llaberia, J. M., and Valero, M., Solving matrix problems with no size
restriction on a systolic array processor, Proceedings of the 1986 International Conference on
Parallel Processing, St. Charles, Illinois, August 1986, pp. 676-683, IEEE Computer Society,
Washington, D.C., 1986.

[PEASE 11
Pease, M. C., Matrix inversion using parallel processing, Journal of the ACM, Vol. 14, No. 4,
October 1967, pp. 757-764.

[PEASE 21
Pease, M. C., The indirect binary n-cube microprocessor array, IEEE Transactions on
Computers, Vol. C-26, No. 5, May 1977, pp. 458-473.

[PREPARATA]
Preparata, F. P., and Vuillemin, J. E., Area-time optimal VLSI networks for multiplying
matrices, Information Processing Letters, Vol. 11, No. 2, October 1980, pp. 77-80.

CQUINNI
Quinn, M. J., Designing Efficient Algorithms for Parallel Computers, McGraw-Hill, New
York, 1987.

[RAMAKRISHNAN]
Ramakrishnan, I. V., and Varman, P. J., Modular matrix multiplication on a linear array,
IEEE Transactions on Computers, Vol. C-33, No. 11, November 1984, pp. 952-958.

[SAVAGE 11
Savage, C., Parallel algorithms for graph theoretical problems, Ph.D. thesis, Department of
Computer Science, University of Illinois, Urbana-Champaign, Illinois, August 1978.

[SAVAGE 21
Savage, J. E., Area-time tradeoffs for matrix multiplication and related problems in VLSI
models, Proceedings of the 17th Annual Allerton Conference on Communications, Control,
and Computing, Monticello, Illinois, October 1979, pp. 670-676, University of Illinois,
Urbana-Champaign, Illinois, 1979.

Sec. 7.7 References 199

[SIEGEL 11
Siegel, H. J., Interconnection Networks for Large Scale Parallel Processing, Lexington Books,
Lexington, Mass., 1985.

[SIEGEL 23
Siegel, H. J., and Smith, S. D., Study of multistage SIMD interconnection networks,
Proceedings of the 5th Annual ACM International Symposium on Computer Architecture,
Palo Alto, California, April 1978, pp. 223-229, Association for Computing Machinery, New
York, N.Y., 1978.

[STONE 11
Stone, H. S., Parallel processing with the perfect shuffle, IEEE Transactions on Computers,
Vol. C-20, No. 2, February 1971, pp. 153-161.

[STONE 21
Stone, H. S., Ed., Introduction to Computer Architecture, Science Research Associates,
Chicago, 1980.

[STRASSEN]
Strassen, V., The asymptotic spectrum of tensors and the exponent of matrix multiplication,
Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer Science,
Toronto, Canada, October 1986, pp. 49-54, IEEE Computer Society, Washington, D.C.,
1986.

[ULLMAN]
Ullman, J. D., Computational Aspects of VLSI, Computer Science Press, Rockville, Md.,
1984.

[VAN SCOY 11
Van Scoy, F. L., Parallel algorithms in cellular spaces, Ph.D. thesis, University of Virginia,
Charlotteville, Va., 1976.

[VAN SCOY 21
Van Scoy, F. L., The parallel recognition of classes of graphs, IEEE Transactions on
Computers, Vol. C-29, No. 7, July 1980, pp. 563-570.

[VARMAN]
Varman, P. J., Ramakrishnan, I. V., and Fussell, D. S., A robust matrix-multiplication array,
IEEE Transactions on Computers, Vol. C-33, No. 10, October 1984, pp. 919-922.

[WILF]
Wilf, H. S., Algorithms and Complexity, Prentice-Hall, Englewood Cliffs, N.J., 1986.

Numerical Problems

8.1 INTRODUCTION

In any scientific or engineering application of computers, it is usually required to solve
a mathematical problem. Such applications span a wide range, from modeling the
atmosphere in weather prediction to modeling hot plasmas in theoretical physics and
from the design of space stations, airplanes, automatic pilots and air-traffic control
systems to the design of power stations, automobiles, and ground transportation
networks. In these applications computers are used to find zeros of functions, solve
systems of equations, calculate eigenvalues, and perform a variety of numerical tasks
including differentiation, integration, interpolation, approximation, and Monte Carlo
simulations. These problems have a number of distinguishing properties:

1. Because they typically involve physical quantities, their data are represented
using real values, or in computer terminology, floating-point numbers.
Sometimes the numbers to be manipulated are complex, that is, they are of the
form a + ib, where a and b are real and

2. Their solutions are obtained through algorithms derived from a branch of
mathematics known as numerical analysis and are therefore based on mathemat-
ical theory.

3. Their algorithms usually consist of a number of iterations: Each iteration is
based on the result of the previous one and is supposed, theoretically, to
improve on it.

4. Generally, the results produced by numerical algorithms are approximations of
exact answers that may or may not be possible to obtain.

5. There is an almost inevitable element of error involved in numerical com-
putation: round-of errors (which arise when infinite precision real numbers are
stored in a memory location of fixed size) and truncation errors (which arise
when an infinite computation is approximated by a finite one).

Sec. 8.2 Solving Systems of Linear Equations 201

In this chapter we describe parallel algorithms for the following numerical
problems: solving a system of linear equations (section 8.2), finding roots of nonlinear
equations (section 8.3), solving partial differential equations (section 8.4), and
computing eigenvalues (section 8.5). We assume throughout this chapter that all
problems involve real (as opposed to complex) numbers.

8.2 SOLVING SYSTEMS OF LINEAR EQUATIONS

Given an n x n matrix A and an n x 1 vector b, it is required to solve Ax = b for the
unknown n x 1 vector x. When n = 4, for example, we have to solve the following
system of linear equations for x , , x,, x,, and x,:

a l l x1 + a12x2 + ~ 1 ~ x 3 + a14x4 = b l r

a21x1 + az2x2 + az3x3 + az4x4 = b2,

a3,x1 + a 3 ~ x , + a3,x3 + a3,x4 = b3,

a4,Xl + U 4 2 X 2 + a4,X3 + a44X4 = be

8.2.1 An SIMD Algorithm

A well-known sequential algorithm for this problem is the Gauss-Jordan method. It
consists in eliminating all unknowns but xi from the ith equation. The solution is then
obtained directly. A direct parallelization of the Gauss-Jordan method is now
presented. It is designed to run on a CREW SM SIMD computer with n2 + n
processors that can be thought of as being arranged in an n x (n + 1) array. The
algorithm is given as procedure SIMD GAUSS JORDAN. In it we denote bi by a,,"+ , .

procedure SIMD GAUSS JORDAN (A, b, x)

Step 1: for j = 1 to n do
for i = 1 to n do in parallel

for k = j to n + 1 do in parallel
if (i # j)
then aik + aik - (aij/ajj)ajk
end if

end for
end for

end for.

Step 2: for i = 1 to n do in parallel
X i ai,n + 1 laii

end for.

Note that the procedure allows concurrent-read operations since more than one
processor will need to read a i j , a j j , and ajk simultaneously.

202 Numerical Problems Chap. 8

Analysis. Step 1 consists of n constant time iterations, while step 2 takes
constant time. Thus t(n) = O(n). Since p(n) = O(n2), c(n) = O(n3). Although this cost
matches the number of steps required by a sequential implementation of the Gauss-
Jordan algorithm, it is not optimal. To see this, note that the system Ax = b can be
solved by first computing the inverse A-' of A and then obtaining x from

The inverse of A can be computed as follows. We begin by writing

where the Aij are (4 2) x (4 2) submatrices of A, and B = A,, - A2,A;, 'Al2. The
(n/2) x (4 2) matrices I and 0 are the identity matrix (whose main diagonal elements
are 1 and all the rest are zeros) and zero matrix (all of whose elements are zero),
respectively. The inverse of A is then given by the matrix product

where A,-,' and B - ' are computed by applying the same process recursively. This
requires two inversions, six multiplications, and two additions of (4 2) x (4 2)
matrices. Denoting the time required by these operations by the functions i(n/2),
m(n/2), and a(n/2), respectively, we get

Since 4 4 2) = n2/4 and m(n/2) = O((n/2)"), where 2 < x < 2.5 (as pointed out in
example 1.1 I) , we get i(n) = O(nx). Thus, in sequential computation the time required
to compute the inverse of an n x n matrix matches, up to a constant multiplicative
factor, the time required to multiply two n x n matrices. Furthermore, multiplying
A-' by b can be done in O(nZ) steps. The overall running time of this sequential
solution of Ax = b is therefore O(nx), 2 < x < 2.5.

Example 8.1

Let us apply procedure SIMD GAUSS JORDAN to the system

In the first iteration of step I , j = 1 and the following values are computed in parallel:

Sec. 8.2 Solving Systems of Linear Equations 203

In the second iteration of step 1, j = 2 and the following values are computed in parallel:

a12 = a12 - (a121a22)a22 = 1 - (l/X) = 0,

a13 = a 1 3 - (a12/a22)a23 = 3 - (I/$)($) = 4.
In step 2, the answer is obtained as x, = $ and x, = 5.

8.2.2 An M l M D Algorithm

A different sequential algorithm for solving the set of equations Ax = b is the Gauss-
Seidel method. We begin by writing

where E, D, and F are n x n matrices whose elements eij, dij, andJj, respectively, are
given by

aij for i > j, aij for i = j, aij for i < j,
d.. =

0 otherwise, ~ j = { 0 otherwise.

Thus (E + D + F)x = b and Dx = b - Ex - Fx. For n = 3, say, we have

Starting with a vector x0 (an arbitrary initial estimate of x), the solution vector is
obtained through an iterative process where the kth iteration is given by

In other words, during the kth iteration the current estimates of the unknowns are
substituted in the right-hand sides of the equations to produce new estimates. Again
for n = 4 and k = 1, we get

The method is said to converge if, for some k,

where abs denotes the absolute value function and c is a prespecified error tolerance.
The algorithm does not appear to be easily adapatable for an SIMD computer.

Given N processors, we may assign each processor the job of computing the new

204 Numerical Problems Chap. 8

iterates for n /N components of the vector x. At the end of each iteration, all
processors must be synchronized before starting the next iteration. The cost of this
synchronization may be high because of the following:

(i) The x: cannot be computed until x; is available, for all j < i ; this forces the
processor computing xi to wait for those computing xj, j < i, and then forces all
processors to wait for the one computing x,.

(ii) Some components may be possible to update faster than others depending on
the values involved in its computation (some of which may be zero, say).

Typically, this would lead to an algorithm that is not significantly faster than its
sequential counterpart.

There are two ways to remedy this situation:

1. The most recently available values are used to compute xf (i.e., there is no need
to wait for xr, j < i).

2. No synchronization is imposed on the behavior of the processors.

Both of these changes are incorporated in an algorithm designed to run on a CREW
SM MIMD computer with N processors, where N < n. The algorithm creates n
processes, each of which is in charge of computing one of the components of x. These
processes are executed by the N processors in an asynchronous fashion, as described
in chapter 1. The algorithm is given in what follows as procedure MIMD
MODIFIED GS. In it xp, old,, and new, denote the initial value, the previous value,
and the current value of component xi, respectively. As mentioned earlier, c is the
desired accuracy. Also note that the procedure allows concurrent-read operations
since more than one process may need new, simultaneously.

procedure MIMD MODIFIED GS (A, x, b, c)

Step 1: for i = 1 t o n do
(1 .1) old, + xp
(1.2) newi + xp
(1.3) create process i
end for.

Step 2: Process i
(2.1) repeat

(i) oldi + newi

until abs(newi - old,) < c
i = 1

(2.2) x i t new,.

Note that step 2 states one of the n identical processes created in step 1.

Sec. 8.2 Solving Systems of Linear Equations 205

Discussion. In an actual implementation of the preceding procedure, care
must be taken to prevent a process from reading a variable while another process is
updating it, as this would most likely result in the first process reading an incorrect
value. There are many ways to deal with this problem. One approach uses special
variables called semaphores. For each shared variable vi there is a corresponding
semaphore si whose value is set as

0 if vi is free,
1 if vi is currently being updated.

When a process needs to read vi, it first tests si: If si = 0, then the process reads vi ;
otherwise it waits for it to be available. When a process needs to update oi, it first sets
si to 1 and then proceeds to update v i .

As pointed out in chapter 1, MIMD algorithms in general are extremely difficult
to analyze theoretically due to their asynchronous nature. In the case of procedure
MIMD MODIFIED GS the analysis is further complicated by the use of semaphores
and, more importantly, by the uncertainty regarding the number of iterations required
for convergence. An accurate evaluation of the procedure's behavior is best obtained
empirically.

Example 8.2

Consider the system of example 8.1 and assume that two processors are available on a
CREW SM MIMD computer. Take xy = f, x; = 2, and c = 0.02. Process 1 sets old, = f
and computes

new, =+(3 -$) =$.

Simultaneously, process 2 sets old, = 2 and computes

new, = +(4 - $) = i.

The computation then proceeds as follows

(1) new, = 2, new, = 9,
(2) new, = #, new, = g,
(3) new, = 3, new, = g,
(4) new, = 8, new, = w,
(5) new, = &&, new, = #.

Since abs(g - &&) + a b s (e - E) < 0.02, the procedure terminates.

206 Numerical Problems Chap. 8

8.3 FINDING ROOTS OF NONLINEAR EQUATIONS

In many science and engineering applications it is often required to find the root of an
equation of one variable, such as

x5 - x3 + 7 = 0,

sin x - ex = 0,

x2 - cos x = 0.

Finding the root of an equation of this form analytically is usually impossible, and one
must resort to numerical algorithms to obtain an approximate solution.

8.3.1 An S lMD Algorithm

A standard sequential algorithm for root finding is the bisection method. Let f (x) be a
continuous function and let a, and b, be two values of the variable x such that f (a,)
and f (b,) have opposite signs, that is,

A zero off [i.e., a value z for which f(z) = 01 is guaranteed to exist in the interval
(a,, b,). Now the interval (a,, b,) is bisected, that is, its middle point

mo = %a0 + bo)

is computed. If f (a,) f (m,) < 0, then z must lie in the interval (a , , b ,) = (a,, m,);
otherwise it lies in the interval (a, , b ,) = (m,, b,). We now repeat the process on the
interval (a, , b,). This continues until an acceptable approximation of z is obtained,
that is, until for some n > 0,

(i) abs(b, - a,) < c or
(ii) abs(f (m,)) < c',

where c and c' are small positive numbers chosen such that the desired accuracy is
achieved.

The algorithm using criterion (i) is given in what follows as procedure
BISECTION. Initially, a = a , and b = b,. When the procedure terminates, a zero is
known to exist in (a, b).

procedure BISECTION (f; a, b, c)

while abs(b - a) 2 c do
(1) m +- $a + b)
(2) if f (a) f (m) < 0 then b t m

else a +- m
end if

end while.

Sec. 8.3 Finding Roots of Nonlinear Equations

Figure 8.1 Finding root using procedure BISECTION.

Since the interval to be searched is halved at each iteration, the procedure runs
in O(1og w) time, where w = abs(b, - a,). When f is discrete rather than continuous,
procedure BISECTION is equivalent to procedure BINARY SEARCH of chapter 3.
The procedure's behavior is illustrated in Fig. 8.1 for some function f: After four
iterations, a zero is known to lie in the interval (m,, m,).

In much the same way as we did with procedure BINARY SEARCH in section
5.2.2, we can implement procedure BISECTION on a parallel computer. Given N
processors, the idea is to conduct an (N + 1)-section search on a CREW SM SIMD
computer. The initial interval, known to contain one zero of a functionf; is divided
into N + 1 subintervals of equal length. Each processor evaluates the function at one
of the division points, and based on these evaluations, one of the subintervals is
chosen for further subdivision. As with the sequential case, this process is continued
until the interval containing a root is narrowed to the desired width. The algorithm is
given in what follows as procedure SIMD ROOT SEARCH. It takes the function f;
the initial interval (a, b), and the accuracy c as input and returns an interval in which a
zero off lies and whose width is less than c. The procedure is designed to run on a
CREW SM SIMD computer since at the end of each iteration all processors need to
know the endpoints (a, b) of the new interval. Without loss of generality, we assume
that a < b at all times.

(b)

Figure 8.2 Finding root using procedure SIMD ROOT SEARCH.

Sec. 8.3 Finding Roots of Nonlinear Equations

procedure SIMD ROOT SEARCH (f , a, b, c)

while (b - a) 2 c do
(1) s + (b - a)l(N + 1)
(2) Yo f (a)
(3) YN + 1 f (b)
(4) for k = 1 to N do in parallel

(4.1) Yk f (a + ks)
(4.2) if y k - , yk < 0 then (i) a t a + (k - 1)s

(ii) b + a + ks
end if

end for
(5) if y N y N + < 0 then a +- a + Ns

end if
end while.

Analysis. Steps 1,2, 3, and 5 may be executed by one processor, say, P,, in
constant time. In step 4, which also takes constant time, at most one processor P, will
discover that y, - , y, < 0 and hence update a and b. If no processor updates a and b in
step 4, then the zero must be in the (N + 1)st interval, and only a is updated in step 5.
The number of iterations is obtained as follows. Let w be the width of the initial
interval, that is, w = b - a. After j iterations the interval width is w/(N + 1)'. The
procedure terminates as soon as w/(N + l) j < c. The number of iterations, and hence
the running time, of procedure SIMD ROOT SEARCH is therefore O(log,+ ,w). Its
cost is O(N log,, ,w), which, as we know from chapter 5, is not optimal.

Example 8.3

The behavior of procedure SIMD ROOT SEARCH on the function in Fig. 8.1 when
three processors are used is illustrated in Fig. 8.2. After one iteration the interval
containing the zero is (x,, x,), as shown in Fig. 8.2(a). After the second iteration the
interval is (x,, x,) as shown in Fig. 8.2(b).

8.3.2 An M l M D Algorithm

Another sequential root-finding algorithm that is very commonly used is Newton's
method. A continuously differentiable function f(x) is given together with an initial
approximation x, for one of its roots z. The method computes

x , , + ~ = x,, - f(x,)/fl(x,) for n = 0, 1, 2 ,...,

until abs(x,+, - x,) < c. Here f '(x) is the derivative of f (x) and c is the desired
accuracy. A geometric interpretation of Newton's method is shown in Fig. 8.3. Note
that the next approximation x,+ , is the intersection with the x axis of the tangent to
the curve f (x) at x,.

The main reason for this method's popularity is its rapid convergence when x, is

Numerical Problems Chap. 8

Figure 8.3 Newton's method for finding root.

sufficiently close to z. More precisely, if

(i) f(x) and its first and second derivatives ff(x) and fU(x), respectively, are
continuous and bounded on an interval containing a root z, with f '(x) # 0, and

(ii) abs(xo - z) < 1,

then for large n, abs(x,+, - z) = k(x, - z) ~ , where k is a constant of proportionality
that depends on f '(z) and f "(z). In other words, the error in x,, , is proportional to the
square of the error in x,.

The method is said to have quadratic convergence under the conditions stated in
the preceding. In practice, this means that the number of correct digits in the answer
doubles with each iteration. Therefore, if the answer is to be accurate to m digits, the
method converges in O(1og m) time.

One difficulty with Newton's method is finding an initial approximation that is
sufficiently close to the desired root. This difficulty is almost eliminated by implement-
ing the method on a CRCW SM MIMD computer as follows. We begin with an
interval (a, b), where a < b, known to contain one zero z of f(x). The interval is divided
into N + 1 subintervals of equal size, for some N 2 2, and the division points are
taken as initial approximations of z. The computation consists of N processes. Each
process applies Newton's method beginning with one of the division points. The

Sec. 8.3 Finding Roots of Nonlinear Equations 21 1

processes are executed concurrently, though asynchronously, depending on the
availability of processors. As soon as a process converges, it indicates that by writing
the value it found in a shared-memory location ROOT. Initially, ROOT is set to the
value oo. As soon as that value is changed by a process, all processes are terminated.
If two (or more) processes converge at the same time and attempt to write in ROOT
simultaneously, then only the smallest-numbered process is allowed access while the
others are denied it. In case a process does not converge after a predefined number of
iterations, it is suspended. The algorithm is given in what follows as procedure MIMD
ROOT SEARCH. It takes as input the function f, its derivative f ', the interval (a, b),
the accuracy c, and the maximum allowable number of iterations r. It returns its
answer in ROOT.

procedure MIMD ROOT SEARCH (f, f', a, b, c, r, ROOT)

Step 1: s t (b - a)/(N + 1).

Step 2: for k = 1 to N do
create process k

end for.

Step 3: ROOT + m.

Step 4: Process k
(4.1) xold + a + ks
(4.2) iteration t 0
(4.3) while (iteration < r) and (ROOT = co) do

(i) iteration +- iteration + 1
(ii) Xnew Xold - f (~old)/f((~old)

(iii) if abs(xne, - x,,,) < c then ROOT + x,,,
end if

(iv) X O I ~ Xnew

end while.

Note that variables a, s, r, c, and ROOT used in process k are global. On the other
hand, variables iteration, x,,,, and x,,, are local; they are not subscripted in order to
simplify the notation.

Analysis. Let N processors be available. If N is large, one of the starting
points will be close enough to z. If in addition f(x), f '(x), and f "(x) are continuous and
bounded on the interval (a, b), then one of the N processes will converge in O(1og m)
time, where m is the desired number of accurate digits in the answer.

Example 8.4

Let f(x) = x3 - 4x - 5. Thus f1(x) = 3x2 - 4. There is a zero of f(x) in the interval
(-3, 3). Let N = 5; the interval is divided into six subintervals with division points at
x = -2, - 1,0, 1, and 2, and the corresponding five processes are created. Let c = 10- lo,

and assume that five processors are available to execute the five processes simulta-
neously. In that case, process 5 is the fastest to converge to a root at 2.456678.

21 2 Numerical Problems Chap. 8

8.4 SOLVING PARTIAL DIFFERENTIAL EQUATIONS

Partial differential equations (PDEs) arise in such diverse applications as weather
forecasting, modeling supersonic flow, and elasticity studies. A particularly important
class of PDEs is that of linear equations of second order in two independent variables
x and y. One representative of this class is Poisson's equation

d2u(x, Y)
uxx + u,, = G(x, y) where uxx = -

d2u(x, Y) u,,, = -,
ax2 ' dy2

u(x, y) is the unknown function, and G is a given function of x and y. The solution of
this equation is often needed in so-called boundary-value problems, a typical example
of which is the Model Problem stated as follows.

Let R and S denote the interior and boundary, respectively, of a region in two-
dimensional space, and let f (x , y) be a continuous function defined on S. The desired
function u(x, y) must satisfy Poisson's equation on R and equal f (x , y) on S. In
sequential computation, the Model Problem is solved numerically by first deriving a
discrete version of it. Here R and S are the interior and boundary, respectively, of the
unit square, 0 < x < 1 , 0 < y < 1. A uniform mesh of n + 1 horizontal and n + 1
vertical lines, where n is an arbitrary positive integer, is superimposed over the unit
square, with a spacing of d = l ln between lines. The (n + intersections of these
lines are called mesh points. For a mesh point (x , y) in R, uxx and u,, are approximated
by difference quotients as follows:

This leads to the following form of Poisson's equation:

known as a dzference equation. An iterative process called successive overrelaxation is
used to obtain an approximate value for u(x, y) at each of the (n - interior mesh
points. Beginning with an arbitrary value uo(x, y), the following iteration is used:

where

&(x, Y) = [~ k - I (X + d, Y) + U ~ (X - d, Y) + ~ k - y + d)

+ uk(x, Y - d) - d2G(x, y)] /4
and

w = 2/ [1 + sin(.nd)].

Let ek denote the absolute value of the difference between uk(x, y) and the exact
value of u at (x , y). The iterative process continues until

Sec. 8.4 Solving Partial Differential Equations 21 3

where o is a positive integer representing the desired accuracy. Neither e, nor e, is
known, of course. However, it can be shown that the process converges and the
preceding inequality is true after k = gn iterations, where g = 013. Since there are
(n - interior points, the entire process takes O(n3) time.

This approach to solving PDEs lends itself naturally to implementation on an
N x N mesh-connected SIMD computer with N = n - 1, as shown in Fig. 8.4 for
N = 4. Each processor P(i, j), 1 < i, j < N , is in charge of computing an approxi-
mation of the function u at point (id, jd). It does so beginning with the initial value
u,(id, j d) and then iteratively using the values computed by its four neighbors as input.
Boundary processors, of course, have fewer than four neighbors and use the values of
f (x , y) at x = 0, 1 and y = 0, 1 to replace the input from missing neighbors. One
difficulty to overcome is the fact that u,(x, y) depends on u,(x - d, y) and u,(x, y - d) .
In sequential computation, this is no problem since the kth iterates are computed one
at a time from x = 0 to x = 1 and from y = 0 to y = 1. By the time u,(x, y) is to be

Figure 8.4 Mesh of processors for solving partial differential equations.

21 4 Numerical Problems Cham 8

computed, uk(x - d, y) and uk(x, y - d) are available. In the parallel version each
iteration will consist of two stages:

1. During the first stage one-half of the processors compute new values for u based
on the values held by the other half.

2. During the second stage, the remaining processors update their values of u using
the new values just computed in 1.

The two sets of processors in 1 and 2 are chosen to correspond to the red and black
squares, respectively, on a checkerboard. Let w,,, and w,,, denote the value of w
during stages 1 and 2, respectively, of iteration k, where

w1.1 = 1,

w,,, = 1/(1 - 4 cos2.rrd),

and for k = 2, 3 , . . . ,

wk , , = 1 1 ~ 1 - a C O S ~ xd)w,- ,,,I,
wkS2 = 1/[1 - $ c0s2 7Cd)wk,~].

The equations for updating u are now as follows:

Stage I: For all 1 < i, j < N , such that i + j is even,

uk(id, jd) = uk-,(id, jd) + wk,,[u;(id, jd) - uk-,(id, jd)] ,

where

ul(id, jd) = [uk- ,(id + d, jd) + uk- l(id - d, jd)

+ uk-,(id, jd + d) + uk-,(id, jd - d) - d2G(x, y)]/4.

Stage 2: For all 1 < i, j < N such that i + j is odd,

uk(id, jd) = uk- ,(id, jd) + ~ ~ , ~ [u ; (i d , jd) - uk- ,(id, jd)] ,

where

&(id, jd) = [uk(id + d, jd) + uk(id - d, jd) + uk(id, jd + d)

+ uk(id. jd - d) - d2G(x, ~4114.

The algorithm is given as procedure MESH PDE.

procedure MESH PDE (f, G, g)

Step 1: {Compute boundary values)
(1.1) for i = 1 to N do in parallel

(i) P(1, i) computes f(0, id)
(i i) P (N , i) computes f (1 , id)

end for

Sec. 8.5 Computing Eigenvalues

(1.2) for i = 1 to N do in parallel
(i) P(i, 1) computes f (id, 0)
(ii) P(i, N) computes f (id, 1)

end for.

Step 2: {Input initial values)
for i = 1 to N do in parallel

for j = 1 to N do in parallel
P(i, j) reads u,(id, jd)

end for
end for.

Step 3: {Iterate until convergence)
for k = 1 to gn do

for i = 1 to N do in parallel
for j = 1 to N do in parallel

(3.1) if (i + j) is even
then P(i, j) updates u(id, jd)
end if

(3.2) if (i + j) is odd
then P(i, j) updates u(id, jd)
end if

end for
end for

end for. [7

Analysis. Steps 1 and 2 take constant time. Step 3 consists of O(n) constant
time iterations. Thus t(n) = O(n). Since p(n) = O(n2), c(n) = O(n3), which matches the
running time of the sequential algorithm.

Example 8.5

Figure 8.5 illustrates the behavior of procedure MESH PDE for the processors in Fig.
8.4. Note that d = 0.2.

8.5 COMPUTING EIGENVALUES

The algebraic eigenvalue problem derives its importance from its relation to the
problem of solving a system of n simultaneous linear differential equations of first
order with constant coefficients. Such a system is written as

where A is an n x n matrix and x is an n x 1 vector. For some vector u # 0, x = ue" is
a solution of the preceding system if and only if Au = Au. Here, 1 is called an
eigenvalue and u an eigenoector. The algebraic eigenvalue problem is to determine
such 1 and u. There are always n eigenvalues. To each eigenvalue, there corresponds at
least one eigenvector.

f(d,O) f(2d,0) f(3d,0) f(4d,0)

(a) STEP 1

(b) STEP 2

Sec. 8.5 Computing Eigenvalues

(c) STEP (3.1)

(d) STEP (3.2)

Figure 8 5 Solving Model Problem using procedure MESH PDE.

For an n x n matrix B and an n x 1 vector y, if we apply the transformation
x = By to the system of differential equations, we get

dyldt = (B - ' AB)y.

The eigenvalues of B - ' AB are the same as those of A. We therefore choose B such that
the eigenvalues of B- 'AB are easily obtainable. For example, if B-'AB is a diagonal
matrix (i.e., all elements are zero except on the diagonal), then the diagonal elements

21 8 Numerical Problems Chap. 8

are the eigenvalues. One method of transforming a symmetric matrix A to diagonal
form is Jacobi's algorithm. The method is an iterative one, where the kth iteration is
defined by

A, = R,A,-,R; for k = 1, 2, . . . ,
with

The n x n matrices R, are known as plane rotations. Let afj denote the elements
of A,. The purpose of R, is to reduce the two elements a:; ' and a:, ' to zero (for some
p < q depending on k). In reality, each iteration decreases the sum of the squares of the
nondiagonal elements so that A, converges to a diagonal matrix. The process stops
when the sum of the squares is sufficiently small, or more specifically, when

i+.i

for some small tolerance c. At that point, the columns of the matrix
RTRT . . . R: are the eigenvectors.

The plane rotations are chosen as follows. If a:;' is a nonzero off-diagonal
element of A,- ,, we wish to define R, so that a$, = a:, = 0. Denote the elements of R,
by $,. We take

k - k - rpp - rqq - cos 8,,

r:q = - rip = sin 8, ,

rk = 1 for i # p or q,

r& = 0 otherwise,

where cos 8, and sin 0, are obtained as follows. Let

a, = (at; ' - a$; l)/2akp; '
and

where sign(a,) is + 1 or - 1 depending on whether a, is positive or negative,
respectively. Then

cos 0, = 1/(1 + /?,2)'12 and sin 0, = 8,cos 8,.

The only question remaining is: Which nonzero element a;; ' is selected for reduction
to zero during the kth iteration? Many approaches are possible, one of which is to
choose the element of greatest magnitude since this would lead to the greatest
reduction in d,.

As described in the preceding, the algorithm converges in O(n2) iterations. Since
each iteration consists of two matrix multiplications, the entire process takes O(nS)

Sec. 8.5 Computing Eigenvalues 21 9

time, assuming that the (sequential) procedure MATRIX MULTIPLICATION is
used.

Jacobi's method lends itself naturally to parallel implementation. Let n = 2", for
some positive integer s. In what follows we give a parallel algorithm designed to run
on a cube-connected SIMD computer with n3 = 23S processors, as we did in section
7.3.2. We visualize the processors of this 3s-dimensional cube as being arranged in an
n x n x n array pattern, with processor P, occupying position (i, j, m), 0 < i, j,
m ,< n - 1. The processors are arranged in row-major order, that is, r = in2 + jn + m.
The matrix A (i.e., A,) is initially stored in the n2 processors occupying positions
(0, j, m), 0 < j, m < n - 1, one element per processor. In other words, A, is stored in
the processors of a 2s-dimensional cube. At the beginning of iteration k, k = 1,2, . . . ,
these same processors contain A,-,. They find its largest off-diagonal element and
create R, and Rf. All n3 processors are then used to obtain C, = R,A,-, and
A, = C,Rf. At the end of the iteration, if d, < c, the process terminates.

The algorithm is given in what follows as procedure CUBE EIGENVALUES.
The subscript k is omitted from A,, R,, Rf, and d, since new values replace old ones.

procedure CUBE EIGENVALUES (A , c)

while d > c do
(1) Find the off-diagonal element in A with largest absolute value
(2) Create R
(3) A + R A
(4) Create RT

(5) A + A RT

end while.

Analysis. As pointed out earlier, the n2 processors holding A form a 2s-
dimensional cube. From problem 7.23 we know therefore that they can compute d, in
O(1ogn) time. By the same reasoning, step 1 takes O(1ogn) time. Steps 2 and 4 take
constant time since each of the n2 processors in positions (0, j, m), 0 < j, m ,< n - 1,
creates one element of R, and one of R:. Procedure CUBE MATRIX
MULTIPLICATION of chapter 7 whose running time is O(1og n) is then applied in
steps 3 and 5 to compute R,AR:. The time per iteration is thus O(1ogn). Since
convergence is attained after O(n2) iterations, the overall running time is O(n2 log n).
Given that p(n) = n3, c(n) = O(n5 log n), which is by a factor of log n larger than the
sequential running time.

Example 8.6

Let n = 2 (i.e., s = l),

A = [: :] and c = lo-'.

Procedure CUBE EIGENVALUES in this case requires eight processors forming a
three-dimensional cube. Figure 8.qa) shows the elements of A, inside the processors to
which they are assigned.

Figure 8.6 Computing eigenvalues using
procedure CUBE EIGENVALUES.

Sec. 8.6 Problems 221

In the first iteration, the off-diagonal element a , , = 1 is chosen for reduction to
zero (i.e., p = 1 and q = 2). Thus

cos O1 sin 0 ,] = [I/,/: i/Ji]

- 1 1 4 I/$' -sin 8, cos 0 ,

as shown in Fig. 8.qb). Now

is computed using all eight processors to execute the eight multiplications involved
simultaneously, as shown in Fig. 8.6(c).

The elements of RIAo replace those of A, and RT replaces R,, as shown in Fig.
8.qd). Finally ART is computed and the value of A, at the end of the first iteration is
shown in Fig. 8.qe). Since the two off-diagonal elements are both zero, the procedure
terminates. The eigenvalues are 2 and 0, and the eigenvectors are

(I/,/? I/&)' and (-1/,/3 I/$)'.

8.6 P R O B L E M S

8.1 In procedure SIMD GAUSS JORDAN the elements aj j are called the pivots. If at any
point a pivot equals zero, then the procedure obviously fails since aj j is a denominator. In
fact, if the values of one or more pivots are near zero, then the errors of computation grow
exponentially as they propagate, and the procedure is said to be numerically unstabk. To
avoid these problems, a method called pivoting is used: A pair of rows and columns are
interchanged so that the new element used as a pivot is not too close to zero. Modify
procedure SIMD GAUSS JORDAN to include pivoting.

8.2 Gaussian elimination is a standard method for solving the system of equations Ax = b. It
begins by transforming the given system to the equivalent form U x = c, where U is an
n x n upper triangular matrix (i.e., all elements below the diagonal are zero) and c is an
n x 1 vector. The transformation is performed in n - 1 steps. During step j, variable x j is
eliminated from equations i = j + 1, j + 2, . . . , n by subtracting from each of these
equations the product (a i j /a j j) x (equation j). The triangular system U x = c is now solved
by back substitution, computing x, from the nth equation, x , - , from the (n - l)st, and
finally x , from the first. Design a parallel version of Gaussian elimination for a SM SIMD
computer and analyze its running time and cost.

8.3 Modify the parallel algorithm derived in problem 8.2 to include pivoting as described in
problem 8.1.

8.4 Another method for solving Ax = b is known as LU decomposition. The matrix A is
decomposed into two matrices L and U such that LU = A, where U is upper triangular
(ukj = 0 if k > j) and L is lower triangular (1 , = 0 if i < k) with diagonal elements equal to
1 (I , = 1 if i = k). The solution of Ax = b is now achieved by solving Ly = b and U x = y
using forward and back substitution, respectively. Consider the special case where A is
positive dejinite, that is,

(i) aij = aji for all i and j, 1 < i, j < n, meaning that A is symmetric;
(ii) vTAv > 0 for a11 n x 1 nonzero vectors v.

222 Numerical Problems Chap. 8

In this case the elements of L and U are obtained as follows:

where

ah = a i j and a:;' = a:, - (l i k x u,,).

(a) Show how the matrices L and U can be computed on an interconnection network
SIMD computer in which the processors form a hexagonal array as shown in Fig. 8.7.

(b) Show how both systems Ly = b and U x = y can be solved on an interconnection-
network SIMD computer in which the processors form a linear array.

8.5 A matrix Q is said to be orthogonal if QQT = QTQ = I. The system Ax = b can also be
solved using a method known as Q R factorization. Here two matrices Q and R are
obtained such that

QA = R

where Q is orthogonal and R upper triangular. Thus the system R x = Qb can be solved
directly by back substitution. Matrix Q is formed as the product of plane rotations, that is,
matrices P i + , , , identical to I except in positions pii, p i + l , i , and p i + l , i + l . Let
b.. 1J = (a2. LJ + aiz,,,,)lt2, ci = a i j / b i j , and si = a , , l , j /b i j . We take pii = pi+ l , i + = c i , and
pi.i+ , = - p i + l , i = si. Each plane rotation therefore annihilates one element of A below
the diagonal. Show how the matrix R can be computed on an n x n mesh-connected
SIMD computer.

8.6 Let two processors be available on an MIMD computer, and assume that procedure
MIMD MODIFIED GS is used to solve the system of equations

with c = 0.1 and starting from the initial estimates xy = x i = x! = x i = 0. Processors P I
and P, begin by executing processes 1 and 2, respectively, and halt after one iteration with
x , = x , = 0. Processes 3 and 4 are now executed. After a few iterations, the values of x ,
and x4 eventually converge to approximately 9 and q, respectively. The procedure
therefore returns an incorrect answer since the solution to the system is x , = 1, x , = 1,
x , = 2, and x , = 1. The error is due to the fact that the values computed for one pair of
unknowns are not revised once new values for the other pair have been obtained. Suggest
changes to the procedure to allow for this revision.

8.7 Derive MIMD algorithms for the methods described in problems 8.2, 8.4, and 8.5.
8.8 Unlike procedure BISECTION, procedure SIMD ROOT SEARCH assumes that the

initial interval contains exactly one zero of the input function. Modify the procedure so
that it returns exactly one of possibly several roots in the initial interval. Analyze the
running time and cost of the new procedure.

8.9 An old method for solving f (x) = 0 is based on linear interpolation between two previous
approximations to a root in order to obtain an improved approximation. Let (x , , x,) be an

Sec. 8.6 Problems

interval containing a root. The method is called regula falsi and uses the iteration

xnew = X I - f (x,)(x, - x1)lCf (x,) - f (XI)]

to obtain a new interval. Derive a parallel version of this algorithm.

8.10 Procedure MIMD ROOT SEARCH begins with an interval (a, b) known to contain a root
z of f (x) = 0. The interval is divided into N + 1 subintervals and the division points are
taken as initial approximations of z. Each of N processes applies Newton's method
beginning with one of these approximations. Discuss the possibility of one of these
processes converging to a zero outside (a, b) before any other process converges to z. Can
the procedure be modified to include this possibility?

8.11 Our analysis of procedure MIMD ROOT SEARCH assumes that N processors are
available to execute the N processes involved. What can be said about the procedure's
cost? Analyze the procedure's running time and cost for the case where fewer than N
processors are available.

8.12 One disadvantage of Newton's method is that it requires that f1 (x) be computable. In
some applications f l (x) may not be known. The secant method solves f (x) = 0 using
essentially the same approach but without requiring any knowledge off ' (x). Instead the
difference equation

f ' (~ n) = Cf(xn) - f (xn -~)1 / (xn - xn-1)

is used. Thus

xn.1 = x, - (xn - ~ , - l) f (~ .) l C f (~ .) - f (xn -1)1 .

The method derives its name from the fact that xn+ is the intersection with the x axis of
the secant passing through the points (x , , f(x,)) and (x , - , , f (x , - ,)) . Discuss various
approaches to implementing this algorithm in parallel.

224 Numerical Problems Chap. 8

8.13 Show that the solution to the discrete Model Problem can be obtained by solving a system
of (n - 1)' linear equations in (n - 1)' unknowns using the methods of section 8.2.

8.14 Procedure MESH PDE assumes the existence of (n - 1)' processors on the mesh. Show
how the algorithm can be modified for the case where fewer processors are available.
Analyze the running time and cost of the new algorithm.

8.15 What changes should procedure MESH PDE undergo to handle the case where R is not
the unit square but an arbitrary plane region?

8.16 Jacobi's method is another iterative approach to solving the Model Problem. Given "old"
values uk- , (x , y) at mesh points, the following equation is used to generate "new" values:

uk(x, y) = [uk- l (x + d , Y) + uk- l(x - d, Y) + U k - I (x , Y +
+ uk- l (x , Y - d) - d2G(x, ~) 1 / 4 .

Although slow in its convergence, requiring O(nZ) iterations, this method is easier to
implement in parallel than successive overrelaxation. Show how this can be done.

8.17 Modify procedure CUBE EIGENVALUES to produce the eigenvectors as well as
eigenvalues.

8.18 Implement Jacobi's method for computing eigenvalues on a mesh-connected SIMD
computer and analyze its performance.

8.19 Can you implement Jacobi's method for computing eigenvalues on a parallel model of
computation with a cost of O(n5)?

8.20 Jacobi's method for computing eigenvalues can be modified so that more than just one off-
diagonal element is annihilated in each iteration, thus providing greater parallelism. Show
how this can be done.

Figure 8.8 Numerical integration by trapezoidal rule.

Sec. 8.7 Bibliographical Remarks 225

8.21 As we saw in this chapter, many numerical algorithms are inherently parallel. One further
example is provided by numerical integration, that is, the computation of an approxi-
mation to the definite integral

D = f (s) dx.

As shown in Fig. 8.8, this problem can be interpreted as that of computing the area
between the curve for f (x) and the x axis on the interval (a, b). One very simple formula for
approximating D is the trapezoidal rule. The interval (a, b) is divided into N subintervals of
equal size h = (b - a)/N. With x , = a, x , = a + h, . . . , x, = b andf, = f (x ,) , the approx-
imate value of D is given by

Discuss various parallel implementations of this rule.

8.7 B lBL lOGRAPHlCAL R E M A R K S

References to sequential numerical algorithms, including the ones described in this chapter, are
found in [Conte], [Hamming], [Ralston], [Stewart], [Wilkinson], and [Young]. Parallel
numerical algorithms are either described or reviewed in [Heller 23, [Hockney], [Hwang],
[ICPP], [Kronsjo], [Kuck 23, [Kung], [Miranker], [Poole], [Quinn], [Rodrigue], [Sameh 21,
[Schendel], and [Traub].

There is a vast literature on SIMD algorithms for solving systems of linear equations; we
simply mention [Bojanczyk], [Fortes], [Heller 23, [Mead], [Sameh 21, [Sameh 53, and
[Traub]. In our analysis of procedure SIMD GAUSS JORDAN, we showed that matrix
inversion can be reduced to matrix multiplication. Our argument ignored a number of rare
special cases. A thorough treatment is provided in [Bunch] and [Schonhage]. In fact, the
converse is also true: It is shown in [Munro] that the product AB of two n x n matrices A and B
can be obtained by inverting a 3n x 3n matrix as follows:

I A O - ' I - A AB 1; r] -1 : r] .
We conclude therefore that inverting an n x n matrix is equivalent to multiplying two n x n
matrices. Procedure MIMD MODIFIED GS is based on ideas from [Baudet], where results of
experiments with the method are reported. It should be noted that many situations are known
in which the Gauss-Seidel method is guaranteed to converge. For example, let A be an n x n
symmetric matrix all of whose diagonal elements are positive. The Gauss-Seidel method
converges when applied to the system Ax = b if and only if A is positive definite. Other MIMD
algorithms for solving linear systems are presented in [Arnold], [Evans], [Lord], and [Wing].

The development of procedure SIMD ROOT SEARCH was inspired by [Kung], where
an MIMD algorithm is also described. Other approaches are proposed in [Eriksen], [Gal],
[Heller 11, and [Schendel].

Parallel algorithms for solving partial differential equations are discussed in [Buzbee 11,
[Buzbee 23, [Fishburn], [Heller 23, [Jones], [Karp], [Rosenfeld], [Saltz], [Sameh 31,
[Swarztrauber], [Sweet], and [Traub].

226 Numerical Problems Chap. 8

Methods for accelerating the convergence of procedure CUBE EIGENVALUES, as well
as other algorithms for computing eigenvalues in parallel, are the subject of [Kuck I], [Sameh
11, and [Sameh 23. Parallel algorithms for special cases of the eigenvalue problem are studied in
[Heller 21 and [Sameh 41.

Parallel solutions to a variety of other numerical problems can be found in [Borodin 11,
[Borodin 21, [Csanky], [Devreese], [Eberly], [Haynes], [Numrich], [Pan], [Valiant], and
[von zur Gathen].

8.8 R E F E R E N C E S

[ARNOLD]
Arnold, C. P., Parr, M. I., and Dewe, M. B., An efficient parallel algorithm for the solution of
large sparse linear matrix equations, IEEE Transactions on Computers, Vol. C-32, No. 3,
March 1983, pp. 265-273.

[BAUDET]
Baudet, G. M., Asynchronous iterative methods for multiprocessors, Journal of the ACM,
Vol. 25, No. 2, April 1978, pp. 226-244.

[BOJANCZYK]
Bojanczyk, A,, Brent, R. P., and Kung, H. T., Numerically stable solution of dense systems of
linear equations using mesh-connected processors, Technical Report CMU-CS-81-119,
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, May 1981.

[BORODIN 11
Borodin A,, and Munro, J. I., The Computational Complexity of Algebraic and Numeric
Problems, American Elsevier, New York, 1975.

[BORODIN 21
Borodin, A,, von zur Gathen, J., and Hopcroft, J. E., Fast parallel matrix and gcd
computations, Information and Control, Vol. 52, 1982, pp. 241-256.

[BUNCH]
Bunch, J., and Hopcroft, J. E., Triangular factorization and inversion by fast matrix
multiplication, Mathematics of Computation, Vol. 28, No. 125, 1974, pp. 231-236.

[BUZBEE 1)
Buzbee, B. L., A fast Poisson solver amenable to parallel computation, IEEE Transactions on
Computers, Vol. C-22, No. 8, August 1973, pp. 793-796.

[BUZBEE 21
Buzbee, B. L., Golub, G. H., and Nielson, C. W., On direct methods for solving Poisson's
equations, SIAM Journal on Numerical Analysis, Vol. 7, No. 4, December 1970, pp. 627-656.

[CONTE]
Conte, S. D., and de Boor, C. J., Elementary Numerical Analysis: An Algorithmic Approach,
McGraw-Hill, New York, 1972.

[CSANKY]
Csanky, L., Fast parallel matrix inversion algorithms, SIAM Journal on Computing, Vol. 5,
No. 4, December 1976, pp. 618-623.

[DEVREESE]
Devreese, J. T., and Camp, P. T., Eds., Supercomputers in Theoretical and Experimental
Science, Plenum, New York, 1985.

Sec. 8.8 References 227

[EBERLY]
Eberly, W., Very fast parallel matrix and polynomial arithmetic, Proceedings of the 25th
Annual IEEE Symposium on Foundations of Computer Science, Singer Island, Florida,
October 1984, pp. 21-30, IEEE Computer Society, Washington, D.C., 1984.

[ERIKSEN]
Eriksen, O., and Staunstrup, J., Concurrent algorithms for root searching, Acta Informatics,
Vol. 18, No. 4, 1983, pp. 361-376.

[EVANS]
Evans, D. J., and Dunbar, R. C., The parallel solution of triangular systems of equations,
IEEE 7kansactions on Computers, Vol. C-32, No. 2, February 1983, pp. 201-204.

[FISHBURN]
Fishburn, J. P., Analysis of speedup in distributed algorithms, Ph.D. thesis, Computer
Sciences Department, University of Wisconsin-Madison, Madison, Wisconsin, May 1981.

[FORTES]
Fortes, J. A. B., and Wah, B. W., Eds., Special Issue on Systolic Arrays, Computer, Vol. 20,
No. 7, July 1987.

[GAL]
Gal, S., and Miranker, W. L., Optimal sequential and parallel search for finding a root,
Journal of Combinatorial Theory (A), Vol. 23, 1977, pp. 1-4.

[HAMMING]
Hamming, R. W., Numerical Methods for Scientists and Engineers, McGraw-Hill, New York,
1973.

[HAYNES]
Haynes, L. S., Ed., Special Issue on Highly Parallel Computing, Computer, Vol. 15, No. 1,
January 1982.

[HELLER 11
Heller, D., A determinant theorem with applications to parallel algorithms, Technical
Report, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, March
1973.

[HELLER 23
Heller, D., A survey of parallel algorithms in numerical linear algebra, SIAM Review, Vol. 20,
No. 4, October 1978, pp. 740-777.

[HOCKNEY]
Hockney, R. W., and Jesshope, C. R., Parallel Computers, Adam Hilger, Bristol, England,
1981.

[HWANG]
Hwang, K., and Briggs, F. A., Computer Architecture and Parallel Processing, McGraw-Hill,
New York, 1984.

[ICPP]
Proceedings of the International Conference on Parallel Processing, Annual, 1972-, IEEE
Computer Society, Washington, D.C.

CJoml
Jones, A. K., and Gehringer, E. F., Eds., The Cm* multiprocessor project: A research review,
Technical Report CMU-CS-80-131, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, July 1980.

228 Numerical Problems Chap. 8

[KARP]
Karp, R. M., Miller, R. E., and Winograd, S., The organization of computations for uniform
recurrence relations, Journal of the ACM, Vol. 14, No. 3, July 1967, pp. 563-590.

[KRONSJ~~]
Kronsjo, L., Computational Complexity of Sequential and Parallel Algorithms, Wiley,
Chichester, England, 1985.

[K UCK 1)
Kuck, D. J., and Sameh, A. H., Parallel computation of eigenvalues of real matrices,
Proceedings of IFIP Congress 71, Ljubljana, Yugoslavia, August 1971, in Information
Processing 71, North-Holland, Amsterdam, 1972, pp. 1266- 1272.

[K UCK 21
Kuck, D. J., Lawrie, D. H., and Sameh, A. H., Eds., High Speed Computer and Algorithm
Organization, Academic, New York 1977.

[KUNG]
Kung, H. T., Synchronized and asynchronous parallel algorithms for multiprocessors, in
Traub, J. F., Ed., Algorithms and Complexity: New Directions and Recent Results, Academic,
New York, 1976, pp. 153-200.

[LORD]
Lord, R. E., Kowalik, J. S., and Kumar, S. P., Solving linear algebraic equations on an
MIMD computer, Journal of the ACM, Vol. 30, No. 1, January 1983, pp. 103-117.

[M EAD]
Mead, C. A., and Conway, L. A., Introduction to VLSI Systems, Addison-Wesley, Reading,
Mass., 1980.

[MIRANKER]
Miranker, W. L., A survey of parallelism in numerical analysis, SlAM Review, Vol. 13, No. 4,
October 1971, pp. 524-547.

[MUNRO]
Munro, J. I., Problems related to matrix multiplication, in Rustin, R., Ed., Courant Institute
Symposium on Computational Complexity, Algorithmics Press, New York, 1973, pp. 137-152.

[NUMRICH]
Numrich, R. W., Ed., Supercomputer Applications, Plenum, New York, 1985.

[PAN]
Pan, V., and Reif, J. H., Fast and efficient parallel linear programming and linear least squares
computations, in Makedon, F., Mehlhorn, K., Papatheodorou, T., and Spirakis, P., VLSI
Algorithms and Architectures, Lecture Notes in Computer Science, Vol. 227, Springer-Verlag,
Berlin, 1986, pp. 283-295.

[POOLE]
Poole, W. G., Jr., and Voight, R. G., Numerical Algorithms for parallel and vector computers:
An annotated bibliography, Computing Reviews, Vol. 15, No. 10, October 1974, pp. 379-388.

CQUINNI
Quinn, M. J., Designing Efficient Algorithms for Parallel Computers, McGraw-Hill, New
York, 1987.

[RALSTON]
Ralston, A., and Rabinowitz, P., A First Course in Numerical Analysis, McGraw-Hill, New
York. 1978.

Sec. 8.8 References

[RODRIGUE]
Rodrigue, G., Ed., Parallel Computations, Academic, New York, 1982.

[ROSENFELD]
Rosenfeld, J. L., A case study in programming for parallel processors, Communications of the
ACM, Vol. 12, No. 12, December 1969, pp. 645-655.

[SALTZ]
Saltz, J. H., Naik, V. K., and Nicol, D. M., Reduction of the effects of the communication
delays in scientific algorithms on message passing MIMD architectures, SIAM Journal on
ScientGc and Statistical Computing, Vol. 8, No. 1, January 1987, pp. s118-s134.

[SAMEH 11
Sameh, A. H., On Jacobi and Jawbi-like algorithms for a parallel computer, Mathematics of
Computation, Vol. 25, No. 115, July 1971, pp. 579-590.

[SAMEH 21
Sameh, A. H., Numerical parallel algorithms: A survey, in Kuck, D. J., Lawrie, D. H., and
Sameh, A. H., Eds., High Speed Computer and Algorithm Organization, Academic, New York,
1977, pp. 207-228.

[SAMEH 31
Sameh, A. H., Chen, S. C., and Kuck, D. J., Parallel Poisson and biharmonic solvers,
Computing, Vol. 17, 1976, pp. 219-230.

[SAMEH 41
Sameh, A. H., and Kuck, D. J., A parallel QR algorithm for symmetric tridiagonal matrices,
IEEE Transactions on Computers, Vol. C-26, No. 2, February 1977, pp. 147-153.

[SAMEH 51
Sameh, A. H., and Kuck, D. J., On stable parallel linear system solvers, Journal of the ACM,
Vol. 25, No. 1, January 1978, pp. 81-91.

[SCHENDEL]
Schendel, U., Introduction to Numerical Methods for Parallel Computers, Ellis Horwood,
Chichester, England, 1984.

[SCHONHAGE]
Schonhage, A., Fast Schmidt orthogonalization and unitary transformations of large
matrices, in Traub, J. F., Ed., Complexity of Sequential and Parallel Numerical Algorithms,
Academic, New York, 1973, pp. 283-291.

[STEWART]
Stewart, G. W., Introduction to Matrix Computations, Academic, New York, 1973.

[SWARZTRAUBER]
Swarztrauber, P. N., A direct method for the discrete solution of separable elliptic equations,
SIAM Journal on Numerical Analysis, Vol. 11, No. 6, December 1974, pp. 1136-1150.

[SWEET]
Sweet, R. A., A generalized cyclic reduction algorithm, SIAM Journal on Numerical Analysis,
Vol. 11, No. 3, June 1974, pp. 506-520.

[TRAUB]
Traub, J. F., Ed., Complexity of Sequential and Parallel Numerical Algorithms, Academic, New
York, 1973.

[VALIANT]
Valiant, L. G., Computing multivariate polynomials in parallel, Information Processing
Letters, Vol. 11, No. 1, August 1980, pp. 44-45.

230 Numerical Problems Chap. 8

[VON ZUR GATHEN]
Von zur Gathen, J., Parallel algorithms for algebraic problems, Proceedings of the 15th
Annual ACM Symposium on Theory of Computing, Boston, Massachusetts, April 1983, pp.
17-23, Association for Computing Machinery, New York, N.Y., 1983.

[WILKINSON]
Wilkinson, J. H., and Reinsch, C., Eds., Handbook for Automatic Computation, Vol. 11, Linear
Algebra, Springer-Verlag, New York, 1971.

[WING]
Wing, O., and Huang, J. W., A computation model of parallel solution of linear equations,
IEEE Transactions on Computers, Vol. C-29, No. 7, July 1980, pp. 632-638.

[YOUNG]
Young, D. M., Iterative Solution of Large Linear Systems, Academic, New York, 1971.

Computing Fourier
I ranstorms

9.1 INTRODUCTION

This chapter is about one of the most important computations arising in engineering
and scientific applications, namely, the discrete Fourier transform (DFT). Given a
sequence of numbers {ao, a,, . . . ,a,-,}, its DFT is the sequence {b,, b,, . . . , bn- ,},
where

In the preceding expression, w is a primitive nth root of unity, that is, w = e2""", where

9.1.1 The Fast Fourier Transform

Sequentially, a straightforward computation of bj requires n multiplications and n - 1
additions of complex numbers. This leads to an O(n2) computation time to obtain the
entire sequence {bo, b,, . . . , bn- ,}. Such time is prohibitive for very large values of n,
particularly in applications where several sequences of this kind must be computed
successively. Fortunately, a better algorithm exists. Let n = 2Vor some positive
integer s. Thus the expression for bj can be rewritten as

for j = 0, 1 , . . . , n - 1. This leads to a recursive algorithm for computing bj since each
of the two sums in the last expression is itself a DFT. This algorithm, known as the fast
Fourier transform (FFT), is given in what follows as procedure SEQUENTIAL FFT.
The procedure takes as input the sequence A = {ao, a,, . . . ,a,- ,) and returns its
transform B = {b,, b,, . . . , bn- ,}.

232 Computing Fourier Transforms Chap. 9

procedure SEQUENTIAL FFT (A, B)

if n = 1 then b, + a,
else (1) SEQUENTIAL FFT (a,, a, , . . . , a,- ,, u,, u , , . . . , u (, , ~) - ,)

(2) SEQUENTIAL FFT (a , , a,, . . . , a, - , , v,, o, , . . . , v(,,,, - ,)
(3) z + 1
(4) for j = 0 to n - 1 do

(4.1) bj+ujmod(ni2) + z(vjmad(n/~))
(4.2) z t z x w

end for
end if.

As can be easily verified, the procedure runs in O(n log n) time.

9.1.2 An Application of the FFT

The efficiency of the FFT has made it an extremely popular computational technique
in such applications as digital signal processing, coding theory, computerized axial
tomography scanning, speech transmission, weather prediction, statistics, image
processing, multiplication of very large integers, and polynomial multiplication. In
order to illustrate its use, we show how the FFT accelerates the computation of the
product of two polynomials. Consider the polynomial

whose coefficients fonn the sequence {a,, a, , . . . , a , _ , } . Then element bj of the
sequence {bo , b , , . . . , b,_ ,} defined in the preceding is the value of this polynomial at
x = wj, where wO, w', . . . , w n ' are the nth roots of unity. Conversely, the value of the
polynomial

b, + b , ~ + . . . + bn-,xn- ' + b n - , x n - l

at x = (w - ') ~ is given by

The sequence {a,, a,, . . . , a n _ ,) is the inverse DFT of {b,, b , , . . . , b n - ,) and can
be computed in O(n log n) time through minor modifications to procedure
SEQUENTIAL FFT.

Assume now that we want to multiply the two polynomials

f (x) = 1 a jx j and g(x) = ckxk
j = O k = O

to obtain the product polynomial h = fg. The straightforward product requires O(n2)
time. By using the FFT, we can reduce this to an O(n log n) time computation. This is
done as follows:

Sec. 9.2 Direct Computation of the DFT 233

Step 1: Let N be the smallest integer that is a power of 2 and is greater than
2n - 1. Each of the two sequences {a,, a , , . . . , a , - ,) and {c,, c , , . . . , en - ,) is
padded with N - n zeros.
Step 2: Compute the FFT of {a,, a , , . . . , a,- ,, 0 , 0 , . . . , 0) . This yields the values
of polynomial f at the Nth roots of unity.
Step 3: Compute the FFT of {co, c , , . . . , c,- ,, 0 , 0 , . . . , 0) . This yields the values
of polynomial g at the Nth roots of unity.
Step 4: Compute the product f(w') x g(wJ) for j = 0, 1 , . . . , N - 1, where
w = ezXilN. The resulting numbers are the values of the product polynomial h at
the Nth roots of unity.
Step 5: Compute the inverse DFT of the sequence { f (w')~(w'), f (w ')~ (w ') , . . . ,
f (wN- ')g(wN-l)) . The resulting sequence of numbers are the coeficients of the
product polynomial h.

Step 1 takes O(N) time. Each of steps 2, 3, and 5 is known to require O(N log N)
operations while step 4 consists of N multiplications. Since N < 4n, the overall
product takes O(n log n) time.

9.1.3 Computing the DFT in Parallel

There is a considerable amount of inherent parallelism in computing the DFT of a
sequence {a,, a , , . . . , a,- ,). Two general approaches can be adopted in order to
exploit this parallelism.

1. In the first approach, the sequence {b,, b, , . . . , b, - ,) is computed directly from
the definition

using N processors, where typically N 2 n. This results in algorithms whose
running times are at most linear in n and whose costs are at least quadratic in n.
We illustrate this approach in section 9.2.

2. In the second approach, parallel versions of the FFT are derived. Among the
best of these are algorithms using n processors and running in O(1og n) time for a
cost of O(n1ogn). This cost matches the running time of procedure
SEQUENTIAL FFT. We illustrate this approach in sections 9.3 and 9.4.

9.2 DIRECT COMPUTATION OF THE DFT

This approach to the parallel computation of the DFT is based on the observation
that the sequence

234 Computing Fourier Transforms Chap. 9

can be expressed as the following matrix-by-vector product

or b = Wa, where W is an n x n matrix and b and a are n x 1 vectors.
Consequently, any of the algorithms developed in chapter 7 for matrix-by-

matrix multiplication or matrix-by-vector multiplication can be used to compute the
preceding product. Regardless of which algorithm is used, however, an efficient way
must be specified for generating the matrix W or more precisely for obtaining the
various powers of w. Our purpose in this section is twofold:

1. We first describe a simple algorithm for computing the matrix which runs in
O(log n) time and uses n2 processors.

2. We then show how the processors of 1, with an appropriate interconnection
network, can be used to compute the DFT.

9.2.1 Computing the Matrix W

Assume that an SIMD computer is available that consists of n2 processors. The
processors are arranged in an n x n array pattern with n rows numbered 1,. . . , n, and
n columns numbered 1,. . . , n. Processor P(k, j), 1 < k, j d n, is required to compute
~ (~ - ') (j - " . This computation can be accomplished by repeated squaring and
multiplication. For example, w13 is obtained from [(w2)' x W] x [(w~)~]'. The
algorithm is given in what follows as procedure COMPUTE W. Each processor
P(k, j) is assumed to have three registers: Mkj, Xkj, and Kj. Register Mkj stores the
power to which w is to be raised, while registers Xkj and Kj store intermediate results.
When the procedure terminates, Kj = w(~-')"-').

procedure COMPUTE W (k, j)

Step 1: Mkj 6 (k - 1) (~ - 1).

Step 2: Xk j t w.

Step 3: Y,, t 1.

Step 4: while M k j # 0 do
(4.1) if Mkj is odd

then K j t Xk j x K j
end if

(4.2) Mkj + LMkjI2J
(4.3) X k j t xtj

end while.

Sec. 9.2 Direct Computation of the DFT 235

Analysis. Steps 1, 2, and 3 of the preceding procedure take constant time.
There are O(log[(k - 1)(j - I)]) iterations of step 4, each requiring constant time.
Procedure COMPUTE W therefore runs in O(1ogn) time. In fact, the procedure's
actual running time can be slightly reduced by noting that wnI2 = - 1, and therefore
w j f '"I2' = - wj . Consequently, only powers of w smaller than n/2 need be computed.

Discussion. The preceding description does not specify whether or not the
n2 processors on the SIMD computer share a common memory or are linked by an
interconnection network. Indeed, procedure COMPUTE W requires no communicat-
ion among the processors since each processor produces a power of w independently
of all other processors. In the next section we show that when a particular network
connects the processors, the DFT of a sequence can be computed in the same amount
of time required to generate the matrix W

9.2.2 Computing the DFT

The n2 processors of the SIMD computer in the previous section are now intercon-
nected as follows:

1. The processors in row k are interconnected to form a binary tree, that is, for
j = 1,. . . , Ln/2J, processor P(k, j) is linked directly to processors P(k, 2j) and
P(k, 2j + I), with P(k, 2Ln/2J + 1) nonexistent if n is even.

2. The processors in column j are interconnected to form a binary tree, that is, for
k = 1,. . . , Ln/2J, processor P(k, j) is linked directly to processors P(2k, j) and
P(2k + 1, j), with P(2Ln/2J + 1, j) nonexistent if n is even.

This configuration, called the mesh of trees in problem 4.2, is illustrated in Fig. 9.1 for
n = 4. We assume that the processors in row 1 and column 1 are in charge of input
and output operations, respectively. Thus, for example, processor P(1, j) can read a
datum aj. It is then possible, using the binary tree connections, to propagate aj to all
processors in column j. The algorithm is given as procedure PROPAGATE.

procedure PROPAGATE (aj)

for m = 1 to (log n) - 1 do
for k = 2"-' to 2'" - 1 do in parallel

P(k, j) sends aj to P(2k, j) and P(2k + 1, j)
end for

end for.

This procedure (which is essentially procedure BROADCAST of chapter 2 im-
plemented on a tree) requires O(1og n) time.

Similarly, assume that each processor in row k contains a number dkj and that
the sum of these numbers is required. Again, using the binary tree connections, the
sum can be computed and produced as output by P(k, 1). The algorithm is given as
procedure SUM.

Computing Fourier Transforms Chap. 9

Figure 9.1 Mesh of trees connection.

procedure SUM (k)

for m = (log n) - 1 downto 1 do
for j = 2 " ' to 2" - 1 do in parallel

d i j d k , 2 j + d k . 2 j + l

end for
end for. [7

This procedure is a formal statement of the algorithm in example 1.5 and runs in
O(1og n) time.

We are now ready to show how the product

is obtained. There are four stages to this computation. Initially, the elements of matrix
W are created one element per processor. In the second stage, the elements of the
vector a are read. Each processor in row 1 reads a different element of vector a and

Sec. 9.2 Direct Computation of the DFT 237

propagates it down its column. At this point, processor P(k, j) contains w(~- ') (' - ') and
a j - ,: All the products a j - x ~ (~ - ') t i - l) are computed simultaneously. Finally, the
sums of these products are obtained for each row and the results produced by the
processors in column 1. The algorithm is given as procedure SIMD DFT.

procedure SIMD DFT (A, B)

Step 1 : for k = 1 to n do in parallel
for j = 1 to n do in parallel

COMPUTE W (k, j)
end for

end for.

Step 2: for j = 1 to n do in parallel
(2.1) P(1, j) receives aj-I as input
(2.2) PROPAGATE (aj- ,)

end for.

Step 3: for k = 1 to n do in parallel
for j = 1 to n do in parallel

dkj t qj x aj-
end for

end for.

Step 4: for k = 1 to n do in parallel
(4.1) SUM (k)
(4.2) bk- 1 + dk,
(4.3) P(k, 1) produces b k - , as output

end for.

Analysis. Steps 1,2, and 4 require O(1og n) time, while step 3 takes constant
time. The overall running time of procedure SIMD DFT is therefore

t(n) = O(1og n).

This represents a speedup of O(n) with respect to produce SEQUENTIAL FFT (the
fastest sequential algorithm for computing the DFT). In fact, this running time is the
best possible for any network that computes the DFT. To see this, note that each bj is
the sum of n quantities, and we know from section 7.3.2 that computing such a sum
requires Q(1og n) parallel time.

Since p(n) = n2, the procedure's cost is c(n) = O(n210g n) for an efficiency of
O(l/n) with respect to procedure SEQUENTIAL FFT.

Example 9.1

The four steps of procedure SIMD DFT are illustrated in Fig. 9.2 for the case n = 4.

Computing Fourier Transforms Chap. 9

Figure 9.2 Computing discrete Fourier transform using procedure SIMD DFT.

9.3 A PARALLEL FFT ALGORITHM

With a running time of O(1og n) procedure SIMD DFT is quite fast, and as was just
shown, it achieves the best possible speedup over the fastest sequential algorithm for
computing the DFT. The procedure's efficiency, however, is very low due to the large
number of processors it uses.

In this section a parallel algorithm with better efficiency is described. The
algorithm implements in parallel a nonrecursive version of procedure SEQUENTIAL
FFT. It is designed to run on a mesh-connected SIMD computer with n processors
Po, P I , . . . , P,-, arranged in a 2" x 2" array, where n = 2'". The processors are
organized in row-major order, as shown in Fig. 9.3 for n = 16.

Let k be a log n-bit binary integer. We denote by r(k) the log n-bit binary integer
obtained by reversing the bits of k. Thus, for example, if the binary representation of k
is 0101 1, then the binary representation of r(k) is 11010. The algorithm is given in what
follows as procedure MESH FFT. The input sequence {a,, a,, . . . , a,- ,} is initially

Sec. 9.3 A Parallel FFT Algorithm

Figure 9.3 Mesh of processors for com-
puting fast Fourier transform.

held by the processors in the mesh, one element per processor; specifically P, holds a,
for k = 0, 1, . . ., n - 1. When the procedure terminates the output sequence,
{b,, b,,. .., b,-,} is held by the processors such that P, holds b, for k = 0,
1, ..., n - 1.

procedure MESH FFT (A, B)

Step 1: for k = 0 to n - 1 do in parallel
Ck + ak

end for.

Step 2: for h = (log n) - 1 downto 0 do
for k = 0 to n - 1 do in parallel

(2.1) p + 2h
(2.2) 9 + ~ I P
(2.3) z + wP

(2.4) if (k mod p) = (k mod 2p)
then (i) ck + ck + ck + , x z"~)""~

(ii) ck+, t ck - ck+ , x z r(k)modq

end if
end for

end for.

Step 3: for k = 0 to n - 1 do in parallel
bk + cr(k)

end for.

240 Computing Fourier Transforms Chap. 9

Note that part (ii) in step 2.4 used the old value of c, rather than the new value
computed in part (i), that is, c , and c,,, may be thought of as being updated
simultaneously.

Analysis. The purpose of step 1 is to save the values of the input sequence; it
is performed locally by each processor and takes constant time. Step 2 comprises both
routing and computational operations, while step 3 consists of routing operations
only. We analyze the time required by these two kinds of operations separately.

Computational Operations. There are log n iterations in step 2. During each
iteration, processor P, performs a fixed number of computations, the most time
consuming of which is exponentiation, which (as shown in section 9.2.1) takes O(log n)
time. The time required for computational operations is therefore O(log2n).

Routing Operations. One time unit is required to communicate a datum from
one processor to an immediate neighbor. In step 2.4, if k mod p = k mod 2p, then
processor P, needs to receive c,+, from P, +, (in order to update c, and c, +,) and then
return c,,, to P,,,. The time required by this routing depends on the value of h.
When h = 0, p = 1 and communication is between processors on the same row or
column whose indices differ by 1 (i.e., processors that are directly connected on the
mesh): The routing takes one time unit. When h = 1, p = 2 and communication is
between processors on the same row or column whose indices differ by 2: The routing
takes two time units. Continuing with the same reasoning, when h = logn - 1,
p = n/2 and communication is between processors on the same column whose indices
differ by n/2: The routing takes n'I2/2 time units. In general, for p = 2h, h = 2s - 1,
2s - 2,. . . ,0, the number of time units required for routing is 2hm0ds. The total number
of time units required for routing in step 2 is therefore

In step 3, c,(,, is to be routed from Pr(k) to Pk. The two processors that are the
furthest apart are P2,-, (northeast corner) and P2,,,,- ,, (southwest corner). These two
processes are separated by 2(2" 1) edges, that is, 2(2" - 1) time units are needed to
communicate a datum from one of them to the other. This means that the routing
operations performed in steps 2 and 3 require O(2") time units, that is, O(n'i2) time.

For sufficiently large values of n, the time needed for routing dominates that
consumed by computations. Therefore, the overall running time of procedure MESH
FFT is t(n) = O(nli2). Since p(n) = n, c(n) = O(n3I2). It follows that the procedure
provides a speedup of O(n'1210g n) with an efficiency of O(log r ~ l n ' ~ ~) .

Compared with procedure SIMD DFT, procedure MESH FFT is slower and
thus provides a smaller speedup with respect to procedure SEQUENTIAL FFT. On
the other hand, it uses fewer processors and has a lower cost and a higher efficiency.
Furthermore, the architecture for which it is designed uses constant-length wires and
is modular and regular.

Sec. 9.3 A Parallel FFT Algorithm

Example 9.2

Let n = 4. The contents of the four processors after step 1 of procedure MESH FFT are
shown in Fig. 9.qa). During the first iteration of step 2, h = 1. All processors
simultaneously compute p = 2, q = 2, and z = w 2 . The condition

k mod p = k mod 2 p

holds for k = 0, 1 but not for k = 2, 3. Therefore processor Po computes

c, = c,, + (w2)Oc2

and

C 2 = C, - (w2)Oc2
= a, - a, ,

while P, computes

c , = c , + (w2)Oc,
= a , + a, ,

Figure 9.4 Computing fast Fourier trans-
form using procedure MESH FFT.

Computing Fourier Transforms Chap. 9

and
C3 = C 1 - (w2)Oc3

= a , - a,.

The contents of the four processors at the end of this iteration are shown in Fig. 9.4(b).
During the second iteration of step 2, h = 0, p = 1, q = 4, and z = w. This time the

condition kmod p = kmod 2p holds for k = 0, 2 but not for k = 1, 3. Therefore Po
computes

= a, + a, + a , + a,,

and

C 1 = C , - wOcl
= a, + a , - (a , + a,),

while P, computes

c, = c , + w1c3

= a, - a, + w(a, - a,),

and

C3 = C , - w1c3

= a, - a , - w(a, - a,).

During step 3, b, = c,, b , = c,, b, = c,, and b , = c,. Consequently,

b,, = a, + a , + a, + a,,

b , = a, + wa, - a, - wa,

= a, + wa, + w2a, + w3a,,

b3 = a, - wa, - a, + wa,

= a, + w3a1 + w6a, + w9a3,
as required.

9.4 P R O B L E M S

9.1 Suppose that the DFT of several sequences of the form {a,, a,, . . . ,a,- ,} is to be
computed directly from the definition, that is, as a matrix-by-vector product (see section
9.2). One approach would be to pipeline the computation on a mesh with O(nZ) processors.
Another is to take the input sequences n at a time and regard the computation as a matrix-
by-matrix product; any of the solutions to this problem given in chapter 7 can then be
used. Propose a precise algorithm for each of these two approaches and analyze the
running time and number of processors used by each.

Sec. 9.4 Problems 243

9.2 Give the iterative sequential algorithm for computing the FFT upon which procedure
MESH FFT is based, and prove that it is equivalent to the recursive procedure
SEQUENTIAL FFT of section 9.1.

93 Show how the algorithm derived in problem 9.2 can be implemented on a linear array of
processors.

9.4 A special-purpose parallel architecture for implementing the algorithm derived in problem
9.2 may consist of log n rows of n/2 processors each. The processors in a row execute the
computations required by one iteration of the algorithm's main loop (step 2 in procedure
MESH FFT). This is illustrated for n = 8 in Fig. 9.5, where the two values in
{c,, c , , . . . , c,- ,) updated by each processor are shown. Compare this implementation to
the one in section 9.3 in terms of number of processors, running time, period, architecture
regularity, and modularity.

9 5 Routing operations take place in steps 2.4 and 3 of procedure MESH FFT. As stated in
section 9.3, however, the procedure does not specify how this routing is to be performed.
Give a formal description of the routing process.

9.6 Modify procedure MESH FFT for the case where N processors are available to compute
the FFT of the sequence {a , ,a , , . . . , a,- ,) when N < n.

9.7 The following sequential procedure is another iterative way of computing the FFT.

c3 = a3

c, = a,

Figure 9.5 Architecture for problem 9.4.

Computing Fourier Transforms Chap. 9

procedure ITERATIVE FFT (A, B)

Step 1: fork = 0 t o n - 1 do
Ck + ak

end for.

Step 2: for h = (log n) - 1 downto 0 do
(2.1) p + 2h
(2.2) 9 + nip
(2.3) z + wql'
(2.4) for k = 0 to n - 1 do

if (k mod p) = (k mod 2p)
then (i) ck t ck + ck +,

(ii) ck + (~ k - ck + k mad p

end if
end for

end for.

Sec. 9.4 Problems 245

Step 3: for k = 0 to n - 1 do

br(k) Ck

end for.

Note that part (ii) of step 2.4 uses the old value of ck [not the value computed in (i)]. Show
how this procedure can be implemented to run on a shuffle-exchange-connected SIMD
computer using O(n) processors and O(log n) constant time iterations (not counting the
time required to compute zkmdp during each iteration).

9.8 An interconnection-network SIMD model known as the cube-connected cycles (CCC)
network is described as follows. Consider a d-dimensional cube. Each of the 2d corners of
the cube is a cycle of d processors. Each processor in a cycle is connected to a processor in
a neighboring cycle in the same dimension. A CCC network with twenty-four processors is
shown in Fig. 9.6. Note that Pij is connected to Pik when j and k differ only in their ith most

COLUMN O 1 2 3 4 5 6 7

ROW

Figure 9.7 Butterfly network.

246 Computing Fourier Transforms Chap. 9

significant bit. Describe an algorithm for computing the FFT of an n-element input
sequence on an n-processor CCC network.

9.9 Show that the CCC network is essentially the network in problem 9.4 with wraparound
connections (as defined in problem 7.7) between the first and last rows.

9.10 An interconnection-network SIMD model known as the butterjy network consists of
d + 1 rows and 2d columns, as shown in Fig. 9.7 for d = 3. Let P(i,j) represent the
processor in row i and column j. For i > 0, P(i, j) is connected to P(i - 1, j) and P(i - 1, k)
where the binary representations of k and j differ only in their ith most significant bit.
Relate the butterfly network to the cube and cube-connected cycles networks.

9.11 Show how the FFT of an input sequence of length n = 2d can be computed on a butterfly
network.

9.12 Repeat problem 9.11 for a d-dimensional cube interconnection network.
9.13 Repeat problem 9.6 for the parallel algorithms derived in problems 9.7,9.8,9.11, and 9.12.
9.14 Relate the process of computing the FFT to that of bitonic merging as discussed in

problem 3.9.
9.15 Two numbers x and n are given. It is required to raise x to the power n. Assuming that one

is not allowed to use a concurrent-write shared-memory computer (SIMD or MIMD),
how fast can this computation be performed in parallel? Compare the running time of
your parallel algorithm with that of the sequential procedure COMPUTE W in section
9.2.1.

9.5 B l B L l O G R A P H l C A L R E M A R K S

Various descriptions of the sequential FFT and its applications can be found in [Burrus],
[Cochran], [Cooley 11, [Cooley 23, [Cooley 33, [Horowitz], [Schonhage], and [Wilf]. Parallel
algorithms for the direct computation of the DFT are described in [Ahmed], [Mead], and
[Thompson 21. The mesh of trees architecture was originally proposed for the problem of
sorting in [Muller] and then rediscovered in [Leighton] and [Nath]. Parallel algorithms for
implementing the FFT on a mesh-connected SIMD computer appear in [Stevens], [Thom-
pson 11, and [Thompson 21.

Other architectures for implementing the FFT in parallel are the linear array ([Thom-
pson 2]), the perfect shuffle ([Heller], [Pease 11, [Stone], and [Thompson I]), the cube
([Pease 23 and [Quinn]), the butterfly ([Hwang], [Kronsjo], and [Ullman]), the tree
([Ahmed]), and the cube-connected cycles ([Preparata]). It is shown in [Fishburn] and
[Hwang] how to implement the parallel FFT algorithms for the perfect shuffle and butterfly
networks, respectively, when the number of processors is smaller than the size of the input.

Other parallel algorithms for Fourier transforms and related computations can be found
in [Bergland], [Bhuyan], [Briggsl, [Brigham], [Chow], [Corinthios], [Cyre], [Dere], [Des-
pain 11, [Despain 21, [Evans], [Flanders], [Hockney], [Jesshope], [Korn], [Kulkarni], [Lint],
[Parker], [Ramamoorthy], [Redinbo], [Swarztrauber], [Temperton], [Wang], [Wold], and
[Zhang]. The problem of parallel exponentiation is discussed in [Kung].

9.6 REFERENCES

[AHMED]
Ahmed, H., Delosme, J.-M., and Morf, M., Highly concurrent computing structures for
matrix arithmetic and signal processing, Computer, Vol. 15, No. 1, January 1982, pp. 65-82.

Sec. 9.6 References 247

[BERGLAND]
Bergland, G. D., A parallel implementation of the fast Fourier transform algorithm, IEEE
Transactions on Computers, Vol. C-21, No. 4, April 1972, pp. 366-370.

[BHUYAN]
Bhuyan, L. N., and Agrawal, D. P., Performance analysis of FFT algorithms on multipro-
cessor systems, IEEE Transactions on Software Engineering, Vol. SE-9, No. 4, July 1983, pp.
512-521.

[BRIGGS]
Briggs, W. L., Hart, L. B., Sweet, R. A., and O'Gallagher, A., Multiprocessor FFT methods,
SIAM Journal on Scientific and Statistical Computing, Vol. 8, No. 1, January 1987, pp. s27-
s42.

[BRIGHAM]
Brigham, E. O., The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, N.J., 1973.

[BURRUS]
Burrus, C. S., and Parks, T. W., DFTIFFTand Convolution Algorithms, Wiley, New York,
1985.

[CHOW]
Chow, P., Vranesic, Z. G., and Yen, J. L., A pipeline distributed arithmetic PFFT processor,
IEEE Transactions on Computers, Vol. C-32, No. 12, December 1983, pp. 1128-1 136.

[COCHRAN]
Cochran, W. T., Cooley, J. W., Favin, D. L., Helms, H. D., Kaenel, R. A., Lang, W. W.,
Maling, G. C., Jr., Nelson, D. E., Rader, C. M., and Welch, P. D., What is the fast Fourier
transform? IEEE Transactions on Audio and Electroacoustics, Vol. AU-15, No. 2, June 1967,
pp. 45-55.

[COOLEY 11
Cooley, J. W., and Tukey, T. W., An algorithm for the machine calculation of complex
Fourier series, Mathematics of Computation, Vol. 19, No. 90, April 1965, pp. 297-301.

[COOLEY 23
Cooley, J. W., Lewis, P. A., and Welch, P. D., Historical notes on the fast Fourier transform,
Proceedings ofthe IEEE, Vol. 55, No. 10, October 1967, pp. 1675-1679.

[COOLEY 31
Cooley, J. W., Lewis, P. A., and Welch, P. D., The fast Fourier transform and its application
to time series analysis, in Enslein, K., Ralston, A., and Wilf, H. S., Eds., Statistical Methods for
Digital Computers, Wiley, New York, 1977, pp. 377-423.

[CORINTHIOS]
Corinthios, M. J., and Smith, K. C., A parallel radix-4 fast Fourier transform computer, IEEE
Transactions on Computers, Vol. C-24, No. 1, January 1975, pp. 80-92.

[CYRE]
Cyre, W. R., and Lipovski, G. J., On generating multipliers for a cellular fast Fourier
transform processor, IEEE Transactions on Computers, Vol. C-21, No. 1, January 1972, pp.
83-87.

[DERE]
Dere, W. Y., and Sakrison, D. J., Berkeley array processor, IEEE Transactions on Computers,
Vol. C-19, No. 5, May 1970, pp. 444-447.

[DESPAIN 11
Despain, A. M., Fourier transform computers using CORDIC iterations, IEEE Transactions
on Computers, Vol. C-23, No. 10, October 1974, pp. 993-1001.

248 Computing Fourier Transforms Chap. 9

[DESPAIN 21
Despain, A. M., Very fast Fourier transform algorithms for hardware implementation, IEEE
Transactions on Computers, Vol. C-28, No. 5, May 1979, pp. 333-341.

[EVANS]
Evans, D. J., and Mai, S., A parallel algorithm for the fast Fourier transform, in Cosnard, M.,
Quinton, P., Robert, Y., and Tchuente, M., Eds., Parallel Algorithms and Architectures,
North-Holland, Amsterdam, 1986, pp. 47-60.

[FISHBURN]
Fishburn, J. P., An analysis of speedup in distributed algorithms, Ph.D. thesis, Computer
Sciences Department, University of Wisconsin-Madison, Madison, Wisconsin, May 1981.

[FLANDERS]
Flanders, P. M., A unified approach to a class of data movements on an array processor,
IEEE Transactions on Computers, Vol. C-31, No. 9, September 1982, pp. 809-819.

[HELLER]
Heller, D., A survey of parallel algorithms in numerical linear algebra, SlAM Review, Vol. 20,
No. 4, October 1978, pp. 740-777.

[HOCKNEY]
Hockney, R. W., and Jesshope, C. R., Parallel Computers, Adam Higler, Bristol, England,
1981.

[HOROWITZ]
Horowitz, E., and Sahni, S., Fundamentals of Computer Algorithms, Computer Science Press,
Rockville, Md, 1978.

[HWANG]
Hwang, K., and Briggs, F. A., Computer Architecture and Parallel Processing, McGraw-Hill,
New York, 1984.

[JESSHOPE]
Jesshope, C. R., Implementation of fast RADIX 2 transforms on array processors, IEEE
Transactions on Computers, Vol. C-29, No. 1, January 1980, pp. 20-27.

[KORN]
Korn, D. G., and Lambiotte, J. J., Jr., Computing the fast Fourier transform on a vector
computer, Mathematics of Computation, Vol. 33, No. 147, July 1979, pp. 977-992.

[KRONSJO]
Kronsjo, L., Computational Complexity of Sequential and Parallel Algorithms, Wiley,
Chichester, England, 1985.

[KULKARNI]
Kulkarni, A. V., and Yen, D. W. L., Systolic processing and an implementation for signal and
image processing, IEEE Transactions on Computers, Vol. C-31, No. 10, October 1982, pp.
1000- 1009.

[K UNG]
Kung, H. T., New algorithms and lower bounds for the parallel evaluation of certain rational
expressions and recurrences, Journal of the ACM, Vol. 23, No. 2, April 1976, pp. 252-261.

[LEIGHTON]
Leighton, F. T., Complexity Issues in VLSI, MIT Press, Cambridge, Mass., 1983.

Sec. 9.6 References 249

[L INT]
Lint, B. J., and Agerwala, T., Communication issues in the design and analysis of parallel
algorithms, IEEE Transactions on Software Engineering, Vol. SE-7, No. 2, March 1981, pp.
174-188.

[M EAD]
Mead, C. A., and Conway, L. A., Introduction to VLSI Systems, Addison-Wesley, Reading,
Mass., 1980.

[M ULLER]
Muller, D. E., and Preparata, F. P., Bounds to complexities of networks for sorting and for
switching, Journal of the ACM, Vol. 22, No. 2, April 1975, pp. 195-201.

[NATH]
Nath, D., Maheshwari, S. N., and Bhatt, P. C. P., Efficient VLSI networks for parallel
processing based on orthogonal trees, IEEE Transactions on Computers, Vol. C-32, No. 6,
June 1983, pp. 569-581.

[PARKER]
Parker, D. S., Jr., Notes on shuflle/exchange-type switching networks, IEEE Transactions on
Computers, Vol. C-29, No. 3, March 1980, pp. 213-222.

[PEASE I]
Pease, M. C., An adaptation of the fast Fourier transform for parallel processing, Journal of
the ACM, Vol. 15, No. 2, April 1968, pp. 252-264.

[PEASE 23
Pease, M. C., The indirect binary n-cube microprocessor array, IEEE Transactions on
Computers, Vol. C-26, No. 5, May 1977, pp. 458-473.

[PREPARATA]
Preparata, F. P., and Vuillemin, J. E., The cube-connected cycles: A versatile network for
parallel computation, Communications of the ACM, Vol. 24, No. 5, May 1981, pp. 300-309.

[QUINNI
Quinn, M. J., Designing Efficient Algorithms for Parallel Computers, McGraw-Hill, New
York, 1987.

[RAMAMOORTHY]
Ramamoorthy, C. V., and Chang, L.-C., System segmentation for the parallel diagnosis of
computers, IEEE Transactions on Computers, Vol. C-20, No. 3, March 1971, pp. 261-270.

[REDINW]
Redinbo, G. R., Finite field arithmetic on an array processor, IEEE Transactions on
Computers, Vol. C-28, No. 7, July 1979, pp. 461-471.

[SCHONHAGE]
Schonhage, A., and Strassen, V., Schnelle Multiplikation grosser Zahlen, Computing, Vol. 7,
1971, pp. 281-292.

[STEVENS]
Stevens, J. E., A fast Fourier transform subroutine for Illiac IV, Technical Report, Center for
Advanced Computation, University of Illinois, Urbana-Champaign, Illinois, 1971.

[STONE]
Stone, H. S., Parallel processing with the perfect shuffle, IEEE Transactions on Computers,
Vol. C-20, No. 2, February 1971, pp. 153-161.

250 Computing Fourier Transforms Chap. 9

[SWARZTRAUBER]
Swarztrauber, P. N., Vectorizing the FFTs, in Rodrigue, G., Ed., Parallel Computations,
Academic, New York, 1982, pp. 51-83.

[TEMPERTON]
Temperton, C., Fast Fourier transform for numerical prediction models on vector computers,
EDF-Bulletin de la Direction des ~ t u d e s et des Recherches, Strie C, Vol. 1,1983, pp. 159-162.

[THOMPSON 11
Thompson, C. D., A complexity theory for VLSI, Ph.D. thesis, Computer Science Depart-
ment, Carnegie-Mellon University, Pittsburgh, August 1980.

[THOMPSON 21
Thompson, C. D., Fourier transforms in VLSI, IEEE Transactions on Computers, Vol. C-32,
No. 11, November 1983, pp. 1047-1057.

[ULLMAN]
Ullman, J. D., Computational Aspects of VLSI, Computer Science Press, Rockville, Md., 1984.

[WANG]
Wang, H. H., On vectorizing the fast Fourier transform, Technical Report No. G320-3392-1,
IBM Palo Alto Scientific Centre, Palo Alto, California, March 1980.

[WILF]
Wilf, H. S., Algorithms and Complexity, Prentice-Hall, Englewood Cliffs, N.J., 1986.

[WOLD]
Wold, E. H., and Despain, A. M., Pipeline and parallel-pipeline FFT processors for VLSI
implementations, IEEE Transactions on Computers, Vol. C-33, No. 5, May 1984, pp. 414-426.

[ZHANC]
Zhang, C. N., and Yun, D. Y. Y., Multi -dimensional systolic networks for discrete Fourier
transform, Proceedings of the 1 lth Annual ACM International Symposium on Computer
Architecture, Ann Arbor, Michigan, June 1984, pp. 215-222, Association for Computing
Machinery, New York, N.Y., 1984.

Graph Theory

10.1 INTRODUCTION

In virtually all areas of computer science, graphs are used to organize data, to model
algorithms, and generally as a powerful tool to represent computational concepts.
Trees, in particular, are omnipresent. Many branches of engineering and science rely
on graphs for representing a wide variety of objects from electrical circuits, chemical
compounds, and crystals to genetical processes, sociological structures, and economic
systems. The same is true for operations research, where graphs play a crucial role in
modeling and solving numerous optimization problems such as scheduling, routing,
transportation, and network flow problems. It is therefore important for these
applications to develop efficient algorithms to manipulate graphs and answer
questions about them. As a consequence, a large body of literature exists today on
computational graph-theoretic problems and their solutions.

This chapter is concerned with parallel graph algorithms. We begin in section
10.2 by defining some terms from graph theory. Section 10.3-10.6 are devoted to the
problems of computing the &connectivity matrix, the connected components, the
shortest paths, and minimum spanning tree of a graph, respectively.

10.2 DEFINITIONS

A graph consists of a finite set of nodes and a finite set of edges connecting pairs of
these nodes. A graph with six nodes and nine edges is shown in Fig. lO.l(a). Here the
nodes (also called vertices) are labeled a, b, c, d, e, and J The edges are (a, b), (a, c), (b, c),
(b, e), (c, d), (c, f), (d, e), (d, f), and (e, f). A graph is directed when its edges (also called
arcs) have an orientation and thus provide a one-way connection as indicated by the
arrow heads in Fig. 10.2(a). Here node a is connected to b, node b is connected to c and
d, and node d is connected to c. The notation G = (q E) is used to represent a graph G
whose vertex set is V and edge set is E.

A matrix representation can be used for computer storage and manipulation of a
graph. Let G be a graph whose vertex set is V = {v,, v,, . . . , v,- ,). This graph can be

Graph Theory Chap. 10

(a) (b)

Figure 10.1 Graph with six nodes and its adjacency matrix.

Figure 10.2 Directed graph and its adjacency matrix

uniquely represented by an n x n adjacency matrix A whose entries ai j , 0 6 i,
j < n - 1, are defined as follows:

1 if vi is connected to v j , a . . =

The adjacency matrices for the graphs in Figs. lO.l(a) and 10.2(a) are shown in Figs.
10.l(b) and 10.2(b), respectively, where v, = a, v , = b, and so on. Note that since the
graph in Fig. lO.l(a) is undirected, the matrix in Fig. lO.l(b) is symmetric.

When each edge of a graph is associated with a real number, called its weight, the
graph is said to be weighted. A weighted graph may be directed or undirected. Figure

Sec. 10.2 Definitions 253

Figure 103 Weighted graph and its weight matrix.

10.3(a) shows an undirected weighted graph. The meaning of an edge's weight varies
from one application to another; it may represent distance, cost, time, probability, and
so on. A weight matrix W is used to represent a weighted graph, as shown in Fig.
10.3(b). Here, entry wij of W represents the weight of edge (vi, vj). If vi and vj are not
connected by an edge, then wij may be equal to zero, or infinity or any appropriate
value, according to the application.

A path from an origin vertex vi to a destination vertex v j in a graph G = (V , E), is a
sequence of edges (vi, vk), (uk, v,), . . . , (urn, vj) from E, where no vertex appears more
than once. In Fig. 10.1, for example, (a, c), (c, d), (d, e) is a path from a to e. A cycle is a
path in which the origin and destination are the same. The sequence (a, b), (b, d), (d, a)
in Fig. 10.2 forms a cycle. In an unweighted graph, the length of a path or cycle is equal
to the number of edges forming it.

A subgraph G' = (V', E') of a graph G = (V , E) is a graph such that V' G V and
E' c_ E, that is, a graph whose vertices and edges are in G. Figure 10.4 shows two
subgraphs of the graph in Fig. 10.1.

(a) (b)

Figure 10.4 Two subgraphs of graph in Fig. 10.1.

254 Graph Theory Chap. 10

10.3 COM PUTlNG THE CONN ECTlVlTY MATRIX

The connectivity matrix of an n-node graph G is an n x n matrix C whose elements are
defined as follows:

1 if there is a path of length 0 or more from vj to vk,
c = {

I k 0 otherwise,

for j, k = 0, 1, . . . , n - 1 . Note that a path of length 0 begins and ends at a vertex
without using any edges, while a path of length 1 consists of one edge. The matrix C is
also known as the rejlexive and transitive closure of G. Given the adjacency matrix A of
a graph G, it is required to compute C. The approach that we take uses Boolean matrix
multiplication, which differs from regular matrix multiplication in that

(i) the matrices to be multiplied as well as the product matrix are all binary, that is,
each of their entries is either 0 or 1;

(ii) the Boolean (or logical) and operation replaces regular multiplication, that is, 0
and 0 = 0,0 and 1 = 0, 1 and 0 = 0, and 1 and 1 = 1; and

(iii) the Boolean (or logical) or operation replaces regular addition, that is, 0 or 0 = 0,
Oor 1 = 1, 1 or 0 = 1, and 1 or 1 = 1.

Thus if X, J: and Z are n x n Boolean matrices where Z is the Boolean product of X
and I: then

zi j = (x i l and y l j) or (x , and Y , ~) or.. . or (xi,, and ynj) for i, j = 0, 1, . . . , n - 1.

The first step in the computation of the connectivity matrix C is to obtain the
n x n matrix B from A as follows:

bjk = ajk (for j # k) and bj j = 1

for j, k = 0, 1, . . . , n - 1 . Matrix B therefore represents all paths in G of length less
than 2; in other words

1 if there is a path of length 0 or 1 from v j to v,,
b. = {

I k 0 otherwise.

Similarly, B2 (i.e., the Boolean product of B by itself) represents paths of length 2 or
less, B4 represents paths of length 4 or less, and Bn represents paths of length n or less.

We now observe that if there is a path from vi to v j , it cannot have length more
than n - 1. Consequently, C = Bn- ' , that is, the connectivity matrix is obtained after
rlog(n - 1)1 Boolean matrix multiplications. Note that when n - 1 is not a power of 2,
C is obtained from Bm, where m = 2""g'"- I". This is correct since Bm = Bn- for
m > n - 1 .

In order to implement this algorithm in parallel, we can use any of the matrix
multiplication algorithms described in chapter 7 adapted to perform Boolean matrix
multiplication. In particular, procedure CUBE MATRIX MULTIPLICATION can
be used. The resulting algorithm is given in what follows as procedure CUBE

Sec. 10.3 Computing the Connectivity Matrix 255

CONNECTIVITY. The procedure takes the adjacency matrix A as input and returns
the connectivity matrix C as output. It runs on a cube-connected SIMD computer
with N = n3 processors PI, P,, . . . , P,. The processors can be thought of as being
arranged in an n x n x n array pattern. In this array, P, occupies position (i, j, k),
where r = in2 + jn + k and 0 < i , j, k < n - 1. It has three registers A(i, j, k), B(i, j, k),
and C(i, j, k). Initially, the processors in positions (0, j, k), 0 < j, k < n - 1, contain the
adjacency matrix, that is, A(0, j, k) = ajk. At the end of the computation, these
processors contain the connectivity matrix, that is, C(0, j, k) = cjk, 0 < j, k < n - 1.

procedure CUBE CONNECTIVITY (A, C)

Step 1: {The diagonal elements of the adjacency matrix are made equal to 1)
for j = 0 to n - 1 do in parallel

4 0 , j, j) +- 1
end for.

Step 2: {The A registers are copied into the B registers}
for j = 0 to n - 1 do in parallel

for k = 0 to n - 1 do in parallel
B(0, j, k) + 40, j, k)

end for
end for.

Step 3: {The connectivity matrix is obtained through repeated Boolean multiplication)
for i = 1 to rlog(n - 1)1 do

(3.1) CUBE MATRIX MULTIPLICATION (A, B, C)
(3.2) for j = 0 to n - 1 do in parallel

for k = 0 to n - 1 do in parallel
(i) 4 0 , j, k) +- C(O, j, k)
(ii) B(0, j, k) +- C(0, j, k)

end for
end for

end for.

Analysis. Steps 1,2, and 3.2 take constant time. In step 3.1 procedure CUBE
MATRIX MULTIPLICATION requires O(1og n) time. This step is iterated logn
times. It follows that the overall running time of this procedure is t(n) = O(log2n).
Since p(n) = n3, c(n) = O(n3 log2n).

Example 10.1

Consider the adjacency matrix in Fig. 10.2(b). After steps 1 and 2 of procedure CUBE
CONNECTIVITY, we have computed

Graph Theory Chap. 10

The first iteration of step 3 produces

while the second yields B4 = BZ. !J

10.4 FINDING CONNECTED COMPONENTS

An undirected graph is said to be connected if for every pair vi and v j of its vertices
there is a path from vi to v j . A connected component of a graph G is a subgraph G' of G
that is connected. The problem we consider in this section is the following. An
undirected n-node graph G is given by its adjacency matrix, and it is required to
decompose G into the smallest possible number of connected components. We can
solve the problem by first computing the connectivity matrix C of G. Using C, we can
now construct an n x n matrix D whose entries are defined by

, = { V k i fc,*= 1,
Jk 0 otherwise,

for 0 < j, k < n - 1. In other words, row j of D contains the names of the vertices to
which v j is connected by a path, that is, those vertices in the same connected
components as v j . Finally, the graph G can be decomposed into the smallest number
of connected components by assigning each vertex to a component as follows: v j is
assigned to component 1 if 1 is the smallest index for which djl # 0.

A parallel implementation of this approach uses procedure CUBE
CONNECTIVITY developed in the previous section to compute the connectivity
matrix C. The algorithm is given in what follows as procedure CUBE
COMPONENTS. The procedure runs on a cube-connected SIMD computer with
N = n3 processors, each with three registers A, B, and C. The processors are arranged
in an n x n x n array pattern as explained earlier. Initially, A(0, j, k) = ajk for 0 < j,
k < n - 1, that is, the processors in positions (0, j, k) contain the adjacency matrix of
G. When the procedure terminates, C(0, j, 0) contains the component number for
vertex v j , where j = 0, 1,. . . , n - 1.

procedure CUBE COMPONENTS (A, C)

Step 1: {Compute the connectivity matrix)
CUBE CONNECTIVITY (A , C).

Step 2: {Construct the matrix D}
for j = 0 to n - 1 do in parallel

for k = 0 to n - 1 do in parallel

Sec. 10.5 All-Pairs Shortest Paths

if C(0, j, k) = 1 then C(0, j, k) = v,
end if

end for
end for.

Step 3: {Assign a component number to each vertex)
for j = 0 to n - 1 do in parallel

(3.1) the n processors in row j (forming a log n-dimensional cube) find the smallest
1 for which C(0, j, I) # 0

(3.2) C(0, j, 0) + 1
end for.

Analysis. As shown in the previous section, step 1 requires O(log2n) time.
Steps 2 and 3.2 take constant time. From problem 7.23, we know that step 3.1 can be
done in O(log n) time. The overall running time of procedure CUBE COMPONENTS
is t(n) = O(log2n). Since p(n) = n3, c(n) = O(n310g2n).

Example 10.2

Consider the graph in Fig. 10.5(a) whose adjacency and connectivity matrices are given in
Figs. 10.5(b) and (c), respectively. Matrix D is shown in Fig. 10.5(d). The component
assignment is therefore:

component 0: v,, v, , v,, v ,

component 1: v , , v,, v ,

component 2: v 2 , 0,.

10.5 ALL -PAIRS SHORTEST PATHS

A directed and weighted graph G = (< E) is given, as shown, for example, in Fig. 10.6.
For convenience, we shall refer in this section to the weight of edge (v,, vj) as its length.

For every pair of vertices vi and u j in I/: it is required to find the shortest path
from vi to vj along edges in E. Here the length of a path or cycle is the sum of the
lengths of the edges forming it. In Fig. 10.6, the shortest path from v, to v, is along
edges (v,, v2), (v2, u,), (v3, v6), (v,, v,), and (v,, 0,) and has length 6.

Formally, the all-pairs shortest paths problem is stated as follows: An n-vertex
graph G is given by its n x n weight matrix W; construct an n x n matrix D such that
dij is the length of the shortest path from vi to oj in G for all i and j. We shall assume
that W has positive, zero, or negative entries as long as there is no cycle of negative
length in G.

Let d b denote the length of the shortest path from vi to v j that goes through at
most k - 1 intermediate vertices. Thus d i = w,,, that is, the weight of the edge from oi
to vi. In particular, if there is no edge from ui to vj, where i and j are distinct, d,ti = a.
Also d: = 0. Given that G has no cycles of negative length, there is no advantage in
visiting any vertex more than once in a shortest path from vi to v j (even if our

Graph Theory Chap. 10

(c)
(dl

Figure 10.5 Computing connected components of graph.

definition of a path allowed for a vertex to appear more than once on a path). It
follows that d i j = dz- ' .

In order to compute d$ for k > 1 we can use the fact that

d$ = min {d,:" + d:,12},
1

that is, d$ is equal to the smallest di i2 + dV2, over all values of I . Therefore matrix D

Sec. 10.5 All -Pairs Shortest Paths

Figure
graph.

Directed and weighted

can be generated from Dl by computing D2, D4, . . . , Dn-I and then taking D = Dn-' .
In order to obtain Dk from DkI2 by the preceding expression, we can use a special form
of matrix multiplication in which the standard operations of matrix multiplication,
that is, x and + are replaced by + and min, respectively. Hence if a matrix
multiplication procedure is available, it can be modified to generate Dm-' from Dl .
Exactly rlog(n - 1)1 such matrix products are required.

The algorithm is implemented in parallel using any of the matrix multiplication
procedures described in section 7.3 adapted to perform (+, min) multiplication. Once
again, as we did in the previous two sections, we shall invoke procedure CUBE
MATRIX MULTIPLICATION. The resulting algorithm is given in what follows as
procedure CUBE SHORTEST PATHS. The procedure runs on a cube-connected
SIMD computer with N = n3 processors, each with three registers A, B, and C. As
before, the processors can be regarded as being arranged in an n x n x n array
pattern. Initially, A(0, j, k) = wjk for 0 < j, k < n - 1, that is, the processors in
positions (0, j, k) contain the weight matrix of G. If v j is not connected to o, or i f j = k,
then wjk = 0. When the procedure terminates, C(0, j, k) contains the length of the
shortest path from oj to vk for 0 < j, k < n - 1.

procedure CUBE SHORTEST PATHS (A, C)

Step 1: {Construct the matrix D' and store it in registers A and B)
for j = 0 to n - 1 do in parallel

for k = 0 to n - 1 do in parallel
(1.1) if j # k and A(0, j , k) = 0

then A(0, j , k) + co
end if

(1.2) B(0, j, k) + 4 0 , j, k)
end for

end for.

260 Graph Theory Chap. 10

Step 2: {Construct the matrices D ~ , D4,. . . , Dn-I through repeated matrix multiplication}
for i = 1 to rlog(n - 1)l do

(2.1) CUBE MATRIX MULTIPLICATION (A, B, C)
(2.2) for j = 0 to n - 1 do in parallel

for k = 0 to n - 1 do in parallel
(i) 4 0 , j, k) + C(O, j, k)
(ii) B(O, j, k) + C(O, j , k)

end for
end for

end for.

Analysis. Steps 1 and 2.2 take constant time. There are [log@ - 1)l
iterations of step 2.1 each requiring O(1og n) time. The overall running time of

Figure 10.7 Computing all-pairs shortest paths for graph in Fig. 10.6.

Sec. 10.6 Computing the Minimum Spanning Tree 261

procedure CUBE SHORTEST PATHS is therefore t(n) = O(logzn). Since p(n) = n3,
c(n) = O(n310g2n).

Example 10.3

Matrices Dl, D2, D4, and D8 for the graph in Fig. 10.6 are shown in Fig. 10.7.

10.6 COMPUTING THE MIN IMUM SPANNING TREE

A tree is a connected (undirected) graph with no cycles. Given an undirected and
connected graph G = (q E), a spanning tree of G is a subgraph G' = (V', E') of G such
that

(i) G' is a tree, and
(ii) V' = k!

If the graph G is weighted, then a minimum spanning tree (MST) of G has the smallest
edge-weight sum among all spanning trees of G. These definitions are illustrated in
Fig. 10.8. Three spanning trees of the weighted graph in Fig. 10.8(a) are shown in Figs.

(c) (d)

Figure 10.8 Weighted graph and three of its spanning trees.

262 Graph Theory Chap. 10

10.8(b)-(d). The tree in Fig. 10.8(d) has minimum weight. Note that when all the edges
of the graph have distinct weights, the MST is unique.

If V = (v,, v , , . . . , v,_,), then the MST has n - 1 edges. These edges must be
chosen among potentially n(n - 1)/2 candidates. This gives an Q(nz) lower bound on
the number of operations required to compute the MST since each edge must be
examined at least once. For convenience, we henceforth refer to the weight of edge
(v,, vj) as the distance separating vi and u j and denote it by dist(vi, vj).

A sequential algorithm for computing the MST based on the greedy approach to
problem solving proceeds in stages. Beginning with an arbitrarily chosen vertex, each
stage adds one vertex and an associated edge to the tree. If vi is a vertex that is not yet
in the tree, let c(vi) denote a vertex already in the tree that is closest to vi. The algorithm
therefore consists of two steps:

Step 1: Include vertex v, in the MST and let c(vi) = vo for i = 1, 2,. . . , n - 1.
Step 2: This step is repeated as long as there are vertices not yet in the MST:

(2.1) Include in the tree the closest vertex not yet in the tree; that is, for all vi
not in the MST find the edge (vi, c(vi)) for which dist(vi, c(vi)) is smallest
and add it to the tree.

(2.2) For all ui not in the MST, update c(vi); that is, assuming that vj was the
most recently added vertex to the tree, then c(vi) can be updated by
determining the smaller of dist(vi, c(vi)) and dist(vi, vj).

Step 1 requires n constant time operations. Step 2 is executed once for each of
n - 1 vertices. If there are already k vertices in the tree, then steps 2.1 and 2.2 consist of
n - k - 1 and n - k comparisons, respectively. Thus step 2, and hence the algorithm,
require time proportional to 1;:: (n - k), which is O(nZ). This sequential running
time is therefore optimal in view of the lower bound stated previously.

We now show how this algorithm can be adapted to run in parallel on an
EREW SM SIMD computer. The parallel implementation uses N processors Po,
PI,. . . , P,- ,. The number of processors is independent of the number of vertices in G
except that we assume 1 < N < n. As we did in earlier chapters, we find it convenient
to write N = nl-", where 0 < x < 1. Each processor Pi is assigned a distinct
subsequence 6 of V of size nx. In other words, Pi is "in charge" of the vertices in 6.
Note that Pi needs only to store the indices of the first and last vertices in V;.. During
the process of constructing the MST and for each vertex up in V;. that is not yet in the
tree, Pi also keeps track of the closest vertex in the tree, denoted c(vp).

The weight matrix W of G is stored in shared memory, where wij = dist(vi, vj) for
i, j = 0, 1,. . . , n - 1. If i = j or if vi and vj are not directly connected by an edge, then
wij = co. The algorithm initially includes an arbitrary vertex in the tree. The
computation of the MST then proceeds in n - 1 stages. During each stage, a new
vertex and hence a new edge are added to the existing partial tree. This is done as
follows. With all processors operating in parallel, each processor finds among its
vertices not yet in the tree the vertex closest to (a vertex in) the tree. Among the nl-"

Sec. 10.6 Computing the Minimum Spanning Tree 263

vertices thus found, the vertex closest to (a vertex in) the tree is found and added to the
tree along with the associated edge. This vertex, call it v,, is now made known to all
processors. The following step is then performed in parallel by all processors, each for
its nx vertices: For each vertex up not yet in the tree, if dist(vp, v,) < dist(u,, c(v,)), then
c(v,) is made equal to v,.

The algorithm is given in what follows as procedure EREW MST. The
procedure uses procedures BROADCAST and MINIMUM described in sections
2.5.1 and 6.3.1, respectively. It produces an array TREE in shared memory containing
the n - 1 edges of the MST. When two distances are equal, the procedure breaks the
tie arbitrarily.

procedure EREW MST (w TREE)

Step 1: (1.1) Vertex v, in Vo is labeled as a vertex already in the tree
(1.2) for i = 0 to N - 1 do in parallel

for each vertex vj in & do
c(vj) 00

end for
end for.

Step 2: for i = 1 to n - 1 do
(2.1) for j = 0 to N - 1 do in parallel

(i) Pj finds the smallest of the quantities dist(vp, c(vp)), where up is a vertex in
5 that is not yet in the tree

(ii) Let the smallest quantity found in (i) be dist(v,, v,): Pi delivers a triple
(d j , a j , bj), where

dj = dist(o,, v,),
aj = v,, and
bj = vt

end for
(2.2) Using procedure MINIMUM the smallest of the distances d j and its

associated vertices aj and b j , for 0 < j < N - 1, are found; let this triple be
(d,, a,, b,), where a, is some vertex v, not in the tree and b, is some vertex v,
already in the tree

(2.3) Po assigns (oh, vk) to TREE(i), the ith entry of array TREE
(2.4) Using BROADCAST, oh is made known to all N processors
(2.5) for j = 0 to N - 1 do in parallel

(i) if v, is in 5
then Pj labels v, as a vertex already in the tree
end if

(ii) for each vertex v, in 5 that is not yet in the tree do
if dist(vp, v,) < dist(vp, c(vp))
then c(v,) + v,
end if

end for
end for

end for.

264 Graph Theory Chap. 10

Analysis. Step 1.1 is done in constant time. Since each processor is in charge
of nx vertices, step 1.2 requires nx assignments. Therefore step 1 runs in O(nx) time. In
step 2.1, a processor finds the smallest of nx quantities (sequentially) using nx - 1
comparisons. Procedures MINIMUM and BROADCAST both involve O(1og N)
constant time operations. Since N = nl-*, steps 2.2 and 2.4 are done in O(1og n) time.
Clearly steps 2.3 and 2.5 require constant time and O(nx) time, respectively. Hence
each iteration of step 2 takes O(nx) time. Since this step is iterated n + 1 times, it is
completed in'O(n'+X) time. Consequently, the overall running time of the procedure is
O(nl+"). The procedure is therefore adaptive. Its cost is

c(n) = p(n) x t(n)
- -x - x O(n'+X)

= O(n7.

This means that the procedure is also cost optimal. Note that, for sufficiently large
n,nX >lognfor any xand N =n l - " = n/nx < n/log n. The procedure's optimality is
therefore limited to the range N < nllog n.

Example 10.4

Let G be a weighted nine-node graph whose weight matrix is given in Fig. 10.9. Also
assume that an EREW SM SIMD computer with three processors is available. Thus

Figure 10.9 Weight matrix for example 10.4.

w 0

"4 "7

"3
(h)

Figure 10.10 Computing minimum spanning tree using procedure EREW MST.

Graph Theory Chap. 10

3 = 9'-", that is, x = 0.5. Processors Po, P,, and P, are assigned sequences
VO = {v,, v,, v,), Vl = {v,, v4, v,), and V2 = {v6, v,, v,). In step 1.1, v, is included in the
tree and is assigned as the closest vertex in the tree to all remaining vertices.

During the first iteration of step 2, Po determines that dist(u,, v,) < dist(v,, v,) and
returns the triple (5, v,, v,). Similarly, P I and P, return (I, v,, v,) and (5, v,, v,),
respectively. Procedure MINIMUM is then used to determine oh = v3 and hence
TREE(1) = (v,, v,). Now v, is made known to all processors using BROADCAST and P I
labels it as a vertex in the tree. In step 2.5, Po keeps c(v,) and c(v,) equal to v,, P, updates
c(v4) to v, but keeps c(v,) = v,, and P, keeps c(v6) = v, and c(v,) = 0 while updating
c(v,) = v,. The process continues until the tree (v,, v,), (v,, v,), (v,, v,), (v,, v,), (v,, v,),
(v,, v4), (v6, u,), (u,, 0,) is generated. This is illustrated in Fig. 10.10.

10.7 P R O B L E M S

10.1 Show that procedure CUBE CONNECTIVITY is not cost optimal. Can the procedure's
cost be reduced?

10.2 Derive a parallel algorithm to compute the connectivity matrix of an n-vertex graph in
O(n) time on an n x n mesh-connected SIMD computer.

10.3 Consider a CRCW SM SIMD computer with n3 processors. Simultaneous write
operations to the same memory location are allowed provided that all the values to be
written are the same. Give an algorithm to compute the connectivity matrix of an n-
vertex graph on this computer in O(log n) time.

10.4 Let A be the adjacency matrix of an n-vertex graph G. Another way of computing the
connectivity matrix C of G sequentially is given by the following algorithm. Initially C is
set equal to A.

Step 1: for i = 0 to n - 1 do
Cii + 1

end for.

Step 2: for k = 0 to n - 1 do
for i = 0 to n - 1 do

fo r j=Oton -1do
if cik = 1 and ckj = 1
then cij + 1
end if

end for
end for

end for.

Derive a parallel version of this algorithm for an interconnection-network SIMD
computer.

10.5 Show that if the connected components of a graph are given, then its connectivity matrix
can be obtained trivially.

10.6 Repeat problem 10.1 for procedure CUBE COMPONENTS.
10.7 Another approach to computing the connected components of a graph is based on the

idea of breadth-first search. Beginning with a vertex, its neighbors (i.e., all the vertices to
which it is connected by an edge) are visited. The neighbors of each of these vertices are

Sec. 10.7 Problems 267

now visited, and the process continues until no unvisited neighbor is left. This gives one
connected component. We now pick a vertex (outside of this component) and find its
connected component. Continuing in this fashion, all the connected components can be
found. Derive a parallel implementation of this approach.

10.8 Consider the following approach to computing the connected components of a graph,
which in a sense is symmetric to the one described in problem 10.7. Here vertices are
collapsed instead of expanded. Pairs of vertices that are connected by an edge are
combined into supervertices. Supervertices are now themselves combined into new (and
larger) supervertices. The process continues until all the vertices in a given connected
component have been combined into one supervertex. Derive a parallel implementation
of this approach.

10.9 Establish the validity of the relation

dz = min {d;lZ + d y)
I

upon which procedure CUBE SHORTEST PATHS is based.
10.10 Repeat problem 10.1 for procedure CUBE SHORTEST PATHS.
10.11 Modify procedure CUBE SHORTEST PATHS to provide a list of the edges on the

shortest path from vj to v, for all 0 < j, k < n - 1.
10.12 Derive an algorithm for the model of computation in problem 10.3 to compute all-pairs

shortest paths in O(1og n) time.
10.13 Let W be the weight matrix of an n-vertex graph G, with wii = 0 and wij = co if there is no

edge from vi to vj. Consider the following sequential method for computing the all-pairs
shortest paths matrix D. Initially, D is set equal to W

for k = 0 to n - 1 do
for i = 0 to n - 1 do

for j=Oton- 1do
dij + min{dij, dit + d,)

end for
end for

end for.

Design a parallel implementation of this algorithm on an interconnection-network
SIMD computer.

10.14 Discuss the feasibility of the following approach to computing the MST of a weighted
graph G: All spanning trees of G are examined and the one with minimum weight is
selected.

10.15 Procedure EREW MST is cost optimal when N < n og n Can this range of optimality
be widened? C .

10.16 Adapt procedure EREW MST to run on an interconnection-network SIMD computer.
10.17 Derive a parallel algorithm based on the following approach to computing the MST of a

weighted n-vertex graph G.

Step 1: The edges of G are sorted in order of increasing weight.
Step 2: Then - 1 edges with smallest weight that do not include a cycle are selected
as the edges of the MST.

268 Graph Theory Chap. 10

10.18 Consider the following approach to computing the MST of an n-vertex weighted graph
G.

Step 1: for i = 0 to n - 1 do
(1.1) Determine for vertex v, its closest neighbor vj; if two or more vertices are

equidistant from vi, then v j is the one with the smallest index
(1.2) The edge (ui, vj) is designated as an edge of the MST
end for.

Step 2: (2.1) k + number of distinct edges designated in step 1
(2.2) Each collection of vertices and edges selected in step 1 and forming a

connected component is called a subtree of the MST.

Step 3: while k < n - 1 do
(3.1) Let TI, T,, . . . , T, be the distinct subtrees formed so far
(3.2) for i = 1 t o m do

(i) Using an appropriate tie-breaking rule, select for an edge of
smallest weight connecting a vertex in to a vertex in any other
subtree T j

(ii) This edge is designated as an MST edge and the two subtrees it
connects are coalesced into one subtree

end for
(3.3) k +- k + number of distinct edges selected in 3.2

end while.

Applying this approach to the weight matrix in Fig. 10.9, we get the following edges after
step 1: (u,, v3), (u,, u,), (v,, o,), (v4, 04, (u,, v,), (v7, v,), and (us, 0,). These form two
subtrees TI = ((vo,v3), (us, uO)) and T2 = {(v,, v4), (v,, v,), (v4, v,), (v,, v,), (v7, 0,)). Since
k = 7, we execute step 3 and find that the edge of smallest weight connecting TI to T, is
(u,, v,). Design a parallel algorithm based on the preceding approach for the problem of
determining the MST and analyze its performance.

10.19 Assume that the n vertices of an undirected weighted graph G are points in k-dimensional
Euclidean space, k > 2, with wij = Euclidean distance separating vi and uj. The graph is
therefore fully defined by a list of n vertices, each vertex being represented by its k
coordinates. This means that the weight matrix is not required as part of the input since
wij can be computed when needed. Implement the MST algorithm in section 10.6 on a
tree-connected SIMD computer with n leaves to run in O(n log n) time.

10.20 Show that by reducing the number of leaves in the tree-connected SIMD computer of
problem 10.19, a cost-optimal algorithm can be obtained.

10.21 An undirected n-vertex graph is said to be sparse if it has m edges, where m is much
smaller than the maximum possible n(n - 1)/2 edges. Design a CREW algorithm for
computing the MST of a weighted sparse n-vertex graph in O(m log n/N) time using N
processors, where N < log n, and the approach described in problem 10.17.

10.22 Can the algorithm in problem 10.21 be modified to have a cost of O(m log m)?
10.23 Repeat problem 10.21 for the approach in problem 10.18 with N < m/log n.

10.24 Repeat problem 10.21 for the approach in section 10.6 with N log N < (m log n)/n.
10.25 Can the algorithms in problems 10.23 and 10.24 be modified to have a cost of O(m)?

10.26 Repeat problems 10.21-10.25 for the EREW SM SIMD model.

Sec. 10.7 Problems 269

10.27 Let G = (v E) be a directed graph. A strong component of G is a subgraph G' = (V', E') of
G such that there is a path from every vertex in V' to every other vertex in V' along edges
in E'. Design a parallel algorithm for decomposing a given directed graph into the
smallest possible number of strong components.

10.28 A weak component of a directed graph G is a subgraph G' of G where every two vertices
are joined by a path in which the direction of each edge is ignored. Design a parallel
algorithm for decomposing a given directed graph into the smallest number of weak
components.

10.29 A biconnected component of an undirected graph G = (C: E) is a connected component
G' = (Y', E') such that the deletion of any vertex of V' does not disconnect G'. Design a
parallel algorithm for decomposing a given undirected graph into the smallest possible
number of biconnected components.

10.30 Let G be an undirected graph. A bridge in G is an edge whose removal divides one
connected component into two. Design a parallel algorithm for finding the bridges of a
given graph.

10.31 An articulation point of a connected undirected graph G is a vertex whose removal splits
G into two or more connected components. Design a parallel algorithm to determine all
the articulation points of a given graph.

10.32 Consider the following variant of the all-pairs shortest paths problem: Given a specified
vertex in a weighted directed graph, it is required to find the shortest path from that
vertex to every other vertex in the graph. This is known as the single-source shortest path
problem. Design a parallel algorithm for this problem and analyze its running time and
cost.

10.33 Let G be an unweighted undirected graph. It is desired to obtain a spanning tree of G. Use
the parallel algorithm designed in problem 10.32 to solve this problem.

10.34 Another variant of the all-pairs shortest path problem is the all-pairs longest path
problem. Derive a parallel algorithm for this problem.

10.35 Let G be a directed graph with no cycles. It is required to sort the vertices of G into a
sequence v,, v , , . . . , v, such that (v i , v j) may be an arc of G only if i < j. Suggest two
parallel solutions to this problem known as topological sorting. One solution may be
based on the reflexive and transitive closure of G, the other on the matrix of all-pairs
shortest paths.

10.36 The diameter of a weighted graph G is the length of the shortest path separating the
farthest two vertices of G. The center of G is the vertex for which the length of the shortest
path to the farthest vertex is smallest. This distance is called the radius of G. Show how
the diameter, center, and radius of an n-vertex weighted graph can be obtained in
O(logzn) time on a cube-connected computer with n3 processors.

10.37 The median of a weighted graph is the vertex for which the sum of the shortest paths to all
other vertices is smallest. Derive a parallel algorithm to find the median.

10.38 Let G be a directed and weighted graph with no cycles. We assume that wi j = 0 in the
weight matrix W if the arc (v i , vj) is not present. The gain on a path from v, to u, is the
product of the arc weights on that path. A maximum gain matrix H is such that hij equals
the maximum gain for every i and j. Derive a parallel algorithm for computing the matrix
H from W

10.39 Let G be an n-vertex undirected graph, and define the length of a cycle as the number of
edges it contains (as in section 10.2).

Graph Theory Chap. 10

(i) Derive a parallel algorithm for determining the shortest cycle in O(n) time on an
n x n mesh-connected SIMD computer.

(ii) Repeat part (i) for an undirected graph.

10.40 The cyclic index of a directed graph G is the greatest common divisor of the lengths of all
the cycles in G. Design a parallel algorithm for computing the cyclic index.

10.41 An undirected graph is bipartite if and only if it has no cycle of odd length. Show that it is
possible to determine whether an n-vertex graph is bipartite in O(n) time on an n x n
mesh-connected SIMD computer.

10.42 Let G = (v E) be a connected undirected graph. Further, let H = (VH, E,) and
K = (V,, E,) be two subgraphs of G. The symmetric diference of H and K, written
H @ K, is the subgraph G' = (V', E') of G where E' is the set of edges in E, u E , but not
in E , n E,, and V' is the set of vertices connected by edges in E'. A set of fundamental
cycles of G is a collection F of cycles of G with the property that any cycle C of G can be
written as C = C , Q C, @ . . . @ C, for some subcollection of cycles C,, C,, . . . , C, of F.
Design a CREW algorithm for determining the set of fundamental cycles of an n-vertex
graph in O(logzn) time using O(n3) processors.

10.43 A matching in an undirected graph G = (v E) is a subset M of E such that no two edges in
M share a vertex. A matching has maximum cardinality if no other matching in G
contains more edges. Design a parallel algorithm for finding a maximum-cardinality
matching.

10.44 Repeat problem 10.43 for the case where G is bipartite.
10.45 A matching of G = (v E) is said to be perfect if it includes all the vertices in i! Assume

that G is a 2n-vertex graph that is weighted and complete (i.e., every two vertices are
connected by an edge). Design a parallel algorithm for finding a perfect matching of G
that has minimum weight.

10.46 Let G be a directed and weighted graph where each edge weight is positive. Two vertices
of G are distinguished as the source and the sink. Each edge may be thought of as a
conduit for fluid, and the edge's weight determines how much fluid it can carry. The
networkflow problem asks for the maximum quantity of fluid that could flow from source
to sink. Design a parallel algorithm for this problem.

10.47 The dead-end path problem is defined as follows: Given a graph G = (x E) and a
distinguished vertex v, find a path starting from v that cannot be extended without going
to a vertex that is already on the path. A greedy sequential algorithm for this problem is
to start at v and always go to the lowest numbered unvisited neighbor. Can this
algorithm be implemented efficiently in parallel? Is there a fast parallel algorithm that
computes the same dead-end path as the sequential algorithm?

10.48 Let G be a directed graph with no cycles. We say that G is layered if its nodes are laid out
in levels, its edges going only between consecutive layers. The maximal set of disjoint paths
problem is to find the largest set possible of paths from the first level to the last with no
vertices in common. Describe a greedy algorithm for this problem and determine
whether it can be implemented efficiently in parallel.

10.49 A Hamilton cycle of an undirected graph G = (v E) is a cycle that includes all the
elements of i! Design a parallel algorithm for determining whether a given graph has a
Hamilton cycle.

10.50 An undirected and weighted graph G is given where all the edge weights are positive
integers. A positive integer B is also given. It is required to determine whether G possesses

Sec. 10.8 Bibliographical Remarks 271

a Hamilton cycle whose weight is no larger than B. This is known as the traveling
salesman problem, where the vertices represent cities and the edge weights distances
separating them. Design a parallel algorithm for solving this problem.

10.8 BIBL IOGRAPHICAL R E M A R K S

Descriptions of many sequential graph algorithms can be found in [Christofides], [Deo 11,
[Even], and [Papadimitriou]. Graph-theoretic algorithms for parallel computers are surveyed
in [Quinn 21. Textbook treatment of parallel graph algorithms is provided in [Kronsjo],
[Quinn 11, and [Ullman].

Parallel algorithms for computing the connectivity matrix are given in [Chin], [Guibas],
[Hirschberg 11, [Hirschberg 21, [KuQra], [Levitt], and [Van Scoy]. In particular, it is shown
in [Hirschberg 11 how an n3-processor CRCW SM SIMD computer can be used to compute
the reflexive and transitive closure of an n-vertex graph in O(1og n) time.

Various approaches to solving the connected-components problem in parallel are
proposed in [Chin], [Hirschberg 11, [Hirschberg 23, [Hochschild 11, [Hochschild 23,
[KuEera], [Lakhani], [Nassimi], ma th 11, [Nath 21, [Reghbati], and [Shiloach 11. Notably, it
is shown in [Chin] how a CREW SM SIMD computer with O(n2/log2n) processors can be used
to find the connected components of an n-vertex graph in O(log2n) time.

Parallel algorithms for solving the all-pairs shortest path problem on a number of
different models of computation are described in [Dekel 11, [Deo 21, and [Hirschberg 11. The
algorithm in [Hirschberg 11 uses an n4-processor CRCW SM SIMD computer and runs in
O(log n) time. The idea of procedure CUBE SHORTEST PATHS originated in [Dekel 11.

Several approaches for computing the minimum spanning tree in parallel are described in
[Atallah], [Bentley], [Chin], [Deo 31, [Doshi], [Gallager], [Hirschberg 11, [Hirschberg 31,
[Hochschild 11, [Hochschild2], [KuEera], [Kwan], [Nath 11, [Nath 21, [Santoro],
[Savage 11, and [Savage 21. In particular, it is shown in [Doshi] how the approach in problem
10.18 can be used to compute the MST of an n-vertex weighted graph on a linear array of N
processors, where 1 < N < n. The algorithm runs in O(n2/N) time for an optimal cost of O(n2).
This algorithm is superior to procedure EREW MST in two respects:

1. It achieves the same performance on a much weaker model of computation.
2. It has a wider range of optimality.

Procedure EREW MST is from [Akl], where a number of references to parallel MST
algorithms are provided.

Other graph-theoretic problems that were solved in parallel include finding bicon-
nected components ([Hirschberg 11, [Hochschild 11, [Hochschild 23, and [Savage 2]), tri-
connected components ([Ja'Jaq), strongly connected components ([Hochschild 23, [Kosaraju],
and [Levitt]), and weakly connected components ([Chin]); single-source shortest paths
([Chandy], [Crane], [Deo 21, and [Mateti]); all-pairs longest paths ([Hirschberg 11); topolog-
ical sorting ([Er], [Hirschberg 11, and [Kukra]); constructing spanning trees and forests
([Bhatt], [Chin], [Dekell], and [Levitt]); contracting trees ([Leiserson]); determining the
radius, diameter, center, median, articulation points, and bridges ([Atallah], [Dekel 11,
[Doshi], and [Savage 23); computing maximum gains ([Dekel 11); searching and traversing
graphs ([Chang], [Kalra], [Kosaraju], [Reghbati], and [Wyllie]); testing planarity
([Hochschild 23, and [Ja'Ja']); computing matchings ([Dekel2], and [Hembold]); finding the

272 Graph Theory Chap. 10

cyclic index ([Atallah]), fundamental cycles ([Levitt] and Savage 2]), cycles of shortest length
([Atallah]), and maximal sets of disjoint paths ([Anderson]); computing flows in networks
([Chen I], [Chen 21, [Goldberg], and [Shiloach 21); and testing whether a graph is bipartite
([Atallah]).

The cellular array model of parallel computation was first proposed in [Kautz] and then
used in [Levitt] for solving graph-theoretic problems. It consists of a large number of simple
processors interconnected to form a two-dimensional array. The concept of a cellular array was
later rediscovered and renamed systolic array in [Foster].

The dead-end path problem and the maximal set of disjoint paths problem belong to the
class of P-complete problems. These problems are believed not to have fast parallel solutions.
Furthermore, if a fast parallel algorithm is found for one of these problems, then all the
problems in the class are amenable to fast parallel solution ([Anderson] and [Cook]). Note
that, according to this theory, a parallel algorithm is fast if it uses O(nC) processors for some
c >, 0 and runs in O(logkn) time for some constant k >, 0. The class of problems solved by such
fast algorithms is nicknamed in the literature as NC ([Cook]).

Let n be a problem of size n, where n may be the number of vertices in a graph, rows in a
matrix, or elements of a sequence. An algorithm for solving n is said to be polynomial if its
running time is of O(nk) for some constant k > 0. An algorithm is exponential if it runs in O(cn)
for some constant c 2 2. The Hamilton cycle and traveling salesman problems belong to the
class of NP-complete problems. A problem x in this class has the following characteristics:

(i) no sequential algorithm with polynomial running time is known for solving n and,
furthermore, it is not known whether such an algorithm exists;

(ii) all known sequential algorithms for solving n have exponential running time and it is not
known whether this is optimal;

(iii) if a solution to a is given, it can be verified in polynomial time; and
(iv) if a sequential polynomial time algorithm is found for solving TC, it can be used to solve all

NP-complete problems in polynomial time.

A good reference to NP-complete problems is [Garey]. Parallel algorithms for NP-complete
problems help only a little in mitigating the exponential growth in the running time. To have a
truly fast parallel algorithm that is based on our current state of knowledge, one needs an
exponential number of processors. This is prohibitive, to say the least, and we must await a
better understanding of the nature of NP-complete problems before embarking in the design of
parallel algorithms for large-problem instances. Parallel algorithms for NP-complete graph
problems are described in [Mead] and [Mohan].

10.9 R E F E R E N C E S

CAKLI
Akl, S. G., An adaptive and cost-optimal parallel algorithm for minimum spanning trees,
Computing, Vol. 36, 1986, pp. 271-277.

[ANDERSON]
Anderson, R., and Mayr, E. W., Parallelism and greedy algorithms, Technical Report No.
STAN-CS-84-1003, Department of Computer Science, Stanford University, Stanford, Calif-
ornia. 1984.

Sec. 10.9 References 273

[ATALLAH]
Atallah, M. J., and Kosaraju, S. R., Graph problems on a mesh-connected processor array,
Journal of the ACM, Vol. 31, No. 3, July 1984, pp. 649-667.

[BENTLEY]
Bentley, J. L., A parallel algorithm for constructing minimum spanning trees, Journal of
Algorithms, Vol. 1, No. 1, March 1980, pp. 51-59.

[BHATT]
Bhatt, P. C. P., A parallel algorithm to generate all sink trees for directory routing,
Proceedings of the 1984 International Conference on Parallel Processing, Bellaire, Michigan,
August 1984, pp. 425-430, IEEE Computer Society, Washington, D.C., 1984.

[CHANDY]
Chandy, K. M., and Misra, J., Distributed computation on graphs: Shortest path algorithms,
Communications of the ACM, Vol. 25, No. 11, November 1982, pp. 833-837.

[CHANG]
Chang, E. J. H., Echo algorithms: Depth-first parallel operations on general graphs, IEEE
Transactions on Software Engineering, Vol. SE-8, No. 4, July 1982, pp. 391-401.

[CHEN 11
Chen, I. N., A new parallel algorithm for network flow problems, in Feng, T.-Y., Ed., Parallel
Processing, Lecture Notes in Computer Science, Vol. 24, Springer-Verlag, New York, 1975,
pp. 306-307.

[CHEN 21
Chen, Y. K., and Feng, T.-Y., A parallel algorithm for maximum flow problem, Proceedings
of the 1973 International Conference on Parallel Processing, Sagamore, New York, August
1973, p. 60, IEEE Computer Society, Washington, D.C., 1973.

[CHIN]
Chin, F. Y., Lam, J., and Chen, I. N., Efficient parallel algorithms for some graph problems,
Communications of the ACM, Vol. 25, No. 9, September 1982, pp. 659-665.

[CHRISTOFIDEC~]
Christofides, N., Graph Theory: An Algorithmic Approach, Academic, London, England,
1975.

[CRANE]
Crane, B. A., Path finding with associative memory, IEEE Transactions on Computers, Vol. C-
17, No. 7, July 1968, pp. 691-693.

C c o o ~ l
Cook, S. A., A taxonomy of problems with fast parallel algorithms, Information and Control,
Vol. 64, 1985, pp. 2-22.

[DEKEL 11
Dekel, E., Nassimi, D., and Sahni, S., Parallel matrix and graph algorithms, SIAM Journal on
Computing, Vol. 10, No. 4, November 1981, pp. 657-675.

[DEKEL 21
Dekel, E., and Sahni, S., A parallel matching algorithm for convex bipartite graphs,
Proceedings of the 1982 International Conference on Parallel Processing, Bellaire, Michigan,
August 1982, pp. 178-184, IEEE Computer Society, Washington, D.C., 1982.

[DEO 11
Deo, N., Graph Theory with Applications to Engineering and Computer Science, Prentice-Hall,
Englewood-Cliffs, N.J., 1974.

274 Graph Theory Chap. 10

[DEO 21
Deo, N., Pang, C. Y., and Lord, R. E., Two parallel algorithms for shortest path problems.
Proceedings of the 1980 International Conference on Parallel Processing, Harbor Springs.
Michigan, August 1980, pp. 244-253, IEEE Computer Society, Washington, D.C., 1980.

[DEO 33
Deo, N., and Yoo, Y. B., Parallel algorithms for the minimum spanning tree problem,
Proceedings of the 1981 International Conference on Parallel Processing, Bellaire, Michigan,
August 1981, pp. 188-189, IEEE Computer Society, Washington, D.C., 1981.

[DOSHI]
Doshi, K. A., and Varman, P. J., Optimal graph algorithms on a fixed size linear array, IEEE
Transactions on Computers, Vol. C-36, No. 4, April 1987, pp. 460-470.

CERl
Er, M. C., A parallel computation approach to topological sorting, The Computer Journal,
Vol. 26, No. 4, 1983, pp. 293-295.

[EVEN]
Even, S., Graph Algorithms, Computer Science Press, Rockville, Md., 1979.

[FOSTER]
Foster, M. J., and Kung, H. T., The design of special purpose VLSI chips, Computer, Vol. 13,
No. 1, January 1980, pp. 26-40.

[GALLAGER]
Gallager, R. G., Humblet, P. A., and Spira, P. M., A distributed algorithm for minimum
weight spanning trees, ACM Transactions on Programming Languages and Systems, Val) 5,
No. 1, January 1983, pp. 66-77.

[GAREY]
Garey, M. R., and Johnson, D. S., Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H . Freeman, San Francisco, 1979.

[GOLDBERG]
Goldberg, A. V., Efficient graph algorithms for sequential and parallel computers, Technical
Report No. MIT/LCS/TR-374, Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, Mass., February 1987.

[GUIBAS]
Guibas, L. J., Kung, H. T., and Thompson, C. D., Direct VLSI implementation of
combinatorial problems, Proceedings of the Conference on Very Large Scale Integration,
California Institute of Technology, Pasadena, California, January 1979, pp. 509-525,
California Institute of Technology, Pasadena, California, 1979.

[HEMBOLD]
Hembold, D., and Mayr, E. W., Two processor scheduling is in NC, in Makedon, F.,
Mehlhorn, K., Papatheodorou, T., and Spirakis, P., VLSI Algorithms and Architectures,
Lecture Notes in Computer Science, Vol. 227, Springer-Verlag, Berlin, 1986, pp. 12-25.

[HIRSCHBERG I]
Hirschberg, D. S., Parallel graph algorithms without memory conflicts, Proceedings of the
20th Annual Allerton Conference on Communication, Control and Computing, Monticello,
Illinois, October 1982, pp. 257-263, University of Illinois, Urbana-Champaign, Illinois, 1982.

[HIRSCHBERG 21
Hirschberg, D. S., and Volper, D. J., A parallel solution for the minimum spanning tree
problem, Proceedings of the 17th Annual Conference on Information Science and Systems,
Baltimore, Maryland, March 1983, pp. 680-684, The Johns Hopkins University, Baltimore,
Maryland, 1983.

Sec. 10.9 References 275

[HIRSCHBERG 31
Hirschberg, D. S., Chandra, A. K., and Sarwate, D. V., Computing connected components on
parallel computers, Communications of the ACM, Vol. 22, No. 8, August 1979, pp. 461-464.

[HWHSCHILD 11
Hochschild, P. H., Mayr, E. W., and Siegel, A. R., Techniques for solving graph problems in
parallel environments, Proceedings of the 24th Annual IEEE Symposium on Foundations of
Computer Science, Tucson, Arizona, November 1983, pp. 351-359, IEEE Computer Society,
Washington, D.C., 1983.

[HWHSCHILD 23
Hochschild, P. H., Mayr, E. W., and Siegel, A. R., Parallel graph algorithms, Technical
Report No. STAN-CS-84-1028, Department of Computer Science, Stanford University,
Stanford, California, December 1984.

[JA'JA']
Ja'Ja', J., and Simon, J., Parallel algorithms in graph theory: Planarity testing, SIAM Journal
on Computing, Vol. 11, No. 2, May 1982, pp. 314-328.

[K ALRA]

Kalra, N. C., an ! Bhatt, P. C. P., Parallel algorithms for tree traversals, Parallel Computing,
Vol. 2, 1985, pp. 163-171.

[KAUTZ]
Kautz, W. H., Levitt, K. N., and Waksman, A., Cellular interconnection arrays, IEEE
Transactions on Computers, Vol. C-17, No. 5, May 1968, pp. 443-451.

[KOSARMU]
Kosaraju, S. R., Fast parallel processing array algorithms for some graph problems,
Proceedings of the 11th Annual ACM Symposium on Theory of Computing, Atlanta,
Georgia, April 30-May 2, 1979, pp. 231-236, Association for Computing Machinery, New
York, N.Y., 1979.

[KRONSJO]
Kronsjo, L., Computational Complexity of Sequential and Parallel Algorithms, Wiley,
Chichester, England, 1985.

[KUCERA]
KuEera, L., Parallel computation and conflicts in memory access, Information Processing
Letters, Vol. 14, No. 2, April 1982, pp. 93-96.

[KWAN]
Kwan, S. C., and Ruzw, W. L., Adaptive parallel algorithms for finding minimum spanning
trees, Proceedings of the 1984 International Conference on Parallel Processing, Bellaire,
Michigan, August 1984, pp. 439-443, IEEE Computer Society, Washington, D.C., 1984.

[LAKHANI]
Lakhani, G. D., A parallel computation of connected components, Proceedings of the 19th
Annual Allerton Conference on Communication, Control and Computing, Monticello,
Illinois, October 1981, pp. 21 1-213, University of Illinois, Urbana-Champaign, Illinois, 1981.

[LEISERSON]
Leiserson, C. E., and Maggs, B. M., Communication-efficient parallel graph algorithms,
Proceedings of the 1986 International Conference on Parallel Processing, St. Charles, Illinois,
August 1986, pp. 861-868, IEEE Computer Society, Washington, D.C., 1986.

[LEVIIT]
Levitt, K. N., and Kautz, W. H., Cellular arrays for the solution of graph problems,
Communications of the ACM, Vol. 15, No. 9, September 1972, pp. 789-801.

276 Graph Theory Chap. 10

[MATETI]
Mateti, P., and Deo, N., Parallel algoritk.ils for the single source shortest path problem,
Computing, Vol. 29, 1982, pp. 31-49.

[MEAD]
Mead, C. A., and Conway, L. A., Introduction to VLSI Systems, Addison-Wesley, Reading,
Massachusetts, 1980.

[MOHAN]
Mohan, J., A study in parallel computation-the traveling salesman problem, Technical
Report CMU-CS-82-136, Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, August 1982.

[NASSIMI]
Nassimi, D., and Sahni, S., Finding connected components and connected ones on a mesh-
~onnected parallel computer, SIAM Journal on Computing, Vol. 9, No. 4, November 1980, pp.
744-757.

[NATH 11
Nath, D., and Maheshwari, S. N., Parallel algorithms for the connected components and
minimal spanning tree problems, Information Processing Letters, Vol. 14, No. 1, March 1982,
pp. 7-11.

[NATH 21
Nath, D., Maheshwari, S. N., and Bhatt, P. C. P., Efficient VLSI networks for parallel
processing based on orthogonal trees, IEEE Transactions on Computers, Vol. C-32, No. 6,
June 1983, pp. 569-581.

[PAPADIMITRIOU]
Papadimitriou, C. H., and Steiglitz, K., Combinatorial Optimization, Prentice-Hall,
Englewood Cliffs, N.J., 1982.

[QUINN 11
Quinn, M. J., Designing Eficient Algorithms for Parallel Computers, McGraw-Hill, New
York, 1987.

[QUINN 21
Quinn, M. J., and Deo, N., Parallel graph algorithms, Computing Surveys, Vol. 16, No. 3,
September 1984, pp. 319-348.

[REGHBAT~]
Reghbati (Arjomandi), E., and Corneil, D. G., Parallel computations in graph theory, SIAM
Journal on Computing, Vol. 7 , No. 2, May 1978, pp. 230-237.

[SANTORO]
Santoro, N., On the message complexity of distributed problems, Technical Report No. SCS-
TR-13, School of Computer Science, Carleton University, Ottawa, Ontario, December 1982.

[SAVAGE 11
Savage, C., A systolic data structure chip for connectivity problems, in Kung, H. T., Sproull,
R., and Steele, G., Eds., VLSI Systems and Computations, Computer Science Press, Rockville,
Md., 1981, pp. 296-300.

[SAVAGE 21
Savage, C., and Ja'Ja', J., Fast, efficient parallel algorithms for some graph problems, SIAM
Journal on Computing, Vol. 10, No. 4, November 1981, pp. 682-691.

Sec. 10.9 References 277

[SHILOACH 1)
Shiloach, Y., and Vishkin, U., An O(1ogn) parallel connectivity algorithm, Journal of
Algorithms, Vol. 3, 1982, pp. 57-67.

[SHILOACH 23
Shiloach, Y., and Vishkin, U., An 0(n2 log n) parallel MAX -FLOW algorithm, Journal of
Algorithms, Vol. 3, 1982, pp. 128-146.

[ULLMAN]
Ullman, J. D., Computational Aspects of VLSI, Computer Science Press, Rockville, Md., 1984.

[VAN SCOY]
Van Scoy, F. L., The parallel recognition of classes of graphs, IEEE Transactions on
Computers, Vol. C-29, No. 7, July 1980, pp. 563-570.

[WYLLIE]
Wyllie, J., The complexity of parallel computations, Ph.D. thesis, Cornell University, Ithaca,
N.Y., 1979.

Computational Geometry

11.1 INTRODUCTION

Computational geometry is a branch of computer sicence concerned with the study of
efficient algorithms for problems involving geometric objects. Examples of such
problems include:

1. Inclusion problems: locating a point in a planar subdivision, reporting which
points among a given set are contained in a specified domain, and so on.

2. Intersection problems: finding intersections of line segments, polygons, circles,
rectangles, polyhedra, half spaces, and so on.

3. Proximity problems: determining the closest pair among a set of given points or
among the vertices of a polygon; computing the smallest distance from one set of
points to another; and so on.

4. Construction problems: identifying the convex hull of a polygon, obtaining the
smallest box that includes a set of points, and so on.

These problems arise naturally, not only in the obvious application areas such as
image analysis, pattern recognition, pattern classification, computer graphics,
computer-aided design, and robotics, but also in statistics, operations research, and
database search.

There is a wealth of sequential and parallel algorithms for computational
geometry developed mainly over the last fifteen years. The overwhelming majority of
these algorithms address well-understood problems in the Euclidean plane, that is,
problems involving points, lines, polygons, and circles. Problems in higher dimensions
are largely unexplored and remain as the major challenge for researchers in the field.

In this chapter we describe a number of parallel algorithms for fundamental
problems in computational geometry. With only one exception, all our algorithms are
for the two-dimensional case. In section 11.2 we begin by examining the problem of
how to determine whether a point falls inside a polygon. Our solution is then used to
address the more general problem of locating a point in a planar subdivision. Section

Sec. 11.2 An Inclusion Problem 279

11.3 deals with the problem of finding out whether two polygons intersect. In section
11.4 we show how to identify the closest pair among a given set of points in d
dimensions, where d 2 1. Finally, section 11.5 is devoted to the problem of computing
the convex hull of a finite set of points in the plane.

For each problem addressed in this chapter, a parallel algorithm is described
that runs on an interconnection-network SIMD computer where the processors are
linked to form a mesh of trees. This architecture is particularly suited to exhibit the
parallelism inherent in geometric problems. Since the mesh of trees solutions use the
same basic ideas, we present only the first of these in detail and give high-level
descriptions of the remaining three. Our solutions are generally simple and fast.
Perhaps their only disadvantage is the relatively large number of processors they
require. Therefore, we show in section 11.5 that a more powerful model, such as the
shared-memory SIMD computer, may be needed to achieve cost optimality and a
sublinear running time while using only a sublinear number of processors.

11.2 AN INCLUSION PROBLEM

A graph is said to be planar if it can be drawn in the plane so that no two of its edges
intersect. If the edges are drawn as straight-line segments, the resulting drawing of the
graph is called a planar subdivision. As shown in Fig. 11.1, a planar subdivision
consists of a collection of adjacent polygons. These polygons are said to be simple,
meaning that no two edges of a polygon intersect, except at a vertex. The problem we

8
Figure 11.1 Point inside planar subdivision.

280 Computational Geometry Chap. 11

address in this section is the following: Given a planar subdivision and a point p,
determine which polygon (if any) contains p; otherwise report that p falls outside the
planar subdivision. A situation in which this problem needs to be solved is pattern
recognition, where it is required to assign a given object to one of several classes. For
example, a robot may wish to determine whether an object it is facing is a chair, a
person, a dog, or a plant. Each class is described by a region in some space, and the
points inside the region represent objects in that class. Points are given by their
coordinates in space, each coordinate being the value of an object feature. In order to
classify a new object, it suffices to identify the region in which the point representing
the object falls. In Fig. 11.1 the space is two-dimensional and the regions are polygons.

In order to solve the point location problem stated in the preceding, we begin by
considering the more fundamental question: Given a simple polygon Q with n 2 3
edges and a point p, does p fall inside Q?

11.2.1 Point in Polygon

The basic idea behind our first parallel algorithm is illustrated in Fig. 11.2. Assume
that a vertical line is drawn through point p. Next, the intersection points between this
line and the edges of Q are found. If the number of such intersection points above p is
odd, then p is inside Q; otherwise it is outside Q. This test can be performed

Figure 11.2 Test for point inclusion
inside polygon.

Sec. 11.2 An Inclusion Problem 281

sequentially in O(n) steps for a polygon with n edges, and this is clearly optimal since
R(n) steps are needed to read the input.

We can implement this test on a tree-connected SIMD computer as follows.
Since Q has n edges, the tree consists of n processors PI, P,, . . . , P,. The processors are
numbered beginning from the root and proceeding, level by level, from left to right.
Thus the root is PI, its children P, and P,, and so on. Each processor stores an edge of
Q given by the Cartesian coordinates of its two endpoints. Initially the root reads the x
and y coordinates of p, namely, (x,, y,), and broadcasts them to all the other
processors. When a processor Pj receives the coordinates of p, it determines whether

(i) a vertical line through p (call it L,) intersects the edge of Q it stores (call it ej) and
(ii) the intersection point is located above p.

If these two conditions hold, the processor produces a 1 as output. Otherwise it
produces a 0. The processors' outputs are now added, and if the sum is odd, p is
declared to be inside Q. The algorithm is given in what follows as procedure POINT
IN POLYGON. It is assumed that each processor Pj already contains ej. Two
additional variables aj and sj in P j serve in computing the total number of
intersections above p. At the end of the procedure P, produces an answer equal to 1 if
p is inside Q and equal to 0 otherwise.

procedure POINT IN POLYGON (x,, y,, answer)

Step 1: (1.1) Pl reads (x,, y,)
(1.2) if L, intersects el above p

then s , + 1
else s , + 0
end if

(1.3) P 1 sends (x,, y,, s l) to P2 and (x,, y,, 0) to P,.

Step 2: for i = log(n + 1) - 2 downto 1 do
for j = 2log(n+l)-1-i to 2log(n+l)-i - 1 do in parallel

(2.1) P j receives (x,, y,, s) from its parent
(2.2) if L, intersects e j above p

then sj + 1
else sj t 0
end if

(2.3) P j sends (x,, y,, s j + s) to PZ j and (x,, y,, 0) to PZ j+
end for

end for.

Step 3: for j = 210g'"+ ' to 210g(n+1) - 1 do in parallel
(3.1) P j receives (x,, y,, s) from its parent
(3.2) if L, intersects e j above p

then a j + s + 1
else a j +- s
end if

end for.

Computational Geometry Chap. 11

Step 4: for i = 1 to log(n + 1) - 1 do
for j = 2 1 o g (n + l) - I - i to 2 1 o g (n + l) - i - 1 d o in parallel

aj a,j + a,j+ 1

end for
end for.

Step 5: if a, is odd
then answer + 1
else answer +- 0
end if.

Analysis. The procedure consists of two stages: the descent stage (steps 1 -3),
where all the intersection tests are performed, and the ascent stage (steps 4 and 5),
where the total number of intersections above p is computed. It takes a constant
number of operations to test whether a straight line and a straight-line segment
intersect. Given that the tree has n processors, both the descent and ascent stages
take O(1og n) time. Since p(n) = n, c(n) = O(n1og n), which is not optimal.

Example 11.1

The edges of the polygon in Fig. 1 1 . 2 are stored in a tree-connected computer with seven
processors, as shown in Fig. 11.3. For the input point p of Fig. 1 1 . 2 , only processors PI,
P,, and P, produce a 1 as output, and the root declares p to be inside Q.

Three points are worth noting:

1. Several points p can be tested for inclusion in a polygon Q by pipelining
procedure POINT IN POLYGON. Indeed, once a processor has performed its
test (and sent to its left child the partial total of the number of intersections above p)
it is free to receive the next point. It is with this pipelining in mind that the
procedure was designed, so that partial totals never stay in a given processor

Figure 11.3 Testing point inclusion using procedure POINT IN POLYGON.

Sec. 11.2 An Inclusion Problem 283

but are constantly moving either downward or upward. The period is therefore
constant.

2. The procedure can be easily modified to handle the case where there are more
(or fewer) processors than polygon edges.

3. It is possible to modify the procedure to achieve optimal cost. The idea is to use
n/log n processors each storing log n edges of Q. It takes O(log(n/log n)) time to
broadcast the coordinates of p to all processors. Each processor now performs
the intersection test for all logn edges it stores and adds up the number of
intersections above p in OOog n) time. The total number of intersections above p
is computed in O(log(nl1ogn)) time. The overall running time is O(1ogn) as
before. However, the period is no longer constant.

11.2.2 Point in Planar Subdivision

We are now ready to address the more general problem of locating a point in a planar
subdivision. Our parallel algorithm uses the mesh of trees architecture (introduced in
problem 4.2 and first used in section 9.2.2). Assume that the planar subdivision
consists of m polygons, each with at most n edges. We use an m x n mesh. Each of the
m rows, numbered 1, . . . , m, is a binary tree of processors storing the edges of one
polygon, one edge per processor. Each of the n columns, numbered 1, . . . , n, is also a
binary tree (although in this context we shall only make use of the tree in column 1).

The idea of the algorithm is to feed the coordinates of the query point p to the
root processor of every row tree. This can be done using the tree connections in
column 1. Procedure POINT IN POLYGON is now performed simultaneously by all
rows. The procedure is slightly modified so that

(i) when it starts, the root processor in every row already contains (x,, y,), and
(ii) when it terminates, the root processor in row i produces the pair (1, i) as output

if p is inside the associated polygon; otherwise it produces (0, i).

By using the tree connections in column 1 and the logical or operation on the first
components of the output pairs, either

(i) the (unique) polygon containing p can be identified or
(ii) the fact that p is not inside any of the polygons can be established.

The algorithm is given in what follows as procedure POINT IN SUBDIVISION. The
processor in row i and column j is denoted P(i, j) . The output pair for root processor
P(i, 1) is denoted (a,, b,), where ai is either 0 or 1 and bi is a row number.

Computational Geometry Chap. 11

procedure POINT IN SUBDIVISION (x , , y,, a , , b ,)

Step 1: P (1 , l) reads (x,, y,).

Step 2: for i = log(m + 1) - 1 downto 1 do
for j = 21og(m+l)-l-i t o 2'"8("+ I) - ' - 1 do in parallel

P(j , 1) sends (x,, y,) to P(2j, 1) and P(2j + 1 , l)
end for

end for.

Step 3: for i = 1 to m do in parallel
Processors P(i, 1) to P(i, n) execute POINT IN POLYGON

end for.

Step 4: for i = 1 to log(m + 1) - 1 do
for j = 21og(m+l)-1-i to 210g(m+l)-i - 1 d o in parallel

if aZj = 1
then (a j , b j) (az j , hj)
else if a,,+ , = 1

then (a j , bj) (a2,+ 1 , b2j+ 1)

end if
end if

end for
end for.

Step 5: P (1 , l) produces (a , , b ,) as output.

Note that when the procedure terminates, if a, = 1, then this means that the polygon
numbered b, contains p. Otherwise a, = 0, in which case p is outside of the planar
subdivision.

Example 11.2

The subdivision in Fig. 11.1 requires a 7 x 6 mesh of trees, as shown in Fig. 11.4 (where
the tree connections are omitted for simplicity). When the coordinates of point p in Fig.
11.1 are given as input to the mesh of trees, row 3 produces (1 ,3) while all other rows
produce (0, i), i # 3. Thus (1 , 3) is the mesh's output.

Analysis. Steps 1 and 5 run in constant time. Steps 2 and 3 take O(1og m) and
O(1og n) time, respectively. Step 4 also requires O(1og m) time. Assuming that m is O(n),
t(n) = O(1og n). Since p(n) = n2, the procedure's cost is c(n) = O(n2 log n). This cost is
not optimal given that a sequential algorithm that applies the O(n) polygon inclusion
test to each of the m polygons runs in 0(n2) time.

If k points p are queued for processing, they can be pipelined and the procedure
would require O(k + logn) time to answer all k queries. Finally, using the same

Sec. 1 1.3 An Intersection Problem

Figure 11.4 Testing point inclusion using procedure POINT IN SUBDIVISION.

approach as with procedure POINT IN POLYGON, procedure POINT IN
SUBDIVISION can be made to have a cost of O(n2). This is illustrated in the next
section.

11.3 A N INTERSECTION PROBLEM

In many applications, it is required to determine whether a set of geometric objects
intersect. Thus, for example,

(i) in pattern classiJication it is necessary to determine whether different regions in
space representing different classes have common subregions;

286 Computational Geometry Chap. 11

(ii) in integrated circuit design it is important to avoid crossing wires and
overlapping components; and

(iii) in computer graphics it is required to remove hidden lines and hidden surfaces
from two-dimensional representations of three-dimensional scenes.

In this section we examine one such intersection problem.
Two polygons Q and R are said to intersect if an edge of Q crosses an edge of R.

Note that the two polygons need not be simple, that is, two or more edges of Q (or two
or more edges of R) may cross. Figure 11.5 illustrates two intersecting polygons. Let Q
and R be two polygons, each given by a list of its edges. It is required to determine
whether Q and R intersect. Our parallel solution to this problem is based on a
straightforward approach: For each edge of Q we determine whether it crosses one of
the edges of R. Assume that Q and R have m and n edges, respectively, each being
given by the coordinates of its two endpoints. We use a mesh of trees with m rows and
n/log n columns. Each processor is loaded with log n edges of R so that

(i) the set of edges contained in a row is the set of edges of R and
(ii) the processors in each column contain the same subset of logn edges of R.

Loading the processors in each column is done by pipelining the log n edges assigned
to that column through its root processor. When a processor receives an edge, it stores
it in its own memory and sends a copy of it to each of its two children using the tree
connections in that column. It therefore takes O(1og m) + O(1og n) time to load a
column. If all columns are loaded simultaneously, then this would also be the time
taken to load the entire mesh. In addition, each processor receives an edge of Q so that

(i) the set of edges contained in a column is the set of edges of Q and
(ii) the processors in each row contain the same edge of Q.

Figure 11.5 Two intersecting polygons

Sec. 1 1.4 A Proximity Problem 287

The edges of Q are fed into the mesh, one edge per row, through the root processor in
each row. When a processor in a given row receives the edge assigned to that row, it
stores it in its own memory and sends a copy of it to each of its two children, using the
tree connections in that row. It takes log(nllog n) steps to load a row. If all rows are
loaded simultaneously, then this would also be the time taken to load the entire mesh.

Now each processor tests whether the edge of Q assigned to it crosses one of the
log n edges of R it also contains. If this is the case, it produces a 1 as output; otherwise
it produces a 0. With all processors operating simultaneously, this step takes O(log n)
time.

The outputs in each row are combined level by level, beginning from the leaves
and all the way to the row's root processor. This is accomplished by requiring each
processor to compute the logical or of three quantities: the two inputs received from its
children and its own output. The processor then sends the result of this operation to
its parent. After log(n/logn) steps the root processor in each row would have
computed the logical or of all outputs in that row, which it retains. These processors
combine their results in the same way using the tree connections in column 1. This
requires another log m steps.

Assuming that m < n, the overall running time of the algorithm is

t(n) = O(log n).

Since An) = O(n2/log n), the algorithm's cost is O(n2). The only known lower bound on
the number of steps required to solve this problem is the trivial one of R(n) operations
performed while reading the input. Furthermore, it is not known whether a sequential
algorithm exists with a smaller than quadratic running time. The algorithm's cost
optimality is therefore an open question.

11.4 A PROXIMITY PROBLEM

Proximity problems arise in many applications where physical or mathematical
objects are represented as points in space. Examples include the following:

(i) clustering: a number of entities are grouped together if they are sufficiently close
to one another;

(ii) classijication: a new pattern to be classified is assigned to the class of its closest
(classified) neighbor; and

(iii) air-traflc control: the two airplanes that are closest are the two most in danger.

One such proximity problem, that of finding the closest pair among a set of points, is
addressed in this section.

Let S be a set of n points in d-dimensional space, where each point is given by its
d coordinates (x,, x,, . . . , xd). The distance between two points (x,, x,, . . . , xd) and (xi,

288

x;, . . . , xi) of S is defined as

Computational Geometry Chap. 11

where q is a positive integer. The value of q depends on the application. Thus, q = 2
corresponds to the usual Euclidean distance. For a given q, it is required to determine
the closest pair of points in S.

A parallel solution to this problem can be modeled after the algorithm in the
previous section. We use a mesh of trees with nllogn columns and n rows. Each
processor holds the coordinates of logn points. All the processors in a column hold
the same logn points. The n points held by a row of processors are equal to the set S.
In addition, the coordinates of the ith point of S, call it pi, are fed to the processors in
the ith row. A processor in the ith row computes the distance between pi and each of
the log n points it was first assigned. It then reports the closest pair and the distance
separating them. By using the row trees and then the tree in column 1, the overall
closest pair of points are finally determined. The algorithm runs in O(log n) time. Since
p(n) = n2/logn, c(n) = O(n2). It is not known whether the algorithm is optimal with
arbitrary d and/or q for the same reasons given in the previous section.

11.5 A CONSTRUCTION PROBLEM

Given a set S = {pl, p2, . . . , p,} of points in the plane, the convex hull of S, denoted
CH(S), is the smallest convex polygon that includes all the points of S. A set of points
is shown in Fig. 11.6(a); its convex hull is illustrated in Fig. 11.6(b). Note that the
vertices of CH(S) are points of S. Thus every point of S is either a vertex of CH(S) or
lies inside CH(S). The following analogy is useful. Assume that the points of S are nails
driven halfway into a wooden board. A rubber band is now stretched around the set of

Figure 11.6 Set of points in plane and its convex hull.

Sec. 11.5 A Construction Problem 289

nails and then released. When the band settles, it has the shape of a polygon: Those
nails touching the band at the corners of that polygon are the vertices of the convex
hull.

Applications of convex hulls abound. They include:

(i) statistics (e.g., when estimating the mean of a set of points, the convex hull of the
set allows a robust estimate to be obtained since the vertices of the hull may
represent outliers that can be ignored);

(ii) picture processing (e.g., the concavities in a digitized picture are found by
constructing the convex hull);

(iii) pattern recognition (e.g., the convex hull of a visual pattern serves as a feature
describing the shape of the pattern);

(iv) classijication (e.g., the convex hull of a set of objects delineates the class to which
these objects belong);

(v) computer graphics (e.g., clusters of points are displayed using their convex hull);
and

(vi) geometric problems [e.g., the farthest two points of a set S are vertices of CH(S)].

In this section we are concerned with developing parallel algorithms for the
problem of identifying the vertices of CH(S). We begin by deriving a lower bound on
the number of steps required to solve the problem. This is followed by a brief outline
of a sequential algorithm whose running time matches the lower bound and is
therefore optimal. Two parallel algorithms are then presented, one for the mesh of
trees and the other for the EREW SM SIMD computer.

11.5.1 Lower Bound

A powerful technique for proving lower bounds on the number of steps required to
solve computational problems is that of problem reduction. Let A and B be two
computational problems. A lower bound is known for B; it is required to prove a
lower bound for A. If we can show that an algorithm for solving A-along with a
transformation on problem instances-could be used to construct an algorithm to
solve B, then the lower bound on B also applies to A. This is illustrated in Fig. 11.7.

We now use problem reduction to derive a lower bound on computing the
convex hull. Let problems A and B be defined

A = find the convex hull CH(S) of a set S of n points in the plane;

B = sort a sequence of n numbers in nondecreasing order.

Note that problem A requires us to find the convex hull of S and not merely its
vertices. More specifically, an algorithm to solve A must return a polygon, that is, a list
of vertices in the order in which they appear on the perimeter of CH(S).

Let CONVEX HULL be an algorithm for solving A. We also know from

290 Computational Geometw Chap. 11

ALGORITHM FOR A

APPLIES TO A tion for proving lower bounds.

f SOLVES B

"

example 1.10 that a lower bound on the number of steps required to solve B in the
worst case is SZ(n log n). Now, say that the input to B is the sequence X = { x , , x,, . . . ,
xn} . In order for X to become an input to CONVEX HULL, the following
transformation is used. First, the elements of X are mapped, each in constant time,
into the semiopen interval [O,2n) using a one-to-one function f: Thus, for i = 1,2, . . . ,
n, 0 , = f (x i) represents an angle. For every Oi a planar point is created whose polar
coordinates are (1 , Oi) . The resulting set of points

A

S = { (I , 611, (1 9 0212 . . . > (1, O n) }

has all its members on the circumference of a circle of unit radius, and CH(S) includes
all the points of S, as shown in Fig. 11.8. If CONVEX HULL is applied to S, its output

B

Figure 11.8 Deriving lower bound on convex hull computation.

LOWER BOUND FOR B
Figure 11.7 Method of problem reduc-

Sec. 1 1.5 A Construction Problem 291

would be a list of the members of S sorted on the 8,, that is, in angular order. A sorted
sequence X can now be obtained in linear time using the inverse transformation
xi = f -'(6,). Since sorting n numbers requires Q(n log n) steps in the worst case, we are
forced to conclude that the same lower bound applies to computing the convex hull of
n points.

11.5.2 Sequential Solution

Our purpose in this section is to show that the R(n log n) lower bound just derived is
tight. To this purpose we briefly sketch a sequential algorithm for computing the
convex hull of a set of n points. The algorithm runs in O(n log n) time and is therefore
optimal. It is based on the algorithm design technique of divide and conquer. The
algorithm is given in what follows as procedure SEQUENTIAL CONVEX HULL.
The procedure takes S = (p,, p,, . . . , p,) as input and returns a list CH(S) containing
the vertices of the convex hull of S.

procedure SEQUENTIAL CONVEX HULL (S, CH(S))

if S contains less than four points
then CH(S) + S
else (1) {Divide)

Divide S arbitrarily into two subsets S , and S, o f approximately equal size
(2) (Conquer)

(2.1) SEQUENTIAL CONVEX HULL (S, , CH(S,))
(2.2) SEQUENTIAL CONVEX HULL (S,, CH(S,))

(3) {Merge)
Merge CH(S,) and CH(S,) into one convex polygon to obtain CH(S)

end if.

The most important step in the algorithm is the merge operation. Here we have
two convex polygons CH(S,) and CH(S,) that are to be combined into one convex
polygon CH(S). An example is illustrated in Fig. 11.9. In this case, the two polygons
can be merged in three steps:

1. find an upper tangent (a, b) and a lower tangent (c, d);
2. delete points e and f of CH(S,) and g of CH(S,); and
3. return CH(S) as the list (i, a, b, h, d, c).

In general, if CH(S,) and CH(S,) contain O(n) vertices in all, then CH(S) can be
computed in O(n) time.

We now analyze the running time t(n) of procedure SEQUENTIAL CONVEX
HULL. Each of the conquer steps 2.1 and 2.2 is recursive, thus requiring t(n/2) time.
Steps 1 and 3 are linear. Therefore,

where c is a constant. It follows that t(n) = O(n log n), which is optimal.

Computational Geometry Chap. 11

Figure 11.9 Merging two convex polygons into one.

11.5.3 Mesh of Trees Solution

Assume that a set S = {pl, p2, . . . , pn} of points in the plane is given, where each point
is represented by its Cartesian coordinates, that is, pi = (x i , y,). Our first parallel
algorithm for computing CH(S) is designed to run on a mesh of trees SIMD computer.
In order to avoid cluttering our presentation with "hairy" details, we make the
following two simplifying assumptions.

(i) no two points have the same x or y coordinates and
(ii) no three points fall on the same straight line.

Once we have described the approach upon which our algorithm is based, it will
become obvious how to modify it to deal with situations where the preceding
assumptions do not hold. We begin by explaining three ideas that are central to our
solution.

1. Identifying Extreme Points. Assume that the extreme points, that is,
the points with maximum x coordinate, maximum y coordinate, minimum x
coordinate, and minimum y coordinate in S, have been determined as shown in Fig.
11.10. Call these points XMAX, YMAX, XMIN, and YMIN, respectively.

Three facts are obvious:

(i) The extreme points are vertices of CH(S);
(ii) any points falling inside the quadrilateral formed by the extreme points is

definitely not a vertex of CH(S); and

Sec. 11.5 A Construction Problem

REGION 3 YMAX

293

REGION 2

XMlN

' XMAX

/

REGION 4
YMlN

REGION 1

Figure 11.10 Extreme points of planar set.

(iii) the problem of identifying C H (S) has been reduced to finding a convex polygonal
path joining two extreme points in each of the regions 1, 2, 3, and 4; C H (S) is
obtained by linking these four paths.

2. Identifying Hull Edges. A segment (p i , pi) is an edge of C H (S) if and
only if all the n - 2 remaining points of S fall on the same side of an infinite straight
line drawn through pi and p j . This property is illustrated in Fig. 11.1 1, where (a, b) is a
convex hull edge while (c, d) and (e, f) are not. Note that this allows us to conclude
that both a and b are vertices of CH(S) .

3. Identifying the Smallest Angle. Let pi and pj be consecutive vertices
of C H (S) and assume that pi is taken as the origin of coordinates. Then, among all
points of S, pj forms the smallest angle with pi with respect to the (either positive or
negative) x axis. This is illustrated in Fig. 11.12.

We are now ready to present our algorithm. Assume that a mesh of trees is
available consisting of n rows and n columns of processors. The processor in row i and
column j is denoted P(i , j). For i = 1 , 2 , . . . , n, P(i , j) contains the coordinates
(x j , ~ j) . Thus,

(i) all the processors in a column contain the coordinates of the same point of S and
(ii) the coordinates contained in a row form the set S = { (x , , y l) , (x,, y,), . . . ,

(x.9 Y">>.

Figure 11.11 Property of convex hull
edges.

. Figure 11.12 Property of consecutive
convex hull vertices.

Sec. 11.5 A Construction Problem

The algorithm consists of the following stages.

Stage I

(i) The processors in rows 1, 2, 3, and 4 compute XMAX, YMAX, XMIN, and
YMIN and store their coordinates in P(l, I), P(2, l), P(3, I), and P(4, I),
respectively.

(ii) Using the tree connections, first in column 1 and then in row 1, the coordinates
of the four extreme points are made known to all processors in row 1.

Stage 2

(i) The four processors in row 1 corresponding to the extreme points produce a 1 as
output [indicating these points are vertices of CH(S)].

(ii) All processors in row 1 corresponding to points inside the quadrilateral formed
by the extreme points produce a 0 [indicating these points are not vertices of
CH(S) and should therefore be removed from further consideration].

(iii) Each of the remaining processors P(1, j) in row 1 identifies the region (1,2,3, or
4) in which point pj falls and communicates this information to all processors
P(i, j) in column j.

(iv) XMAX is assigned to region 1, YMAX to region 2, XMIN to region 3, and
YMIN to region 4.

Stage 3

If processor P(1, i) corresponding to point pi of S produced neither a 1 nor a 0 in stage
2, then the following steps are executed by the processors in row i:

(i) The point pj (in the same region as pi) is found such that (pi, pj) forms the
smallest angle with respect to
(a) the positive x axis if pi is in regions 1 or 2 or
(b) the negative x axis if pi is in regions 3 or 4.

(ii) If all remaining points (in the same region as pi and pi) fall on the same side of an
infinite straight line through pi and pj, then pi is a vertex of CH(S).

Stage 4

(i) If pi was identified as a vertex of CH(S) in stage 3, then P(l, i) produces a 1 as
output; otherwise it produces a 0.

(ii) An arbitrary point in the plane is chosen inside the quadrilateral whose corners
are the extreme points. This point (which need not be a point of S) is designated
as an origin for polar coordinates. The polar angles formed by all points
identified as vertices of CH(S1 are computed.

296 Computational Geometry Chap. 11

(iii) The angles computed in (ii) are sorted in increasing order using the mesh of trees
(see problem 4.2). This gives the convex hull vertices listed in counterclockwise
order, exactly in the sequence in which they appear along the boundary of
CH(S).

Analysis. Each of the four stages requires O(1ogn) operations. Thus
t(n) = O(1og n). Since p(n) = nZ, the algorithm's cost is O(n2 log n), which is not optimal.
As in previous sections the cost can be reduced to O(n2) by using n rows of n/logn
processors each. This cost is still not optimal in view of the O(n1ogn) sequential
algorithm described in section 11.5.2.

11.5.4 Optimal Solution

In this section we describe an optimal parallel algorithm for computing the convex
hull. The algorithm is designed to run on an EREW SM SIMD computer with
N = nl-' processors, 0 < z < 1. As before, each point pi of S = {p,, p2, . . . , p,) is
given by its Cartesian coordinates (xi, y,), and we continue to assume for clarity of
presentation that no two points have the same x or y coordinates and that no three
points fall on a straight line. A high-level description of the algorithm is first presented.

Let XMIN and XMAX denote, as before, the points with minimum and
maximum x coordinates, respectively. As Fig. 11.13 illustrates, CH(S) consists of two
parts: an upper convex polygonal path from XMIN to XMAX (solid lines) and a lower
one from XMAX to XMIN (broken lines). Given these two polygonal paths, they can
be concatenated to yield CH(S). The algorithm is given in what follows as procedure
EREW CONVEX HULL. It takes the points of S as input and returns a list CH(S) of
the vertices of CH(S) in the order in which they appear on the convex hull of S.

XMIN

Figure 11.13 Upper and lower convex polygonal paths.

Sec. 11.5 A Construction Problem

procedure EREW C O N V E X H U L L (S , C H (S))

Step 1 : (1.1) xmin t index of XMIN in S
(1.2) xmax t index of X M A X in S.

Step 2: U P (S) t list of vertices on the upper convex polygonal path from pxmin to pxmax.

Step 3: LP(S) t list of vertices on the lower convex polygonal path from pXmx to pXmi,,.

Step 4: (4.1) LP(S) t list LP(S) with p,,,, and p,,, removed
(4.2) C H (S) t list U P (S) followed by list LP(S) .

This procedure as described is rather vague and requires a good deal of refinement.
We can dispose immediately to steps 1 and 4. Step 1 can be implemented using
procedure PARALLEL SELECT, which, as we know from chapter 2, uses nl-'
processors and runs in O(n3 time. There are two operations in step 4: deleting the first
and last elements of LP(S) and linking the remaining ones with UP(S). Both can be
performed in constant time by a single processor. This leaves us with steps 2 and 3.
Clearly, any algorithm for step 2 can be easily modified to carry out step 3. We
therefore concentrate on refining step 2.

Finding the Upper Hull. An algorithm for constructing the upper convex
polygonal path (upper path, for short) can be obtained by making use of the following
property: If a vertical line is drawn somewhere between p,,,, and p,,,, so that it does
not go through a convex hull vertex, then this line crosses exactly one edge of the
upper path. The algorithm first places a vertical line L dividing S into two sets S,,,, and
Slight of approximately the same size. The unique edge of the upper path intersecting L
is now determined as shown in Fig. 11.14. This edge is called a bridge (from S,,,, to
Slight). The algorithm is then applied recursively to S,,,, and Slight. It is interesting to
note here that like procedure SEQUENTIAL CONVEX HULL this algorithm is
based on the divide-and-conquer principle for algorithm design. However, while
procedure SEQUENTIAL CONVEX HULL divides, conquers, and then merges, this
algorithm divides (into Steft and Slight), merges (by finding the bridge), and then
conquers (by recursing on S,,,, and Slight).

Ideally, in a parallel implementation of this idea, the two recursive steps should
be executed simultaneously since each of the two subproblems S,,,, and Srigh, has the
same structure as the original problem S. Unfortunately, this is impossible since the
number of available processors is not sufficient to provide a proper recursive
execution of the algorithm. To see this, note that each of S,,,, and Slight contains
approximately n/2 points and thus requires (n/2)'-' processors. This is larger than the
nl-"12 processors that would be assigned to each of S,,,, and Slight if the two recursive
steps were to be executed simultaneously. Therefore, we resort instead to a solution
similar to the one used in the case of EREW SORT in chapter 4. Let k = 2r1/z '-1. First,
2k - 1 vertical lines L,, L,, . . . , L,,-, are found that divide S into 2k subsets S i , i = 1 ,
2, . . . , 2k of size n/2k each. These subsets are such that

Sleft = S1 u S , u ..- u Sk and Slight = S k + l u S k + , u ..- u S Z k .

Computational Geometry Chap. 11

Figure 11.14 Bridge.

In the next step, edge (a,, bi) of the upper path that crosses vertical line L,, i = 1 ,
2 , . . . , 2 k - 1 , is obtained. (Here both a, and bi are elements of S; we use a and b instead
of p to avoid multiple subscripts.) The algorithm is now applied recursively and in
parallel to S,, S,, . . . , S, using (nl- ') /k processors per subset. The same is then done
for S,,,, S,,,, . . . , S,,. The algorithm is given in what follows as procedure UPPER
HULL. The procedure takes the set S and two points p, and p, as input. It produces
the upper path from p, to p, as output. Initially, it is called from procedure EREW
CONVEX HULL with p, = pxmin and p, = p,,,,.

procedure UPPER HULL (S , p,, p,)

if JSI ,< 2k
then find the upper path from p, to p, using SEQUENTIAL CONVEX HULL
else (1) find 2k- 1 vertical lines L,, L,,. . . , L,,-, that divide S into S , , S,, . . . ,S , ,

(2) for i = 1 to 2 k- 1 do
find edge (a,, b i) of the upper path intersecting line L,

end for
(3) {Construct upper path for S,,,,}

(3.1) if p, = a,
then p, is produced as output
else UPPER HULL (S,, p,, a,)
end if

Sec. 11.5 A Construction Problem

(3.2) for j = 2 to k do in parallel
if b j - l = aj
then b j - , is produced as output
else if a j - l # aj

then UPPER HULL (S j , b j - l , aj)
end if

end if
end for

(4) {Construct upper path for Srigbt}
(4.1) for j = k + 1 to 2k - 1 do in parallel

if b j - l = aj
then b j - , is produced as output
else if a j - l # aj

then UPPER HULL (S j , b j - l , aj)
end if

end if
end for

(4.2) if bZk - = p,,,
tben b,,- , is produced as output
else UPPER HULL (S,,, b,,- , , p,)
end if

end if.

Step 1 can be implemented using procedure PARALLEL SELECT. Steps 3 and
4 are recursive. It remains to show how step 2 is performed. The following procedure
BRIDGE (S, A) takes a set S of n points and a real number A as input and returns two
points ai and bi where (ai, bi) is the unique edge of the upper path intersecting the
vertical line Li whose equation is x = A.

procedure BRIDGE (S, A)

Step 1: The points of S are paired up into couples (p,, p,) such that xu < xu. The ordered
pairs define Ln/2J straight lines whose slopes are Isl, s,, . . . , s,,,,,,}.

Step 2: Find the median K of the set { s , , s,, . . . , s,,,,,,}.

Step 3: Find a straight line Q of slope K that contains at least one point of S but has no
point of S above it.

Step 4: if Q contains two points of S, one on each side of L,
tben return these as (a,, b,)
else if Q contains no points of Sright

then for every straight line through (p,, p,) with slope larger than or equal to K
s 4- s - {P.)

else if Q contains no points of S,,,,
then for every straight line through (p,, p,) with slope less than or equal to

K
s + s - { P ")

end if
end if

end if.

Step 5: BRIDGE (S, A).

300 Computational Geometry Chap. 11

We now describe how this procedure is implemented in parallel and analyze its
running time, which we denote by B(n). Step 1 is performed in parallel by assigning
different subsets of S of size nz to the nl-' processors, each of which creates Lnz/2J
pairs of points (p,, p,) and computes the slopes of the straight lines they form. Step 1
thus requires O(nz) time. Step 2 can be implemented using procedure PARALLEL
SELECT in O(nz) time. Step 3 is executed by finding the (at most two) points
maximizing the quantity y j - K x j . This quantity can be obtained for all values of j by
having each processor compute it for the points in its assigned subset of S. The
maximum of these quantities is found using procedure PARALLEL SELECT. Hence
step 3 also runs in O(nz) time. Finally, in step 4, determining whether Q contains the
required edge can be done by one processor in constant time. Otherwise, the value of
K is broadcast to all nl-' processors in O(lognl-") time using procedure
BROADCAST. Each processor compares K to the Lnz/2] slopes it has computed in
step 1 and updates S accordingly; this requires O(nz) time. Step 4 therefore runs in
O(nz) time. Since one-quarter of the points are discarded in step 4, the complexity of
step 5 is B(3n/4). Thus, for some constant c,,

whose solution is B(n) = O(nz).

Analysis. We are now in a position to analyze procedure EREW CONVEX
HULL. As mentioned earlier, steps 1 and 4 run in O(nz) and O(1) time, respectively.
Let h, and h, be the number of edges of the upper and lower convex polygonal paths,
respectively. We denote the running times of steps 2 and 3 by F,(n, h,) and F,(n, h,),
respectively. Thus, the running time of procedure EREW CONVEX HULL is given
by

t(n) = c2nz + F,(n, h,) + FL(n, h,) + c,

for two constants c, and c,. From our discussion of procedure UPPER HULL, we
have

where h,, h,, and hj are the number of edges on the upper path associated with S,,,,,
S,,,,,, and Sj , respectively, and c, is a constant. Therefore

F,(n, h,) = O(nZ log h,),

and similarly

F,(n, h,) = O(nz log h,).

It follows that t(n) = O(nZlog h), where h = h, + h,. Thus the procedure's running
time not only adapts to the number of available processors, but is also sensitive to h,
the number of edges on the convex hull. In the worst case, of course, h = n, and

Sec. 11.5 A Construction Problem

t(n) = O(nzlogn). Since p(n) = nl-', the procedure has a cost of

c(n) = O(n log n),

which is optimal in view of the R(n log n) lower bound derived in section 1 1.5.1. Since
nz > log n for all z and sufficiently large n, optimality is achieved when N < n/log n.

Example 11.3

Assume that four processors are available on an EREW SM SIMD computer. We apply
procedure EREW CONVEX HULL to the set of points in Fig. 11.13. Since n = 16 and
N = 4, N = nl-" yields x = 0.5. Furthermore, k = 2r11X1- ' = 2. In step 1, pxmin and p,,,,
are determined. In step 2, procedure UPPER HULL is invoked to find the upper path.

Procedure UPPER HULL begins by placing 2k - 1 (i.e., three) vertical lines L,,
L,, and L, dividing the set into four subsets S,, S,, S,, and S,, as shown in Fig. 11.15.

The bridge crossing each vertical line is now computed by procedure BRIDGE.
This is shown in Fig. 11.16.

Since p,,,, # a , , procedure UPPER HULL is called recursively to obtain the
upper path from p,,, to a,. Given that IS,I < 4, the path is found sequentially (and the
recursion terminates). Similarly, since b , = a,, there is no need to recurse with S,.
Continuing in this fashion, b, is found equal to a,, and the upper path from b , to p.,,, is

s, s2 s3 s4

Figure 11.15 Dividing given planar set into four subsets.

Computational Geometry Chap. 11

Figure 11.16 Finding three bridges.

obtained sequentially. This yields the upper path from p,,, to p,,,, depicted in Fig.
11.13.

In step 3, the lower convex polygonal path is found in the same way, and the two
paths are linked to produce the convex hull as shown in Fig. 11.13.

11.6 P R O B L E M S

11.1 Describe formally a (constant-time) sequential algorithm for determining whether a
straight-line segment (given by the coordinates of its endpoints) and a vertical straight
line (through a given point) intersect.

11.2 Procedure POINT IN POLYGON ignores the following degenerate situations:
(i) the vertical line through point p passes through vertices of polygon Q,

(ii) the vertical line through p coincides with edges of Q (i.e., Q has vertical edges), and
(iii) p coincides with a vertex of Q [this is a special case of (ii)].
Suggest how the procedure can be modified to handle these situations.

11.3 A planar subdivision with n polygons of O(n) edges each is given. Show that once a
preprocessing step requiring O(n210gn) time is performed, the location of an arbitrary
data point in the subdivision can be determined in O(log n) time. Adapt this algorithm to
run on a parallel computer.

Sec. 1 1.6 Problems 303

11.4 Does procedure POINT IN SUBDIVISION extend to subdivisions of spaces in
dimensions higher than 2? What about the algorithm in problem 11.3?

115 Describe formally a (constant-time) sequential algorithm for determining whether two
straight-line segments (given by the coordinates of their endpoints) cross.

11.6 Give a formal statement of the parallel algorithm in section 11.3 for determining whether
two polygons intersect.

11.7 Modify the algorithm in problem 11.6 so it produces one pair of crossing edges in case the
two input polygons intersect.

11.8 Modify the algorithm in problem 11.6 so it produces all pairs of crossing edges in case the
two input polygons intersect. What is the running time of your algorithm?

11.9 Two simple polygons of n edges each are said to intersect if either
(i) one of the two contains the other or

(ii) an edge of one crosses an edge of the other.
Show that it is possible to determine sequentially whether two simple polygons intersect
in O(n log n) time.

11.10 Derive a parallel algorithm based on the approach in problem 11.9.
11.11 Give a formal statement of the parallel algorithm in section 11.4 for determining the

closest pair of a set.
11.12 The algorithm in problem 11.11 uses (n2/logn) processors. Show that this number can be

reduced to n(n - 1)/2 log n without any increase in the algorithm's running time.
11.13 Show that if the Euclidean distance is used, then the closest pair can be determined

sequentially in O(n log n) time.
11.14 Derive a parallel algorithm based on the approach in problem 11.13.
11.15 In section 11.5.2 we stated without proof that two convex polygons with a total of O(n)

vertices can be merged sequentially into one convex polygon in O(n) time. Show how this
can be done.

11.16 Propose a parallel implementation of procedure SEQUENTIAL CONVEX HULL.
11.17 Give a formal statement of the parallel algorithm in section 11.5.3 for determining the

convex hull of a set of planar points.
11.18 Show how to modify the algorithm in problem 11.17 to handle the following special

cases:
(i) two points have the same x or y coordinates and

(ii) three or more points fall on the same straight line.
11.19 Show how to modify the algorithm in problem 11.17 to handle the cases where there are

fewer than four extreme points, that is, when two or more extreme points coincide (e.g.,
XMAX = YMAX).

11.20 As stated in section 11.5.3, the algorithm for computing the convex hull relies heavily on
the ability to measure angles. Show how to implement the algorithm so that no angle
computation is necessary.

11.21 The mesh of trees architecture was used to solve all problems in this chapter. One
characteristic of this architecture is that the edges of the trees (linking the rows and the
columns) grow in length as they move further from the root. This has two potential
disadvantages:
(i) The architecture is neither regular nor modular (in the sense of section 1.3.4.2).

Computational Geometry Chap. 11

(ii) If the propagation time for a datum along a wire is taken to be linearly proportional
to the length of that wire, then our running time analyses (which assume constant
propagation time) no longer hold. (For a similar discussion see the conclusion of
section 5.3.2.)

Suggest other architectures for solving the problems in sections 11.2-1 1.5 that enjoy the
efficiency of the mesh of trees but do not share its disadvantages.

11.22 Given a set S of points in the plane, design a parallel algorithm for computing CH(S)
based on the following property of convex hull vertices: A point Pi of S belongs to CH(S)
if pi does not fall inside the triangle (pi, p,, p,) formed by any three points of S.

11.23 Given a set S of points in the plane, design a parallel algorithm for computing CH(S)
based on the following property of convex hull edges: A segment (pi, pj) is a convex hull
edge if all the remaining n - 2 points fall in the same of the two half planes defined by the
infinite straight line through pi and pj.

11.24 Describe in detail how the linking of UP(S) and LP(S) to obtain CH(S) is performed in
step 4 of procedure EREW CONVEX HULL.

11.25 Describe in detail how the 2k - 1 vertical lines L,, L,, . . . , L,,-, that divide S into S,, S,,
. . . , S,, are obtained in step 1 of procedure UPPER HULL.

11.26 Describe formally how procedure UPPER HULL produces its output. Specifically, show
how UP(S) is formed.

11.27 Modify procedure UPPER HULL to include the following refinement: Once a bridge (ai,
b,) is found, all points falling between the two vertical lines through ai and bi can be
discarded from further consideration as potential upper hull vertices.

11.28 Derive a CREW SM SIMD algorithm for computing the convex hull of a set of n points
in the plane in O(log n) time using n processors.

11.29 Can you design an EREW SM SIMD algorithm with the same properties as the
algorithm in problem 11.28?

11.30 Design a parallel algorithm for computing the convex hull of a set of points in a three-
dimensional space.

11.31 Two sets of points in the plane are said to be linearly separable if a straight line can be
found such that the two sets are on different sides of the line. Design a parallel algorithm
for testing linear separability.

11.32 Given a set S of n points, design a parallel algorithm for computing a Euclidean
minimum spanning tree of S (i.e., a minimum spanning tree, as defined in chapter 10,
linking the points of S with rectilinear edges such that the weight of an edge is the
Euclidean distance between its endpoints).

11.33 Given a set S of 2n points in the plane, design a parallel algorithm for computing a
Euclidean minimum-weight perfect matching of S (i.e., a minimum-weight perfect
matching, as defined in chapter 10, whose edges are straight-line segments linking pairs
of points of S and the weight of an edge is the Euclidean distance between its endpoints).

11.34 A simple polygon Q and two points s and d inside Q are given. The interior shortest path
problem is to determine the shortest path from s to d that lies completely inside Q. Give a
parallel algorithm for solving this problem.

11.35 In problem 3.16 we defined a parallel architecture called the pyramid, which is a binary
tree with the processors at each level connected to form a linear array. We may refer to
this as a one-dimensional pyramid and extend the concept to higher dimensions. For

Sec. 1 1.6 Problems

Figure 11.17 Two-dimensional pyramid.

example, a two-dimensional pyramid consists of $n - 4 processors distributed among
1 + log,n levels, where n is a power of 4. All processors at the same level are connected to
form a mesh. There are n processors at level 0 (also called the base) arranged in an
nl/' x nl/* mesh. There is only one processor at level log4n (also called the apex). In
general, at level i, 0 < i < log4n, the mesh consists of 44 ' processors. A processor at level
i, in addition to being connected to its four neighbors at the same level, also has
connections to
(i) four children at level i - 1 provided i > 1 and

(ii) one parent at level i + 1, provided i < (log4n) - 1.
A two-dimensional pyramid for n = 16 is shown in Fig. 11.17. As described in example
1.7, a picture can be viewed as a two-dimensional array of pixels. For example, each pixel
may be given a value representing the color of a corresponding (small) area in the picture.
The position of a pixel is given by its coordinates (i, j), where i and j are row and column
numbers, respectively. A set S of pixels is said to be convex if CH(S) does not contain any
pixel not belonging to S. Figure 11.18 shows two sets of pixels (identified by an x); the set
in Fig. 11.18(a) is convex, while the one in Fig. 11.18(b) is not. Design a parallel algorithm
for the two-dimensional pyramid to determine whether a set of pixels is convex.

11.36 This problem is about general polygons, that is, polygons two or more of whose edges
may cross. We refer to these as polygons for short. This class includes simple polygons as
a subclass.
(i) Give a definition of the interior of a polygon.

(ii) Design a test for point inclusion in a polygon.

m

. X X . .

. X X . .

. . X X . . . X X Figure 11.18 Two sets of pixels.

306 Computational Geometry Chap. 11

(iii) Design a test for polygon inclusion in a polygon.
{iv) Design a test for polygon intersection (of which inclusion is a special case).
(v) Are there efficient parallel versions of (ii)-(iv)?
(vi) Are there applications where nonsimple polygons arise?

11.7 B lBL lOGRAPHlCAL R E M A R K S

Good introductions to sequential algorithms for computational geometry are provided in
[Lee], [Mehlhorn], and [Preparata]. Several parallel algorithms for the four problem classes
discussed in this chapter have been proposed. They include

(i) algorithms for inclusion problems, in [Atallah 21, [Boxer], and [Chazelle];
(ii) algorithms for intersection problems, in [Aggarwal], [Atallah 21, [Chazelle], [Miller 51,

and [Shih];
(iii) algorithms for proximity problems in [Aggarwal], [Atallah 11, [Boxer], [Chazelle],

[Dehne 21, [Dyer], [Miller 11, [Miller 31, and [Miller 51; and
(iv) algorithms for construction problems, in [Aggarwal], [Akl 11, [Akl2], [Akl3], [Atallah

23, [Boxer], [Chang], [Chazelle], [Chow 11, [Chow 21, [Dadoun], [Dehne 11,
[EIGindy], [Miller 11, [Miller 21, [Miller 31, [Miller 51, and [Nath].

A branch of computer science known as pattern recognition studies how computers can
be made to recognize visual patterns. It covers a wide range of concerns from the processing of
digital pictures to the analysis of patterns that leads eventually to their classification. The role
computational geometry can play in pattern recognition is recognized in [Toussaint]. Parallel
architectures and algorithms for pattern recognition are described in [Dehne 21, [Dehne 31,
[Holt], [Ibrahim], [Kung 11, [Kung 21, [Li], [Miller 21, [Miller 31, [Miller 41, [Preston],
[Reeves], [Sankar], [Siegel I], [Siegel 23, [Siegel 33, [Sklansky], and [Snyder].

11.8 REFERENCES

[AGGARWAL]
Aggarwal, A., Chazelle, B., Guibas, L. J., ~ ' ~ G n l a i n g , C., and Yap, C. K., Parallel
computational geometry, Proceedings of the 26th Annual IEEE Symposium on Foundations
of Computer Science, Portland, Oregon, October 1985, pp. 468-477, IEEE Computer
Society, Washington, D.C., 1985.

[AKL 11
Akl, S. G., A constant-time parallel algorithm for computing convex hulls, BIT Vol. 22, No.
2, 1982, pp. 130-134.

[AKL 21
Akl, S. G., Optimal parallel algorithms for computing convex hulls and for sorting,
Computing, Vol. 33, No. 1, 1984, pp. 1- 11.

[AKL 31
Akl, S. G., Optimal parallel algorithms for selection, sorting, and computing convex hulls, in
Toussaint, G. T., Ed., Computational Geometry, North-Holland, Amsterdam, 1985, pp. 1-22.

Sec. 1 1.8 References 307

[ATALLAH 11
Atallah, M. J., and Goodrich, M. T., Efficient parallel solutions to some geometric problems,
Journal of Parallel and Distributed Computing, Vol. 3, 1986, pp. 492-507.

[ATALLAH 21
Atallah, M. J., and Goodrich, M. T., Efficient plane sweeping in parallel, Proceedings of the
2nd Annual ACM Symposium on Computational Geometry, Yorktown Heights, N.Y., June
1986, pp. 216-225, Association for Computing Machinery, New York, N.Y., 1986.

[BOXER]
Boxer, L., and Miller, R., Parallel dynamic computational geometry, Technical Report No.
87-11, Department of Computer Science, State University of New York, Buffalo, N.Y.,
August 1987.

[CHANG]
Chang, R. C., and Lee, R. C. T., An O(N log N) minimal spanning tree algorithm for N points
in the plane, BIT Vol. 26, No. 1, 1986, pp. 7-16.

[CHAZELLE]
Chazelle, B., Computational geometry on a systolic chip, IEEE Transactions on Computers,
Vol. C-33, No. 9, September 1984, pp. 774-785.

[CHOW 11
Chow, A. L., Parallel algorithms for geometric problems, Ph.D. thesis, Department of
Computer Science, University of Illinois, Urbana-Champaign, Illinois, 1980.

[CHOW 23
Chow, A. L., A parallel algorithm for determining convex hulls of sets of points in two
dimensions, Proceedings of the 19th Allerton Conference on Communication, Control and
Computing, Monticello, Illinois, October 1981, pp. 214-223, University of Illinois, Urbana-
Champaign, Illinois, 1981.

[DADOUN]
Dadoun, N., and Kirkpatrick, D. G., Parallel processing for efficient subdivision search,
Proceedings of the 3rd Annual ACM Symposium on Computational Geometry, Waterloo,
Ontario, Canada, June 1987, pp. 205-214, Association for Computing Machinery, New
York, N.Y., 1987.

[DEHNE 11
Dehne, F., O(n1I2) algorithms for the maximal elements and ECDF searching problem on a
mesh-connected parallel computer, Information Processing Letters, Vol. 22, No. 6, May 1986,
pp. 303-306.

[DEHNE 23
Dehne, F., Parallel computational geometry and clustering methods, Technical Report No.
SCS-TR-104, School of Computer Science, Carleton University, Ottawa, Ontario, December
1986.

[DEHNE 33
Dehne, F., Sack, J.-R., and Santoro, N., Computing on a systolic screen: Hulls, contours and
applications, Technical Report No. SCS-TR-102, School of Computer Science, Carleton
University, Ottawa, Ontario, October 1986.

[DYER]
Dyer, C. R., A fast parallel algorithm for the closest pair problem, Information Processing
Letters, Vol. 11, No. 1, August 1980, pp. 49-52.

308 Computational Geometry Chap. 11

[ELGINDY]
ElGindy, H., A parallel algorithm for the shortest-path problem in monotonic polygons,
Technical Report No. MS-CIS-86-49, Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, June 1986.

[HOLT]
Holt, C. M., Stewart, A., Clint, M., and Perrott, R. H., An improved parallel thinning
algorithm, Communications of the ACM, Vol. 30, No. 2, February 1987, pp. 156-160.

[I BRAHIM]
Ibrahim, H. A. H., Kender, J. R., and Shaw, D. E., On the application of massively parallel
SIMD tree machines to certain intermediate-level vision tasks, Computer Vision, Graphics,
and Image Processing, Vol. 36, 1986, pp. 53-75.

[K UNG 11
Kung, H. T., Special-purpose devices for signal and image processing: An opportunity in
VLSI, Technical Report No. CMU-CS-80-132, Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, July 1980.

[K UNG 21
Kung, H. T., and Webb, J. A,, Mapping image processing operations onto a linear systolic
machine, Technical Report No. CMU-CS-86-137, Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, March 1986.

[LEE]
Lee, D. T., and Preparata, F. P., Computational geometry: A survey, IEEE Transactions on
Computers, Vol. C-33, No. 12, December 1984, pp. 1072-1 101.

CLII
Li, Z.-N., and Uhr, L., A pyramidal approach for the recognition of neurons using key
features, Pattern Recognition, Vol. 19, No. 1, 1986, pp. 55-62.

[MEHLHORN]
Mehlhorn, K., Multi -dimensional Searching and Computational Geometry, Springer-Verlag,
Berlin, 1984.

[M ILLER 11
Miller, R., and Stout, Q. F., Computational Geometry on a mesh-connected computer,
Proceedings of the 1984 International Conference on Parallel Processing, Bellaire, Michigan,
August 1984, pp. 66-73, IEEE Computer Society, Washington, D.C., 1984.

[M ILLER 21
Miller, R., and Stout, Q. F., Convexity algorithms for pyramid computers, Proceedings of the
1984 International Conference on Parallel Processing, Bellaire, Michigan, August 1984, pp.
177-184, IEEE Computer Society, Washington, D.C., 1984.

[M ILLER 31
Miller, R., and Stout, Q. F., Geometric algorithms for digitized pictures on a mesh-connected
computer, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-7,
No. 2, March 1985, pp. 216-228.

[M ILLER 41
Miller, R., and Stout, Q. F., Varying diameter and problem size in mesh connected
computers, Proceedings of the 1985 International Conference on Parallel Processing, St.
Charles, Illinois, August 1985, pp. 697-699, IEEE Computer Society, Washington, D.C.,
1985.

Sec. 1 1.8 References 309

[M ILLER 53
Miller, R., and Stout, Q. F., Mesh computer algorithms for computational geometry,
Technical Report No. 86-18, Department of Computer Science, State University of New
York, Buffalo, N.Y., July 1986.

CNATHI
Nath, D., Maheshwari, S. N., and Bhatt, P. C. P., Parallel algorithms for the convex hull
problem in two dimensions, Technical Report No. EE-8005, Department of Electrical
Engineering, Indian Institute of Technology, Delhi, India, October 1980.

[PREPARATA]
Preparata, F. P., and Shamos, M. I., Computational Geometry, Springer-Verlag, New York,
1985.

[PRESTON]
Preston, K., and Uhr, L., Multicomputers and Image Processing, Academic, New York, 1982.

[REEVES]
Reeves, A. P., Parallel computer architectures for image processing, Computer Vision,
Graphics, and Image Processing, Vol. 25, 1984, pp. 68-88.

[SANKAR]
Sankar, P. V., and Sharma, C. U., A parallel procedure for the detection of dominant points
on a digital curve, Computer Graphics and Image Processing, Vol. 7, 1978, pp. 403-412.

CSHHI
Shih, Z.-C., Chen, G.-H., and Lee, R. C. T., Systolic algorithms to examine all pairs of
elements, Communications of the ACM, Vol. 30, No. 2, February 1987, pp. 161-167.

[SIEGEL 1)
Siegel, H. J., Siegel, L. J., Kemmerer, F. C., Mueller, P. T. Smalley, H. E., and Smith, S. D.,
PASM: A partitionable SIMDIMIMD system for image processing and pattern recognition,
IEEE Transactions on Computers, Vol. C-30, No. 12, December 1981, pp. 934-947.

[SIEGEL 23
Siegel, L. J., Image processing on a partitionable SIMD machine, in Duff, M. J. B., and
Levialdi, S., Eds., Languages and Architectures for Image Processing, Academic, London,
1981, pp. 293-300.

[SIEGEL 31
Siegel, L. J., Siegel, H. J., and Feather, A. E., Parallel processing approaches to image
correlation, IEEE Transactions on Computers, Vol. C-31, No. 3, March 1982, pp. 208-218.

[SKLANSKY]
Sklansky, J. Cordella, L. P., and Levialdi, S., Parallel detection of concavities in cellular
blobs, IEEE Transactions on Computers, Vol. C-25, No. 2, February 1976, pp. 187-195.

[SNYDER]
Snyder, L., Jamieson, L. H., Gannon, D. B., and Siegel, H. J., Eds., Algorithmically Specialized
Parallel Computers, Academic, Orlando, Florida, 1985.

[TOUSSAINT]
Toussaint, G. T., Pattern recognition and geometrical complexity, Proceedings of the 5th
International Conference on Pattern Recognition, Vol. 2, Miami Beach, Florida, December
1980, pp. 1324-1347, IEEE Computer Society, Washington, D.C., 1980.

Traversing Combinatorial

12.1 INTRODUCTION

Many combinatorial problems can be solved by generating and searching a special
graph known as a state-space graph. This method, aptly called state-space traversal,
differs from the searching algorithms discussed in chapter 5 in that the data structure
searched is not a list but rather a graph. Furthermore, state-space traversal differs
from the graph search techniques of chapter 10 in that the graph is generated while it is
being searched. There are two reasons for not generating a state-space graph in full
and then searching it. First, a state space is typically very large and there may not be
enough memory to store it. Second, assuming we can afford it, generating a full state
space would be wasteful (both in terms of space and time), as only a small subgraph is
usually needed to obtain a solution to the problem.

There are three types of nodes in a state-space graph:

1. the origin (or start) node(s) representing the initial conditions of the problem to
be solved;

2. the goal (or final) node(s) representing the desired state of the problem; and
3. intermediate nodes representing states of the problem arrived at by applying

some transformation to the origin.

Each edge in the graph is a transition that transforms one state of the problem to
another. A solution to the problem is given by a path from an origin to a goal. The
processes of generating and searching the state-space graph are governed by problem-
dependent rules.

Example 12.1

A set of integers S = {s,, s,, . . . , s,) is given along with an integer B. It is required to
determine whether a subset S' of S exists such that

Sec. 12.1 Introduction 31 1

This problem, known as the subset sum problem, can be solved by traversing a
state-space graph. The origin represents the empty set. Intermediate nodes represent
subsets of S. A goal node represents a subset the sum of whose elements equals B.

For concreteness, let S = {15,7, 19,3,6} and B = 16. The state-space graph that is
actually traversed for this instance of the subset sum problem is shown in Fig. 12.1.
Intermediate nodes that cannot possibly lead to a goal node are marked with an x .
There is only one goal node, marked with a G.

Our purpose in this chapter is to show how a state space can be traversed in
parallel. We choose one particular problem for illustration, namely, state spaces

Figure 12.1 State space for instance of subset sum problem.

31 2 Traversing Combinatorial Spaces Chap. 12

generated and searched by programs that play games with clear rules and goals, that
is, games of strategy. In particular, we are concerned with games that

1. are played on a board on which pieces are placed and moved;
2. are played by exactly two players;
3. are zero-sum games, in the sense that one player's gain equals the other player's

loss-the outcome for a player is either a win, a loss, or a draw;
4. involve no element of chance;
5. are perfect-information games, in the sense that at any point during the game

each player knows everything there is to know about the current status of both
players and no detail is hidden.

Examples of games satisfying these properties are checkers, chess, and go. Examples of
games that do not satisfy one or more of these properties are backgammon (which
violates the fourth property) and poker (which may violate all properties). In the
remainder of this chapter we use the term game to refer to a game of strategy satisfying
these five properties. Most computer programs that play games generate and search
state spaces that have the characteristic of being trees. We shall refer to these as game
trees.

In section 12.2 a brief introduction is provided to a sequential algorithm for
traversing game trees and the associated terminology. The basic principles used in the
design of a parallel implementation of this algorithm are given in section 12.3. The
parallel algorithm itself is described in section 12.4. In section 12.5 various aspects of
the algorithm are analyzed.

12.2 SEQUENTIAL TREE TRAVERSAL

Assume that we want to program a computer to play a game. The computer is given

(i) a representation of the board and pieces;
(ii) a description of the initial configuration, that is, the locations of the various

pieces on the board when the game begins;

(iii) a procedure for generating all legal moves from a given position of the game;
(iv) an algorithm for selecting one of the (possibly many) available moves;

(v) a method for making the selected move from the current position, that is, a
method for updating a given board configuration; and

(vi) a way of recognizing a winning, losing, or drawing position.

All of these ingredients of a game-playing program are usually straightforward,
with the exception of (iv). It is the move selection algorithm that in general makes the
difference between a program that plays well and one that plays poorly. For example,

Sec. 1 2.2 Sequential Tree Traversal 31 3

a program that selects every one of its moves at random cannot possibly perform well
in a consistent way. The better game-playing programs utilize sophisticated tech-
niques for choosing their moves. One such technique is based on generating and
searching a game tree, an example of which is shown in Fig. 12.2. The figure illustrates
the game tree generated for the game of tic-tac-toe from some configuration.

In a game tree, nodes correspond to board positions and branches correspond to
moves. The root node represents the board position from which the program (whose
turn it is to play) is required to make a move. A node is at ply (or depth) k if it is at a
distance of k branches from the root. A node at ply k, which has branches leaving it
and entering nodes at ply k + 1, is called a nonterminal node; otherwise the node is
terminal. A nonterminal node at ply k is connected by branches to its offspring at ply
k + 1. Thus the offspring of the root represent positions reached by moves from the
initial board; offspring of these represent positions reached by the opponent's replies,
offspring of these represent positions reached by replies to the replies, and so on. The
number of branches leaving a nonterminal node is the fan-out of that node.

A complete game tree represents all possible plays of the game. Each path from
the root to a terminal node corresponds to a complete game with the root
representing the initial configuration and each terminal node representing an end-

PLY 0

PLY 1

PLY 2

PLY 3

0 WINS DRAW 0 WINS DRAW

Figure 12.2 Game tree for game of tic-tac-toe.

31 4 Traversing Combinatorial Spaces Chap. 12

game configuration, that is, a win for player 1, a win for player 2, or a draw. It has been
estimated that a complete game tree of checkers, for example, contains approximately
1040 nonterminal nodes. Assuming that a program is capable of generating lo9 such
nodes per second, it would still require in the vicinity of loz1 centuries in order to
generate the whole tree. Trees for chess and go would require even longer times to
generate in full.

The observation made in the previous paragraph is generally true, even starting
from a position other than the initial configuration. A tree whose root represents a
position near the middle of a chess game, for example, would have approximately 10"
terminal nodes representing all end-game configurations. Instead, game-playing
programs search an incomplete tree. The depth of such a tree is limited and, in
addition, it is often the case that not all paths are explored. In an incomplete tree,
terminal nodes are those appearing at some predefined ply k or less and do not
necessarily represent positions for which the game ends. An evaluation function is used
to assign a score to each of the positions represented by terminal nodes. This score is
an estimate of the "goodness" of the position from the program's viewpoint and is
obtained by computing and then combining a number of parameters. For most board
games, center control and mobility of certain pieces are examples of such parameters.

An algorithm, known as the alpha-beta algorithm, is then used to move these
scores back up the tree. In doing so, the alpha-beta algorithm may also eliminate
some nodes of the game tree without assigning scores to them, as explained in what
follows. When all the offspring of the root have been assigned back-up scores, the
program chooses the move that appears to be best (in light of this incomplete
information).

Once this move is made and the opponent has replied, the program generates
and searches a new tree from the current position to determine its next move. Note
that game trees, like all state spaces, are generated while they are searched, as
mentioned in the beginning of this chapter. A so-called depth-jrst search is usually
followed to traverse game trees: It starts by generating a complete path from the root
to the leftmost terminal node; search then resumes from the latest nonterminal node
on the path whose offspring have not all been generated or eliminated by the alpha-
beta algorithm. Search continues (in this left-to-right manner) until all nodes-up to
some depth k- have been either generated or eliminated. It remains to describe how
the alpha-beta algorithm works.

The Alpha -Beta Algorithm. The alpha-beta algorithm performs a dual
role:

(i) moving scores up the tree from the terminal nodes and, in doing so,
(ii) eliminating parts of the tree by determining that they need not be generated.

In backing up scores from terminal nodes, the minimax principle is invoked:

(i) Nodes at even ply (corresponding to positions from which the program is to
select a move) attempt to maximize the program's gain while

Sec. 12.2 Sequential Tree Traversal 31 5

(ii) nodes at odd ply (corresponding to positions from which the program's
opponent is to select a move) attempt to minimize the program's gain.

Initially, every nonterminal node generated is assigned an initial alpha-beta
score of -or, (+ m) if the node is at even (odd) ply. As mentioned earlier, every
terminal node generated is assigned a static score obtained from an evaluation
function. A temporary alpha-beta score is assigned to a nonterminal node while its
offspring are being explored. If the node is at even (odd) ply, then its temporary score
is equal to the maximum (minimum) of thejnal scores that have so far been assigned
to its offspring. Final scores are defined as follows:

1. A static score assigned to a terminal node is final and
2. the final score of a nonterminal node is the score it receives when each of its

offspring has either been assigned a final score or been eliminated (as explained
in the following).

The process of backing up scores from terminal nodes is illustrated in Fig. 12.3. The
figure shows the portion of a game tree that has already been generated. Square and

PLY 0

PLY 1

PLY 2

PLY 3

PLY 4

Figure 123 Backing up scores from terminal nodes.

31 6 Traversing Combinatorial Spaces Chap. 12

circle nodes represent positions from which the first and second players are to make a
move, respectively. The number beside each node indicates the order in which the
node was generated by the algorithm. Also shown inside the nodes are temporary and
final scores. Static scores are obtained using some evaluation function. Assuming that
the nodes at plies 1,2, and 3 have no further offspring, all scores at plies 1,2,3, and 4
are final. The score associated with the nonterminal node at ply 0 is temporary,
assuming that further offspring of this node need to be generated and assigned final
scores.

The scores are stored in a score table: Entry i of this table holds the score for a
node under consideration at ply i. Figure 12.4 illustrates the contents of the score table
as the tree in Fig. 12.3 is being traversed.

By its nature, the alpha-beta algorithm makes it unnecessary to obtain scores
for all nodes in the game tree in order to assign a final score to the root. In fact, whole
subtrees can be removed from further consideration by means of so-called cuto$s. To
illustrate this point, consider the two portions of game trees shown in Fig. 12.5. In
both trees some of the nodes have received a final score (and are labeled with that
score), whereas the remaining nodes (labeled with a letter).are still waiting for a final
score to be assigned to them. From the preceding discussion, the final score of the root
node in Fig. 12.5(a) is obtained from

u = max(5, v) , where v = min(4,. . . }.
Clearly u = 5 regardless of the value of v. It follows that the remaining offspring of the

ENTRY 0

ENTRY 1

ENTRY 2

ENTRY 3

ENTRY 4

(a) INITIALLY (b) AFTER NODE 5
IS SCORED

(c) AFTER NODE 6
IS SCORED

(d) AFTER NODE 7 (e) AFTER NODE 9 (1) AFTER NODE 10
IS SCORED IS SCORED IS SCORED

Figure 12.4 Contents of score table while tree in Fig. 12.3 is traversed.

L ,

Sec. 12.3 Basic Design Principles

Figure 125 Cutoffs created by alpha-beta algorithm.

node labeled v need not be explored any further. We say that a shallow cutof has
occurred. A similar reasoning applies to the tree in Fig. 12.5(b), where the value of u
can be obtained regardless of the exact value of y. Again it follows that the remaining
offspring of the node labeled y can be ignored: This is called a deep cutoff

When a final score is eventually assigned to the root, the search terminates. By
definition, the score was backed up during the search from one of the root's offspring
to the root. Thus the branch leading from the root to that offspring corresponds to the
move chosen by the alpha-beta algorithm. Note that, upon termination of the
traversal, the algorithm in fact determines the principal continuation, that is, the best
sequence of moves found for both players to follow based on searching a tree of
limited depth.

The preceding concepts constitute the foundation upon which our parallel
algorithm is constructed. In the following section we show how an interesting
property of the sequential alpha-beta algorithm is used profitably in the parallel
version.

12.3 BASIC DESIGN PRINCIPLES

In this section we describe the main ideas behind

(i) the parallel algorithm,
(ii) the model of computation to be used,

31 8 Traversing Combinatorial Spaces Chap. 12

(iii) the objectives motivating the design, and
(iv) the methods adopted to achieve these objectives.

12.3.1 The Minimal Alpha -Beta Tree

A game tree is said to be uniform if all of its nonterminal nodes have the same number
of offspring and all of its terminal nodes are at the same distance from the root. Since
the number of offspring is equal for all nonterminal nodes, it is referred to as the fan-
out of the tree. Similarly, the distance of terminal nodes to the root is called the depth of
the tree. The uniform tree of Fig. 12.6, for example, has a fan-out of 3 and a depth of 2.

A game tree is perfectly ordered if the best move for each player from any
position is always provided by the leftmost branch leaving the node representing that
position. In such a tree it is guaranteed that only a subset of the nodes needs to be
generated in order to determine the principal continuation. Consider, for example, the
uniform tree in Fig. 12.7, which has a fan-out f equal to 3 and a depth d also equal to 3.

In this tree, the terminal nodes shown with a score (and only these terminal
nodes) must be examined by the alpha-beta algorithm to reach a decision about the
best move for the player at the root. The tree shown in bold lines and called the
minimal tree is the one actually generated by the algorithm. The remaining nodes
and branches (drawn with thin lines) are cut off (i.e., they are not generated). Note that
for this tree

(i) the scores shown for nonterrninal nodes are final and
(ii) the principal continuation is given by the sequence of branches leading from the

root to the terminal node labeled 30.

Figure 12.6 Uniform tree.

Sec. 12.3 Basic Design Principles

m

Figure 12.7 Perfectly ordered game tree.

In general, for a perfectly ordered uniform tree, the number of terminal nodes
gecerated and assigned a score by the alpha-beta algorithm is equal to

Thus M(f ; d) represents a lower bound on the number of nodes scored by the alpha-
beta algorithm for a uniform tree that is not necessarily perfectly ordered. This fact
represents the basis of our parallel implementation of the alpha-beta algorithm:
Assuming that the tree to be traversed is perfectly ordered, those nodes that have to be
scored are visited first in parallel. Once all cutoffs have taken place, the remaining
subtrees are again searched in parallel.

12.3.2 Model of Computation

The algorithm is designed to run on an EREW SM MIMD computer with a number
of processors operating asynchronously. A processor can initiate another processor,
send a message to another processor, or wait for a message from another processor.
Apart from these interactions, all of which take place through shared memory,
processors proceed independently. As usual, the MIMD algorithm is viewed as a
collection of processes. A process is created for each node generated. Its job is to
traverse the tree rooted at that node. The number of processors is independent of the
number of processes.

320 Traversing Combinatorial Spaces Chap. 12

12.3.3 Objectives and Methods

The algorithm is designed with two objectives in mind:

1. to minimize the running time of the search and

2. to perform as many cutoffs as possible, thereby minimizing the cost of the search
(total number of operations).

In order to achieve these goals, a distinction is made among the offspring of a node.
The leftmost offspring of a node is called the left offspring. The subtree containing the
left offspring is called the left subtree, and the process that traverses this subtree is the
left process. All other offspring of a node are called right ofspring and are contained in
right subtrees that are searched by right processes. This is illustrated in Fig. 12.8, where
L and R indicate left and right offspring, respectively. Note that the root is labeled
with an L.

A high-level description of the algorithm consists of two stages.

Stage I : The tree is traversed recursively by

(i) traversing recursively the left subtree of the root and

(ii) traversing the left subtree only of each right offspring of the root.

This stage assigns

(i) a final score to every left offspring and
(ii) a temporary score to every right offspring (which is the final score of its left

offspring).

Stage 2: If the temporary score of a node cannot create a cutoff, then the right
subtrees of this node are traversed one at a time until they all have been either
visited or cut off.

The preceding description is now refined by explaining the mechanism of
process creation. We mentioned earlier that a process is associated with every node
generated. The tree traversal and process creation proceed as follows. The process
associated with a node z spawns a left process to traverse the left subtree of z. This
process is associated with the left offspring of z. In turn it spawns left and right
processes to search all of the left offspring's subtrees. This continues until a final score
is assigned to the left offspring of z and backed up, as a temporary score, to z.
Concurrently to the traversal of the left subtree of z , a temporary value is obtained for
each of the right offspring of z. These scores are then compared to the final score of the
left offspring and cutoffs are made where appropriate.

The temporary score for a right offspring w is obtained as follows. The process
associated with w spawns a process to traverse its left subtree. This new process

Sec. 12.3 Basic Design Principles

Figure 12.8 Distinction between left and right offspring of node.

Figure 12.9 Process creation during tree traversal.

traverses the subtree, backs up a score to w, and terminates. If after a cutoff check the
traversal of the right subtree rooted at w is to continue, then a process is generated to
traverse the next subtree of w. This procedure continues until either the subtree rooted
at w is exhaustively traversed or the search is cut off.

The foregoing description is illustrated in Fig. 12.9. Here the process associated
with the root generates processes 1,2, and 3. Process 1 being a left process generates
processes 1.1,1.2, and 1.3 to traverse all of the subtrees of the left offspring of the root.
Processes 2 and 3 are right processes and therefore generate only processes to search
the left subtrees of the right offspring of the root, namely, processes 2.1 and 3.1,
respectively. This concludes stage 1. Only if necessary, (one or both) processes 2.2 and

322 Traversing Combinatorial Spaces Chap. 12

3.2 followed by (one or both) processes 2.3 and 3.3 are created in stage 2. Note that
after generating other processes, a process suspends itself and waits for these to back
up a value.

It is clear that by applying this method those nodes that must be examined by
the alpha-beta algorithm will be visited first. This ensures that needless work is not
done in stage 1 of the algorithm. Also, a cutoff check is performed before processes are
generated in stage 2 to search subtrees that may be cut off.

As mentioned earlier, game trees are typically very large, and it is reasonable to
assume that there will be more processes created than there are processors available
on the MIMD computer. However, let us assume for the sake of argument that there
are more processors than processes. It may be possible in this case to reduce the
running time of the tree traversal by generating processes to traverse the subtrees of a
right offspring in parallel using the idle processors. This brute-force approach is not
used since it conflicts with the other aim of our design, namely, minimizing the cost of
the search. The cost of any tree traversal consists mainly in the cost of updating the
board in moving from parent to offspring and in the cost of assigning a temporary or
final value to a node. Therefore, even though our algorithm may leave some
processors idle in this hypothetical situation, the overall cost in operations is
minimized by not traversing subtrees that may not have to be traversed.

Process Priority. We conclude this section by describing how processes are
assigned priorities when deciding which is to be executed by an available processor.
As already explained, left subtrees are searched exhaustively by the parallel algorithm,
while initially only a single temporary value is obtained from each right subtree. In
order to accomplish this, left processes should be given higher priority than right
processes. Also, since scores must be obtained from terminal nodes, processes
associated with the deepest nodes in the tree should be given preference. Any formula

Figure 12.10 Assigning priorities to processes.

Sec. 12.4 The Algorithm 323

for labeling nodes that assigns all offspring a higher priority than their parent and left
offspring a higher priority than their right siblings can be used. A process then adopts
the priority of the node with which it is associated. One example of such a formula for
uniform trees follows. It assigns a priority to a newly generated node as a function of
the priority of its parent:

priority(offspring) = priority(parent) - (f + 1 - i) x 10"(d-p'y - I),

where
f = fan-out of the tree,

d = depth of the tree,

i = offspring's position among its siblings in a left-to-right order, 1 < i < f,
ply = ply of parent,

and a is such that 10"-' < f < 10". The priority of the root is given by

Note that the smaller the integer returned by this formula, the higher the priority. An
example of this priority assignment is shown in Fig. 12.10.

12.4 THE ALGORITHM

This section provides a formal description of the parallel alpha-beta algorithm as
implemented on an EREW SM MIMD computer. We begin by defining three aspects
of the implementation.

12.4.1 Procedures and Processes

An MIMD algorithm is a collection of procedures and processes. Syntactically, a
process is the same as a procedure. Furthermore, both a procedure and a process can
call other procedures and create other processes. Where the two differ is in the
semantics. In the parallel alpha-beta algarithm, we shall distinguish between
processes and procedures in the following way:

(i) When a procedure is called, control is transferred from the calling context to the
procedure.

(ii) When a process is invoked, it is initiated to run asynchronously, and the
invoking context continues execution.

12.4.2 Semaphores

Semaphores are used by the algorithm for process communication and syn-
chronization. Here a semaphore consists of an integer value and a queue of processes.

324 Traversing Combinatorial Spaces Chap. 12

When a semaphore is declared, it is initialized to have a value 0 and a null queue.
There are two operations allowed on semaphores, denoted by U and b!

1. Operation U examines the integer value:
(i) If it is greater than zero, it decrements it by 1, and the process doing the U

operation proceeds.
(ii) If the value is zero, the process doing the U operation suspends itself and

enters the queue.
2. Operation V examines the queue:

(i) If it is nonempty, it lets the first waiting process continue.
(ii) If no processes are waiting, the integer value is incremented by 1.

Both U and V are indivisible operations.

12.4.3 Score Tables

In the parallel alpha-beta algorithm, many parts of the tree are traversed simulta-
neously. Therefore, a single global score table cannot be used as in the sequential case.
Instead, an individual score table is assigned to each node when a process is generated
to search the subtree rooted at that node. This table is initialized to the values in the
score table of the node's parent.

We are now ready to state the parallel alpha-beta algorithm. The algorithm is
given in what follows as procedure MIMD ALPHA BETA together with the
procedures and processes it uses. Some of the procedures are entirely game dependent
and therefore are not fully specified.

procedure MIMD ALPHA BETA (Board, Depth, Principal Continuation)

{This procedure uses three variables
Board: a description of the board configuration from which a move is to be made,
Depth: the depth to which the tree is to be traversed,
Root Table: the root's score table;

and three semaphores
RootTableFree, RootHandled, and LeftOffspringDone.)

Step 1: (1.1) Read Board and Depth
(1.2) Initialize RootTable
(1.3) V(RootTab1eFree).

Step 2: (Create a process to begin the search)
HANDLE (Board, true, true, false, 0, RootTable, RootHandled,

LeftOffspringDone).

Step 3: {Has the root been assigned a final score?)
U (RootHandled).

Step 4: Output the Principal Continuation. 17

Sec. 12.4 The Algorithm 325

process HANDLE (Board, MyTurn, Left, ParentLeft, Ply, ParentTable, Done,
LeftSiblingDone)

{This process uses the following variables
MyTurn: true if ply is even, false otherwise,
Left: true if the process is a left process, false otherwise,
ParentLeft: true if the parent process is a left process, false otherwise,
Ply: the ply number,
ParentTable: the parent's score table,
MyTable: the score table created automatically when this process was invoked, and
initialized to the parent's core table;

and three semaphores
Done, LeftSiblingDone, and MyTableFree.)

Step 1: {If this is a terminal node, score it; otherwise, generate its offspring}
(1.1) V(MyTab1eFree)
(1.2) if Ply = Depth

then SCORE (Board, MyTable)
else GENERATE (Board)
end if.

Step 2: {Update parent's score table}
UPDATE (ParentTable).

Step 3: if Left and ParentLeft
then V (LeftSiblingDone)
end if.

Step 4: V(Done).

procedure SCORE (Board, Table)

{This procedure evaluates the given board configuration (Board) associated with a
terminal node and puts the resulting static score in the given score table (Table). The
evaluation function is game dependent and is left unspecified.)

procedure GENERATE (Board)

{This procedure searches a subtree rooted at a nonterminal node. It calls procedure
GENERATE MOVES to produce a list of moves from the current position. The
moves are stored in an array Moves whose ith location is denoted Moves [i]. The
number of moves is kept in the variable NumberMoves. OffspringDone and
LeftOffspringDone are semaphores. Procedure APPLY is then used to apply each of
the generated moves to the given Board thereby producing board configurations for
its offspring. Variable NewBoard is used to store each new configuration. The
variable Cutoff is assigned the value true if a cutoff is to occur, false otherwise.}

Step 1: GENERATE MOVES (Board, Moves, NumberMoves).

Step 2: {If the root of the subtree to be searched is a left node, then process
HANDLE is invoked once for each offspring. The processes thus created
run concurrently and procedure GENERATE waits until they all
terminate}
if Left

326 Traversing Combinatorial Spaces Chap. 12

then (2.1) for I = 1 to NurnberMoves do
(i) APPLY (Board, Moves[l], NewBoard)
(ii) HANDLE (NewBoard, not MyTurn, 1 = 1, Left, Ply + 1, MyTable,

OffspringDone, LeftOffspringDone)
end for

(2.2) for I = 1 to NurnberMoves do
U (OffspringDone)

end for
{If the root of the subtree to be searched is a right node, then its offspring are
searched in sequence by calling process HANDLE for one of them, waiting for it
to complete, and performing a cutoff check before handling the next offspring)

else (2.3) Cutoff +- false
(2.4) I t 1
(2.5) while (1 < NurnberMoves and not Cutoff) do

(i) APPLY (Board, Moves[l], NewBoard)
(ii) HANDLE (NewBoard, not MyTurn, 1 = 1, Left, Ply + 1, MyTable,

OffspringDone, LeftOffspringDone)
(iii) U (OffspringDone)
(iv) {Has the leftmost sibling received a final score?}

U (LeftSiblingDone)
(v) V (LeftSiblingDone)
(vi) if (Ply is odd) and (offspring's score < parent's score)

then Cutoff t true
else if (Ply is even) and (offspring's score parent's score)

then Cutoff c true
end if

end if
(vii) l t l + 1
end while

end if.

procedure UPDATE (ParentTable)

{This procedure waits until the parent's score table is free. Then, if the score calculated for the
current node improves on the parent's score, it is copied into the parent's score table. The
semaphore ParentTableFree is used. This semaphore is created and initialized simulta-
neously with variable ParentTable.)

Step 1: U (ParentTableFree).

Step 2: Copy value if applicable.

Step 3: V (ParentTableFree).

procedure GENERATE MOVES (Board, Moves, NurnberMoves)

(This procedure produces all the legal moves from a position given by variable
Board, stores them in array Moves, and sets variable NumberMoves to their
number. The procedure is game dependent and is therefore left unspecified.} C]

Sec. 12.5 Analysis and Examples

procedure APPLY (Board, Moves, NewBoard)

{This procedure changes the current position given by variable Board by making
the move received in variable Moves. The result is a new board configuration
NewBoard. The procedure is game dependent and is therefore left unspecified.) 17

12.5 ANALYSIS AND EXAMPLES

As it is the case with most MIMD algorithms, the running time of procedure MIMD
ALPHA BETA is best analyzed empirically. In this section we examine two other
aspects of the procedure's performance.

1. One of the design objectives stated in section 12.3.3 is to increase the number of
cutoffs as much as possible. How does the parallel implementation perform in
this respect compared with the sequential version?

2. What amount of shared memory is needed by the algorithm?

In answering these two questions, we also present some examples that illustrate the
behavior of procedure MIMD ALPHA BETA.

12.5.1 Parallel Cutoffs

In order to answer the first question, we shall invoke the distinction made in section
12.2 between shallow and deep cutoffs. In the following discussion we use "sequential
search" and "parallel search" to refer to the sequential alpha-beta algorithm and
procedure MIMD ALPHA BETA, respectively.

Shallow Cutoffs

1. All shallow cutoffs that would occur in a sequential search due to the
(temporary) score backed up to a node from its left offspring are also caused by
procedure MIMD ALPHA BETA. This is because all (temporary) scores obtained for
the right offspring of the node are compared to the score backed up from its left
offspring for a cutoff check before the right subtree traversal continues. An example
illustrating this situation is shown in Fig. 12.11. During stage 1 of the parallel
algorithm,

(i) the left subtree of the root is searched exhaustively resulting in the root being
assigned (temporarily) the final score of its left offspring (i.e., 8) and

(ii) the two right subtrees are partially searched resulting in temporary scores of 3
and 5 being assigned to the first and second right offspring of the root,
respectively.

Traversing Combinatorial Spaces Chap. 12

MAXIMIZING

MINIMIZING

Figure 12.11 Shallow cutoff detected by both sequential search and procedure
MIMD ALPHA BETA.

At the beginning of stage 2 it is determined that the circled sections of the two right
subtrees are cut off in exactly the same way as in sequential traversal.

A right subtree that is exhaustively searched during stage 2 without cutoff
compares its final score to the temporary score of the parent and changes the parent's
score if necessary. Consequently, any cutoff that would have occurred in other right
subtrees due to the score originally backed up to the parent from its left offspring will
also occur with the new score backed up to the parent from a right offspring.

2. Some shallow cutoffs that would occur in a sequential search can be missed
by procedure MIMD ALPHA BETA due to the way in which processes are
generated. In the example of Fig. 12.12, a sequential search would cut off the circled
portion of the tree. Parallel search misses the cutoff since a process is created to search
that subtree before the right subtree of the root completes its search and updates the
root's score to 7.

3. Some cutoffs that are missed in a sequential search may occur in procedure
MIMD ALPHA BETA due to the way in which processes are generated. A right
subtree search that terminates early and causes a change in the parent's score may
cause cutoffs in other right subtrees that would not occur in a sequential search. This
situation is illustrated in Fig. 12.13, where both right offspring of the root compare
their initial scores of 6 and 7, respectively, to the final score of the left offspring, that is,
5. Neither right subtree search is cut off, so processes are generated to continue that
search. But since the second right offspring of the root has no further offspring of its
own to be examined, its score of 7 is final, and because 7 > 5, that score is backed up
to the root. Now, when the terminal node labeled 8 has been scored and the process at
the first right offspring of the root performs a cutoff check before proceeding, this time
a cutoff occurs. The portion of the tree that is cut off is shown circled in Fig. 12.13; this
portion is not cut off during a sequential search.

Sec. 12.5 Analysis and Examples

F-I

329

MAXIMIZING

MINIMIZING

Figure 12.12 Shallow cutor missed by procedure MIMD ALPHA BETA.

Figure Shallow cutoff missed in
sequential search and discovered by pro-
cedure MIMD ALPHA BETA.

Deep Cutoffs. In order for deep cutoffs to occur at a node, scores from
searches of other parts of the tree must be available. In a sequential search the scores
at each ply are known to every node and are stored in a single global score table. In
procedure MIMD ALPHA BETA this is impossible, as stated in the previous section.
We now show briefly why this is the case. Assume that a single global score table was
used. In Fig. 12.1qa) nodes 1 and 2 are scored simultaneously. Suppose that node 2
receives its score first, as shown in Fig. 12.1qc). This means that the right offspring of
the root is backed up the score 9 at ply 1 and then the left offspring is backed up the
score 6 (overwriting the score table value of 9 at ply 1). Now when node 3 is scored, the
value 8 will not be recorded in the table at ply 1 (since 8 > 6 and we are minimizing at
ply 1). Therefore, the value of 8 will not be backed up to the root as it would be in the

Traversing Combinatorial Spaces Chap. 12

PLY 0

PLY 1

PLY 2

PLY 0

PLY 1

PLY 2

(b) INITIALLY (c) AFTER NODE (d) AFTER NODE (e) AFTER NODE
2 IS SCORED 1 IS SCORED 3 IS SCORED

Figure 12.14 Using single score table in parallel search leads to incorrect results.

sequential search. As a result, the best sequence of moves from the root, namely,
(m,, m,), is not returned; instead (m,, m,) is returned.

We conclude from the discussion that having a single score table is impossible in
parallel search as it would lead to incorrect results. The alternative adopted by
procedure MIMD ALPHA BETA is to assign to each node created its own score
table; this, however, means that the information necessary for a deep cutoff to occur is
not available in general, as shown in the following example.

Example 12.2

Figure 12.15 illustrates a deep cutoff occurring in a sequential search: The circled portion
is cut off due to the score of the root's left subtree being available in the score table, while
the root's right subtree is searched.

This deep cutoff cannot occur in procedure MIMD ALPHA BETA, as shown in
Fig. 12.16: Each node of the right subtree has a score table initialized to the score table of
its parent and not containing the score of the root's left offspring.

Sec. 12.5 Analysis and Examples

PLY 0

PLY 1

PLY 2

PLY 3

PLY 4

(b) INITIALLY AFTER NODE
IS SCORED

AFTER NODE
IS SCORED

Figure 12.15 Deep cutoff in sequential search.

12.5.2 Storage Requirements

This section presents an analysis of the storage requirements of procedure MIMD
ALPHA BETA. We begin by deriving an upper bound on the amount of storage
needed by the procedure under the assumption that an infinite number of processors
is available. A more realistic estimate of the storage requirements is then derived by
fixing the number of processors used during the search.

Unlimited Processors. Recall that the procedure makes a crucial dist-
inction between the leftmost offspring of a node and the remaining offspring of that
node. During stage 1, knowledge about the behavior of the sequential version is used
to explore several paths in parallel. During each iteration of stage 2, several subtrees
are searched in parallel, each subtree, however, being searched sequentially. This is
illustrated in Figs. 12.17 and 12.18.

In Fig. 12.17 a uniform tree is shown whose depth and fan-out are both equal to
3. The paths explored in parallel during stage 1 are indicated by bold lines. Calling the

Figure 12.17 Subtrees traversed during stage 1 and first iteration of stage 2.

Figure 12.18 Subtrees traversed during second iteration of stage 2.

334 Traversing Combinatorial Spaces Chap. 12

root a left node, it is clear that left ofspring and their right ofspring are given priority
by the procedure. Nodes explored during stage 1 will therefore be known as primary
nodes, that is, nodes at which a process is created during stage 1 to do the search.
Formally:

1. The root is a primary left offspring,
2. a primary left offspring at ply k is the left offspring of a primary (left or right)

offspring at ply k - 1, and
3. a primary right offspring at ply k is a right offspring of a primary left offspring at

ply k - 1.

Following stage 1, the temporary score backed up at node 1 is compared with
the ones at nodes 2 and 3; if the former is smaller, then the unexplored portions of the
subtrees rooted at 2 and 3 need not be considered at all. Otherwise, one or both of
these two portions, shown circled in Fig. 12.17, are searched simultaneously (each
sequentially) during the first iteration of stage 2.

When the subtrees rooted at nodes 2 and 3 have been fully searched, the final
score backed up at node 1 is compared with the temporary scores at nodes 4 and 5 for
a cutoff. If the former is larger, the cutoff check is successful and the unexplored
subtrees of 4 and 5 need not be considered. Otherwise, one or both of the subtrees
shown circled in Fig. 12.18 are searched simultaneously (each sequentially) during the
second iteration of stage 2, and so on.

To study the storage requirements of the procedure, we note that for every node
being explored during the search at least one storage location is needed to hold the
temporary score of that node. When an explored node is discarded from further
consideration, its storage locations are reallocated to another unexplored node that
the procedure decides to examine. Therefore, in order to determine how much storage
is needed, it is necessary to derive the maximum number of nodes simultaneously
explored at any time during the search. This number is precisely the number of
primary nodes (during stage 1 where the maximum degree of parallelism occurs).

To see this, note that any tree searched sequentially during stage 2 is rooted at a
node that was primary, that is, explored during stage 1. This subtree is isomorphic to
the leftmost subtree rooted at the same primary node. The leftmost subtree has at least
as many primary nodes as a subtree searched in stage 2. Therefore, the number of
nodes searched in parallel during stage 2 cannot exceed the number of primary nodes.

This latter number is now derived (keeping in mind that an infinite number of
processors is available and therefore no bound exists on the number of processes to be
created). Let

L(k) = number of primary left offspring at ply k

and

R(k) = number of primary right offspring at ply k.

Sec. 12.5 Analysis and Examples 335

In Fig. 12.16, L(3) = 5 and R(3) = 6. From our definition of primary nodes it follows
that for a uniform tree with fan-out f we have

Uk) = L(k - 1) + R(k - I), k 2 1,

R(k) = L(k - 1) x (f - I), k 2 1,

L(O) = 1 and R(0) = 0.

For a uniform tree of depth d, the total number of primary nodes is therefore given by
d

and the storage requirements of the algorithm are clearly of O(S).
Solving the preceding recurrence, we get

and

where

x = [I + q f - 1)11'2.

Limited Processors. It is already clear that our assumption about the
availability of an unlimited number of processors can now be somewhat relaxed.
Indeed, the maximum number of processors the algorithm will ever need to search a
uniform tree of depth d will be

In Fig. 12.16, P(f , d) = 11. Even though P(f , d) establishes an upper bound on the
number of processors that will ever be needed by the algorithm to search a uniform
tree, it is still a very large number of order f as one should have expected. In
practice, however, only a small number of processors is available and we are led to
reconsider our definition of primary nodes. The actual number of primary nodes is in
fact determined by the number of processors available. If N processors are used to
search a uniform tree of fan-out f, then the actual number of primary nodes at level k
is equal to

min{L(k) + R(k), N } ,

and the total number of primary nodes for a tree of depth d is given by the function

min{L(k) + R(k), N } .

336 Traversing Combinatorial Spaces Chap. 12

Under these conditions the storage requirements of the algorithm are clearly of
O(s(N)). Note that S = s(P(f; d)) , and that for N < f we have

s(N) = 1 + Nd.

12.6 P R O B L E M S

12.1 The state-space graph in Fig. 12.1 contains twenty-three nodes. Graphs for other values
of B may contain more or less nodes. In the worst case, 2" nodes may have to be
generated to solve the subset sum problem, where n is the number of elements of S. A
sequential algorithm for traversing such a state-space graph requires exponential time in
n in the worst case. Derive a parallel algorithm for the subset sum problem. What is the
running time of your algorithm?

12.2 Prove the equality

M(f, 6) = f ld i21 + f ld121 - 1

of section 12.3.1.
12.3 Discuss the following straightforward approach to implementing the alpha-beta

algorithm in parallel: A process is created for each offspring of the root whose purpose is
to search that offspring's subtree using the alpha-beta algorithm. If enough processors
are available, then all processes are carried out simultaneously.

12.4 In procedure MIMD ALPHA BETA, an individual score table is assigned to each node
when a process is generated to search the subtree containing that node. This table is
initialized to the values in the score table of the node's parent. As a result, the information
necessary for a deep cutoff to occur is not available in general. In practice, however, a
node is not given a complete score table but rather just a small table containing the
scores for the two previous plies and the node itself. This means that the complete score
table for a node is actually distributed throughout the tree along the path from the root
to the node. With this structure it would be possible to obtain deep cutoffs as follows.
Suppose that during a search of the tree in Fig. 12.16 the following sequence occurs:
(a) the search of the left subtree of the root begins,
(b) the search of the right subtree begins, and
(c) the search of the left subtree completes, backing up a temporary score to the root.

At this point searching along some paths in the right subtree could be cut off, the
information indicating this being available in the score table of the root node. However,
in order to effect this deep cutoff, the information must be propagated down the right
subtree. Extend procedure MIMD ALPHA BETA to deal with this circumstance.

12.5 The alpha-beta algorithm owes its name to the fact that at any point during the tree
search the final value of the root lies between two values that are continually updated.
These two values are arbitrarily called alpha and beta. Consequently, the problem of
finding the principal continuation can be viewed as the problem of locating the root of a
monotonic function over some interval. This leads to the following alternative parallel
implementation of the alpha-beta algorithm. The interval (- co, + co) is divided into a
number of disjoint subintervals. A process is created for each subinterval whose purpose
is to search the game tree for the solution over its associated subinterval. If enough
processors are available, then each process can be assigned to a processor, and hence all
processes can be carried out independently and in parallel. Describe this algorithm
formally.

Sec. 12.7 Bibliographical Remarks 337

12.6 Discuss the merits of each of the following approaches to speed up game tree search:
(i) Computing the terminal node evaluation function in parallel.
(ii) Storing the scores of some terminal nodes in a special hash table to avoid having to

recompute them should these positions reoccur.
(iii) Storing moves that created cutoffs in a special table: If any of these moves occurs at a

later stage of the game, it is given priority by the search algorithm over other moves
from the same node.

12.7 Can you think of other models of parallel computation, besides the SM MIMD
computer, that can be used profitably to implement the alpha-beta algorithm in
parallel? For example, how can a tree of processors be used to search a game tree?

12.8 Assume that a sequential algorithm can traverse a game tree up to a depth d. Argue for or
against each of the following statements:
(i) A parallel algorithm allows that tree to be traversed in a shorter amount of time.
(ii) A parallel algorithm allows a tree of depth larger than d to be traversed in the same

amount of time.
12.9 The subset sum problem of example 12.1 is a representative of the class of decision

problems, where it is required to determine whether a solution satisfying a number of
constraints exists. Another example is the traveling salesman problem of problem 10.50.
Decision problems can sometimes be turned into optimization problems. The optimiza-
tion version of the traveling salesman problem calls for finding the Hamilton cycle of
smallest weight in a given weighted graph. Propose a parallel algorithm for solving this
problem based on the branch-and-bound approach (problem 1.13).

12.10 Suggest other problems that can be solved through state-space traversal and design
parallel algorithms for their solution.

12.7 B l B L l O G R A P H l C A L R E M A R K S

State-space traversal has been used to solve decision and optimization problems. Both kinds of
problems arise in a branch of computer science known as artijcial intelligence (AI). This is a
field of study concerned with programming computers to perform tasks normally requiring
human "intelligence." Since our understanding of the essence of intelligence is at best vague, A1
is largely defined by the kind of problems researchers and practitioners in that field choose to
work on. Examples of such problems include making computers understand natural languages,
prove mathematical theorems, play games of strategy, solve puzzles, and learn from previous
experience ([Shapiro]). Parallel algorithms for A1 problems are described in [Deering],
[Feldman], [Fennell], [Forgy], [Miura], [Reddy], [Rumelhart], [Stanfill], [Uhr], [Ullman],
and [Wah 11.

Programming computers to play games was one of the earliest areas of AI. As it did in the
past, this activity continues today to attract researchers for a number of reasons. The first and
most obvious of these is that the ability to play complex games appears to be the province of the
human intellect. It is therefore challenging to write programs that match or surpass the skills
humans have in planning, reasoning, and choosing among several options in order to reach
their goal. Another motivation for this research is that the techniques developed while
programming computers to play games may be used to solve other complex problems in real
life, for which games serve as models. Finally, games provide researchers in A1 in particular and
computer scientists in general with a medium for testing their theories on various topics ranging
from knowledge representation and the process of learning to searching algorithms and parallel
processing. Procedure MIMD ALPHA BETA is from [Akl 1). A number of parallel algorithms

338 Traversing Combinatorial Spaces Chap. 12

for traversing game trees, along with their empirical analyses, are described in [Akl 11, [Akl2],
[Baudet], [Finkel 11, [Finkel 23, [Fishburn], [Marsland I], [Marsland 21, and [Stockman].

Various parallel implementations of the branch-and-bound approach to solving optimi-
zation problems and analyses of the properties of these implementations can be found in
[Imai], [Kindervater], [Kumar], [Lai], [Li I], [Li 21, [Li 31, [Mohan], [Quinn], [Wah 21,
[Wah 33, and [Wah 41.

12.8 R E F E R E N C E S

[AKL 11
Akl, S. G., Barnard, D. T., and Doran, R. J., Design, analysis, and implementation of a
parallel tree search algorithm, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-4, No. 2, March 1982, pp. 192-203.

[AKL 21
Akl, S. G., and Doran, R. J., A comparison of parallel implementations of the Alpha-Beta
and Scout trees search algorithms using the game of checkers, in Bramer, M. A., Ed.,
Computer Game Playing, Wiley, Chichester, England, 1983, pp. 290-303.

[BAUDET]
Baudet, G. M., The design and analysis of algorithms for asynchronous multiprocessors,
Ph.D. thesis, Department of Computer Science, Carnegie-Mellon University, Pittsburgh,
April 1978.

[DEERING]
Deering, M. F., Architectures for AI, Byte, Vol. 10, No. 4, April 1985, pp. 193-206.

[FELDMAN]
Feldman, J. A., Connections, Byte, Vol. 10, No. 4, April 1985, pp. 277-284.

[FENNELL]
Fennell, R. D., and Lesser, V. R., Parallelism in artificial intelligence problem solving: A case
study of Hearsay 11, IEEE Transactions on Computers, Vol. C-26, No. 2, February 1977, pp.
98-111.

[FINKEL 11
Finkel, R. A., and Fishburn, J. P., Parallelism in alpha-beta search, Artijicial Intelligence,
VO~. 19, 1982, pp. 89-106.

[FINKEL 23
Finkel, R. A., and Fishburn, J. P., Improved speedup bounds for parallel alpha-beta search,
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-5, No. 1,
January 1983, pp. 89-92.

[FISHBURN]
Fishburn, .I. P., An analysis of speedup in distributed algorithms, Ph.D. thesis, Computer
Sciences Department, University of Wisconsin-Madison, Madison, May 1981.

[FORGY]
Forgy, C. L., Note on production systems and Illiac IV, Technical Report CMU-CS-80-130,
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, July 1980.

[IMAI]
Imai, M., Fukumara, T., and Yoshida, Y., A parallelized branch-and-bound algorithm:
Implementation and efficiency, Systems-Computers-Control, Vol. 10, No. 3, 1979, pp. 62-70.

12.8 References 339

[KINDERVATER]
Kindervater, G. A. P., and Trienekens, H. W. J. M., Experiments with parallel algorithms for
combinatorial problems, European Journal of Operational Research, Vol. 33, 1988, pp. 65-81.

[KUMAR]
Kumar, V., and Kanal, L., Parallel branch-and-bound formulations for AND/OR tree
search, IEEE nansactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-6, No. 6,
November 1984, pp. 768-778.

[LA11
Lai, T.-H., and Sahni, S., Anomalies in parallel branch-and-bound algorithms, Communica-
tions of the ACM, Vol. 27, No. 6, June 1984, pp. 594-602.

CLl 11
Li, G.-J., and Wah, B. W., How to cope with anomalies in parallel approximate branch-and-
bound algorithms, Proceedings of the National Conference on Artificial Intelligence, Austin,
Texas, August 1984, pp. 212-215, Association for Computing Machinery, New York, N.Y.,
1984.

[LI 21
Li, G.-J., and Wah, B. W., Computational efficiency of parallel approximate branch-and-
bound algorithms, Proceedings of the 1984 International Conference on Parallel Processing,
Bellaire, Michigan, August 1984, pp. 473-480, IEEE Computer Society, Washington, D.C.,
1984.

CLI 31
Li, G.-J., and Wah, B. W., MANIP-2 A multicomputer architecture for solving logic
programming problems, Proceedings of the 1985 International Conference on Parallel
Processing, St. Charles, Illinois, August 1985, pp. 123-130, IEEE Computer Society,
Washington, D.C., 1985.

[MARSLAND 1)
Marsland, T. A., and Campbell, M., Parallel search of strongly ordered game trees,
Computing Surveys, Vol. 14, No. 4, December 1982, pp. 533-551.

[MARSLAND 21
Marsland, T. A., and Popowich, F., Parallel game-tree search, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. PAMI-7, No. 4, July 1985, pp. 442-452.

CMIURAI
Miura, H., Imai, M., Yamashita, M., and Ibaraki, T., Implementation of parallel Prolog on
tree machines, Proceedings of the 1986 Fall Joint Computer Conference, Dallas, Texas,
November 1986, pp. 287-296, IEEE Computer Society, Washington, D.C., 1986.

[MOHAN]
Mohan, J., Experience with two parallel programs solving the traveling salesman problem,
Proceedings of the 1983 International Conference on Parallel Processing, Bellaire, Michigan,
August 1983, pp. 191-193, IEEE Computer Society, Washington, D.C., 1983.

CQUINNI
Quinn, M. J., and Deo, N., An upper bound for the speedup of parallel branch-and-bound
algorithms, Proceedings of the 3rd Conference on Foundations of Software Technology and
Theoretical Computer Science, Bangalore, India, December 1983, pp. 488-504.

[REDDY]
Reddy, D. R., Some numerical problems in artificial intelligence: Implications for complexity

340 Traversing Combinatorial Spaces Chap. 12

and machine architecture, in Traub, J. F., Ed., Parallel Numerical Algorithms, Academic, New
York, 1973.

[RUMELHART]
Rumelhart, D. E., and McClelland, J. L., Parallel Distributed Processing, Vols. 1 and 2, MIT
Press, Cambridge, Mass., 1986.

[SHAPIRO]
Shapiro, S. C., Ed., Encyclopedia of Artijicial Intelligence, Vols. 1 and 2, Wiley, New York,
1987.

[STANFILL]
Stanfill, C., and Waltz, D., Toward memory-based reasoning, Communications of the ACM,
Vol. 29, No. 12, December 1986, pp. 1213-1228.

[STOCKMAN]
Stockman, G. C., A minimax algorithm better than alpha-beta? Artijicial Intelligence, Vol.
12, 1979, pp. 179-196.

CUHRl
Uhr, L., Multi -Computer Architectures~or ArtiJicial Intelligence, Wiley, New York, 1987.

[ULLMAN]
Ullman, J. D., Flux, sorting, and supercomputer organization for A1 applications, Journal of
Parallel and Distributed Computing, Vol. 1, No. 2, November 1984, pp. 133-151.

[WAH 11
Wah, B. W., Ed., Special Issue on New Computers for Artificial Intelligence Processing,
Computer, Vol. 20, No. 1, January 1987.

[WAH 21
Wah, B. W., Li, G.-J., and Yu, C. F., The status of MANIP-a multicomputer architecture
for solving combinatorial extremum-search problems, Proceedings of the 1 lth Annual ACM
International Symposium on Computer Architecture, Ann Arbor, Michigan, June 1984, pp.
56-63, Association for Computing Machinery, New York, N.Y., 1984.

[WAH 31
Wah, B. W., Li, G.-J., and Yu, C. F., Multiprocessing of combinatorial search problems,
Computer, Vol. 18, No. 6, June 1985, pp. 93-108.

[WAH 43
Wah, B. W., and Ma, Y. W. E., MANIP-a multicomputer architecture for solving
combinatorial extremum search problems, IEEE Transactions on Computers, Vol. C-33, No.
5, May 1984, pp. 377-390.

Decision and Optimization

13.1 INTRODUCTION

In the previous chapter we saw how state-space traversal techniques can be used to
solve various decision and optimization problems. Recall that a decision problem asks
whether a solution satisfying some constraints exists. Also, given an objective
function, an optimization problem calls for finding an optimal solution, that is, one
that maximizes or minimizes the objective function. Our purpose in this chapter is to
present other ways to approach such problems. For illustration we use the problems
of job sequencing with deadlines and the knapsack problem. Our parallel solutions to
these problems rely on the ability to efficiently sort a sequence and compute its preJix
sums. The first of these operations was covered in detail in chapter 4. We devote a
large part of this chapter to a thorough study of the second operation first
encountered in chapter 2.

In section 13.2 it is shown how a number of different models can be used to
compute the prefix sums of a sequence. A decision problem bob sequencing with
deadlines) and an optimization problem (the knapsack problem) are addressed in
section 13.3.

13.2 COMPUTING PREFIX SUMS

A sequence of n numbers X = {x , , x , , . . . , xn- ,), where n 2 1, is given. We assume
throughout this chapter that n is a power of 2; in case it is not, then the sequence can
be padded with elements equal to zero in order to bring its size to a power of 2.
It is required to compute all n initial sums S = { so , s , , . . . , sn - , } , where
si = x , + x, + - . - + xi for i = 0, 1,. . . , n - 1. These sums are often referred to as
the preJix sums of X . Indeed, if the elements of X are thought of as forming a
string w = x,x, . . . xn- ,, then each si is the sum of those elements forming a prejix of
length i .

342 Decision and Optimization Chap. 13

Sequentially, the n prefix sums can be computed in O(n) time by the following
procedure.

procedure SEQUENTIAL SUMS (X, S)

Step 1: so +- x,.

Step 2: for i = 1 to n - 1 do
s i t S i - l + X i

end for.

This running time is optimal since R(n) steps are needed simply to read the input,
By contrast, when several processors are available, each capable of performing

the addition operation, it is possible to obtain the sequence S = (so, s,, . . . , s,-
significantly faster. Procedure PARALLEL SUMS shows how this is done.

procedure PARALLEL SUMS (X, S)

Step 1: for i = 0 to n - 1 do in parallel
Si + X i

end for.

Step 2: for j = 0 to (log n) - 1 do
for i = 2' to n - 1 do in parallel

s i t S i - 2 , + Si

end for
end for.

This procedure uses a scheme known as recursive doubling. In chapter 2 we saw how
this scheme can be implemented on a shared-memory SIMD computer. Procedure
ALLSUMS of section 2.5.2 requires n processors Po, P I , . . . , P,- ,. Initially, Pi holds
x i ; when the procedure terminates, Pi holds si. The procedure runs in O(1og n) time for
a cost of O(n log n). This cost is not optimal in view of the O(n) sequential operations
sufficient to compute the prefix sums.

13.2.1 A Specialized Network

The first question that comes to mind is: Do we really need the power of the shared-
memory model to implement procedure PARALLEL SUMS? A partial answer to this
question is provided in section 2.8. There it is suggested that recursive doubling can be
implemented on a special-purpose network of processors, as illustrated in Fig. 13.1 for
n = 8. Here each square represents a processor. There are 1 + log n rows, each with n
processors, that is, n + n log n processors in all. Assume that the processors in each
row are numbered from 0 to n - 1 and that the rows are numbered from 0 to log n.
Processor i in row j + 1 receives input from

(i) processor i in row j, and
(ii) processor i - 2' in row j, if i > 2'.

Sec. 13.2 Computing Prefix Sums 343

Figure 13.1 Recursive doubling implemented by special-purpose network.

Each processor is capable of computing the sum of its two inputs and of sending the
result to the next row of processors using the connections indicated. A processor
receiving only one input simply passes that input to the next row. The elements of X
enter the network from one end (one element per processor), and the outputs are
received at the other end. All prefix sums are computed in O(1og n) time. This running
time is the best possible in view of the R(1og n) lower bound derived in section 7.3.2.
The network's cost is O(n log2n). In other words, a model of computation weaker than
the shared memory is capable of achieving the same running time as procedure
ALLSUMS using a larger number of processors.

13.2.2 Using the Unshuffle Connection

It is possible to reduce the number of processors in the network to O(n) while
preserving the O(log n) running time. The idea, hinted at in problem 2.2, is to use a

344 Decision and Optimization Chap. 13

Figure 13.2 UnshufAe connection for computing prefix sums.

parallel computer with one row of processors and have it simulate the network of Fig.
13.1. All processors operate synchronously. At each step, the results of the com-
putation are fed back to the processors as input. Depending on the value of a mask
variable computed locally, a processor may produce as output the sum of its two
inputs (if mask = 1) or simply propagate one of them unchanged (if mask = 0). Such a
scheme is illustrated in Fig. 13.2, again for n = 8.

There are two kinds of nodes in Fig. 13.2:

(i) the square nodes represent processors Po, P I , . . . , P,- , capable of computing
the mask variable and the addition operation and

(ii) the circle nodes represent very simple processors capable of producing as output
two copies of their input; we denote the contents of these processors by yo, y,,
. . . , yn-1.

The square processors send their outputs to the circle processors via a perfect unshufle
interconnection. (The latter is obtained by reversing the orientation of the arrows in a
perfect shuffle mapping, as explained in problem 2.2.) Initially, yi = xi for i = 0, 1,. . . ,
n - 1 . During each iteration Pi receives yi and y i p , as input, except for Po, which
receives yo only. Now Pi computes the value of mask to determine whether to produce
yi + y i - , or yi as output. Referring to Fig. 13.2, mask = 1 during the first iteration for

Sec. 13.2 Computing Prefix Sums 345

all Pi , except Po, for which mask = 0. Once the Pi produce their outputs, the new
values of the yi are as follows:

Y4 = xo + x1

Y, = x2 + x3

y6 = X4 + X 5

y , = X 6 + X,.

During the second iteration, mask = 1 for all Pi except where i is a multiple of 4 and
the new values of the yi are

y, = x4 + x , + x, + x,.

During the third and final iteration, mask = 0 for those Pi where i is a multiple of 2
and mask = 1 for the rest. Following the computation by the Pi , yi = si for all i. All
prefix sums are therefore computed in O(1og n) time using O(n) processors for a cost of
O(n log n), which is not optimal.

It should be noted that the parallel computer just described is clearly weaker
than one with a shared memory. The comparison with the network of section 13.2.1,
however, is more difficult:

1. On the one hand, the present model may be considered weaker since the
interconnection it uses is not as specialized as the one in Fig. 13.1.

2. On the other hand, it may be considered stronger as it comprises more powerful
processors, having to compute the mask variable locally at each iteration and
behave according to its value.

346 Decision and Optimization Chap. 13

13.2.3 Prefix Sums on a Tree

We now describe a parallel algorithm for computing the prefix sums that combines
the advantages of those in the previous two sections without their disadvantages.
First, the algorithm is designed to run on a (binary) tree of processors operating
synchronously: A tree is not only less specialized than the network in section 13.2.1,
but in addition is a simpler interconnection than the perfect unshuffle. Second, the
algorithm involves no mask computation and hence requires very simple processors.

Let the inputs x,, x,, . . . , xn-, reside in the n leaf processors Po, P,, . . . , Pn-, of
a binary tree, one input to a leaf. When the algorithm terminates, it is required that Pi
hold si. During the algorithm, the root, intermediate, and leaf processors are required
to perform very simple operations. These are described for each processor type.

Root Processor

(1) if an input is received from the left child
then send it to the right child
end if.

(2) if an input is received from the right child
then discard it
end if.

Intermediate Processor

(1) if an input is received from the left and right children
then (i) send the sum of the two inputs to the parent

(ii) send the left input to the right child
end if.

(2) if an input is received from the parent
then send it to the left and right children
end if.

Leaf Processor Pi

(1) s i + xi.
(2) send the value of xi to the parent.
(3) if an input is received from the parent

then add it to si
end if.

Note that the root and intermediate processors are triggered to action when they
receive an input. Similarly, after having assigned xi to si and sent si to its parent, a leaf
processor is also triggered to action by an input received from its parent. After the
rightmost leaf processor has received log n inputs, the values of so, s,, . . . , sn-, are the
prefix sums of x,, x,, . . . , xn- ,.

Sec. 13.2 Computing Prefix Sums

Example 13.1

The algorithm is illustrated in Fig. 13.3 for the input sequence X = (1, 2, 3 , 4) .

Analysis. The number of steps required by the algorithm is the distance
between the leftmost and rightmost leaves, which is 2 log n. Thus t(n) = O(1og n). Since
p(n) = 2n - 1, c(n) = O(n log n). This cost is not optimal. It is not difficult, however, to
obtain a cost-optimal algorithm by increasing the capabilities of the leaf processors.

Let a processor tree with N leaves Po, P,, . . . , PN-, be available, where n 2 N.
We assume for simplicity that n is a multiple of N , although the algorithm can
easily be adapted to work for all values of n. Given the input sequence
X = {xO, x,, . . . , xn- ,), leaf processor Pi initially contains the elements
Xi(nlN) + ,, . . . , +(n,N, - The root and intermediate processors behave exactly as
before, whereas the leaves now execute the steps given in the next procedure. In what
follows, vi denotes the number of 1 bits in the binary representation of i, that is,

v0 = 0

and m = n/N.

Leaf Processor Pi

(1) Compute all prefix sums of xi,,,, xi,,,+,, . . . , store the results in sin,
sim+ l r . . . , sim + m- and send s ~ , + ~ - , to the parent processor.

(2) Set a temporary sum ri to zero.
(3) if an input is received from the parent

then add it to ri
end if.

(4) if ri is the sum of exactly vi inputs received from the parent
then add ri to each of simr sin + I , . . . , sim + m - 1

end if.

In order to understand the termination condition in 4, note that vi is precisely the
number of roots of subtrees to the left of Pi that will send input to Pi.

Analysis. The number of data that are required by the algorithm to travel up
and down the tree is independent of the number of elements stored in each leaf
processor. It follows that the running time of the algorithm is the sum of

1. the time required by leaf Pi to compute sim, sim+ ,, . . . , sim+,,,- , and then send
si,+,-, to its parent [i.e., O(n/N) time] since all leaves execute this step
simultaneously;

2. the time required by the rightmost leaf PN-, to receive its final input [i.e.,
O(1og N) time]; and

3. the time required by the rightmost leaf PN-, (the last processor to terminate) to
add rN-, to each of the sums it contains [i.e., O(n /N) time].

Decision and Optimization Chap. 13

Figure 13.3 Computing prefix sums on tree of processors.

Thus t(n) = O(n/N) + O(1og N). Since p(n) = 2N - 1, c(n) = O(n + N log N). It fol-
lows that the algorithm is cost optimal if N log N = O(n). For example,
N = O(n/log n) will suffice to achieve cost optimality.

It should be noted here that the algorithm's cost optimality is due primarily to
the fact that the time taken by computations within the leaves dominates the time
required by the processors to communicate among themselves. This was achieved by
partitioning the prefix sum problem into disjoint subproblems that require only a
small amount of communication. As a result, the model's limited communication
ability (subtrees are connected only through their roots) is overcome.

Sec. 13.2 Computing Prefix Sums 349

13.2.4 Prefix Sums on a Mesh

We conclude this section by showing how the prefix sums of a sequence can be
computed on a mesh-connected array of processors. Our motivation to study a
parallel algorithm to solve the problem on this model is due to two reasons:

1. As shown in the conclusion of section 5.3.2, when the time taken by a signal to
travel along a wire is proportional to the length of that wire, the mesh is
preferable to the tree for solving a number of problems. These problems are
characterized by the fact that their solution time is proportional to the distance
(i) from root to leaf in the tree and (ii) from top row to bottom row in the mesh.
The problem of computing the prefix sums of an input sequence is one such
problem.

2. As indicated in section 4.8, a mesh with n processors can sort a sequence of n
inputs faster than a tree with n leaves regardless of any assumptions we make
about the signal propagation time along the wires. This is particularly relevant
since sorting is an important component of our solution to the problems
described in the next section.

For ease of presentation, we assume in what follows that n is a perfect square
and let m = n1I2. The prefix sums of X = {x,, x , , . . . , x,- ,} can be computed on an
m x m mesh-connected computer as follows. Let the n processors Po, P,, . . . , P,-, be
arranged in row-major order. Initially, Pi contains xi. When the algorithm terminates,
Pi contains si. The algorithm consists of three steps. In the first step, with all rows
operating in parallel, the prefix sums for the elements in each row are computed
sequentially: Each processor adds to its contents the contents of its left neighbor. In
the second step, the prefix sums of the contents in the rightmost column are computed.
Finally, again with all rows operating in parallel, the contents of the rightmost
processor in row k - 1 are added to those of all the processors in row k (except the
rightmost). The algorithm is given in what follows as procedure MESH PREFIX
SUMS. In it we denote the contents of the processor in row k and column j by ukj ,
whereO<k<m- 1 a n d O < j < m - 1.

procedure MESH PREFIX SUMS (X, S)

Step 1: for k = 0 to m - 1 do in parallel
f o r j = l t o m - 1 d o

"hj "hj + " k , j - 1

end for
end for.

Step 2: for k = 1 to m - 1 do
" k ,m-1 + "k ,m-1 + U k - 1 . m - 1

end for.

Decision and Optimization Chap. 13

Step 3: for k = 1 to m - 1 do in parallel
for j = m - 2 downto 0 do

ukj + uk j + U k - 1.m- I

end for
end for.

Note that in step 3, u,- ,,,-, is propagated along row k from the processor in
column m - 1 to that in column 0, each processor adding it to its contents and passing
it to its left neighbor.

Analysis. Each step requires O(m) time. Therefore, t(n) = O(n1I2). Since
p(n) = n, c(n) = O(n3I2), which is not optimal.

Example 13.2

Let n = 16. The behavior of procedure MESH PREFIX SUMS is illustrated in Fig. 13.4.
In the figure, Aij = xi + xi+ + . . . + xj.

Now assume that an N1I2 x N1IZ mesh of processors is available, where N < n.
To compute the prefix sums of X = { x o , x , , . . . , x , - ,) , each processor initially
receives n/N elements from X and computes their prefix sums. Procedure MESH

(a) INITIALLY (b) AFTER STEP 1

(c) AFTER STEP 2 (d) AFTER STEP 3

Figure 13.4 Computing prefix sums using procedure MESH PREFIX SUMS.

Sec. 13.3 Applications 351

PREFIX SUMS can now be modified, in the same way as the tree algorithm in the
previous section, so that when it terminates, each processor contains n/N prefix sums
of X. The modified procedure has a running time of O(n/N) + O(N1I2) and a cost of
O(n) + O(N3I2). This cost is optimal when N = O(n2I3).

13.3 APPLICATIONS

In this section we show how an efficient algorithm for computing the prefix sums of a
sequence can be used to solve decision and optimization problems. Two problems are
chosen for illustration: a decision problem, namely, job sequencing with deadlines, and
an optimization problem, namely, the knapsack problem. For each of these problems
we give an algorithm that runs on a tree-connected parallel computer. A crucial step
in both algorithms is the computation of the prefix sums of a sequence as described in
section 13.2.3. We conclude this section by showing that despite their simplicity the
tree solutions to the two optimization problems are not as efficient as their mesh
counterparts.

13.3.1 Job Sequencing with Deadlines

A set of n jobs J = {j,, j,, . . . , jn- ,} is given to be processed on a single machine. The
machine can execute one job at a time, and when it is assigned a job, it must complete
it before the next job can be processed. With each job ji is associated

(i) a processing time ti and
(ii) a deadline di by which it must be completed.

A schedule is a permutation of the jobs in J that determines the order of their
execution. A schedule is said to be feasible if each job finishes by its deadline. The
question is: Given n jobs {j,, j,, . . . , jn- ,}, with processing times {to, t,, . . . , tn- I) and
deadlines {do, dl,. . . , dn- ,}, does a feasible schedule exist? It turns out that this
question can be answered in the affirmative if and only if any schedule where the jobs
are executed in nondecreasing order of deadlines is feasible. Therefore, to solve the
problem, it suffices to arrange the jobs in order of nondecreasing deadlines and test
whether this yields a feasible schedule. In case it does, we know that the answer to the
question is yes, otherwise the answer is no. Sequentially, this algorithm requires
O(n log n) time to sort the jobs and then O(n) time to test whether each job can be
completed by its deadline.

We are now ready to present our parallel algorithm for solving the sequencing
problem based on the preceding idea. The algorithm runs on a tree-connected parallel
computer with leaf processors Po, P, , . . . , Pn- ,. We assume for notational simplicity
that in the original statement of the problem, the jobs are already arranged in order of
nondecreasing deadlines; in other words,

352 Decision and Optimization Chap. 13

Initially, leaf processor Pi contains t i and d,. The algorithm is given as procedure
TREE SEQUENCING.

procedure TREE SEQUENCING (J, answer)

Step 1: Compute so, s , , . . . ,s,- ,, the prefix sums of t,, t , , . . . , t,_,.

Step 2: (i) leaf processor Pi
if si < di
then send "yes" to parent
else send "no" to parent
end if

(ii) intermediate processor
if inputs from both children are "yes"
then send "yes" to parent
else send "no" to parent
end if

(iii) root processor
if inputs from both children are "yes"
then answer t "feasible schedule exists"
else answer t "no feasible schedule"
end if.

Example 13.3

Let n = 4 with { to , t , , t , , t , } = (1 , 3, 3, 4) and {d, , d l , d, , d3 j = (3, 5, 7 , 9) . Thus
{ S O , ~ 1 , ~ 2 , ~ 3) = { 1 ,4 ,7 ,11 } . We have so < do, s, < d l , and s , < d, ; however, s3 > d, and
a feasible schedule does not exist for this problem.

Analysis. Both steps 1 and 2 require O(1ogn) operations. However, the
running time of the algorithm is dominated by the time taken to initially sort the jobs
in the leaves in order of nondecreasing deadlines. This time is known from section 4.8
to be R(n).

13.3.2 The Knapsack Problem

We are given a knapsack that can carry a maximum weight of Wand a set of n objects
A = (a, , a , , . . . , an- ,) whose respective weights are {w,, w , , . . . , w n - Associated
with each object is a profit, the set of profits being denoted by { p , , p , , . . . , p,- ,}. If we
place in the knapsack a fraction zi of the object whose weight is w i , where 0 < zi < 1,
then a profit of zipi is gained. Our purpose is to fill the knapsack with objects (or
fractions thereof) such that

(i) the total weight of the selected objects does not exceed W and
(ii) the total profit gained is as large as possible.

Sec. 13.3 Applications 353

Formally, given 2n + 1 positive numbers w,, w,, . . . , wn-,, p,, p,, . . . , pn- ,, it is
required to maximize the quantity

subject to the two conditions

1. 0 < zi < 1 for all i and
2. 1;:; zi X Wi < w

An optimal solution is a sequence Z = {z,, z,, . . . , zn- ,} that maximizes Q while
satisfying conditions 1 and 2. Such a solution is obtained if the objects are examined in
nonincreasing order of the ratios pi/wi. If an object whose turn has come to be
considered fits in the remaining portion of the knapsack, then the object is included;
otherwise only a fraction of the object is placed in the knapsack. Sequentially, this
requires O(n log n) time to sort the profits and weights and then O(n) time to examine
all the objects one at a time.

Our parallel algorithm for finding the optimal sequence {z,, z,, . . . , zn- ,) uses
this approach. It runs on a tree-connected parallel computer with leaf processors Po,
PI, . . . , Pn-, . We assume for notational simplicity that in the original statement of the
problem, the objects are already sorted in order of nonincreasing profit to weight
ratios, in other words,

Initially, leaf processor Pi contains wi, pi, and W The algorithm is given in what
follows as procedure TREE KNAPSACK. When the procedure terminates, the
solution {z,, z,, . . . ,z,-,) resides in the leaves. Let s-, = 2W

procedure TREE KNAPSACK (A, W! 2)

Step 1: (1.1) Compute so, s,, . . . , sn- ,, the prefix sums of w,, w , , . . . , wn-,
(1.2) for i = 1 to n - 1 do in parallel

Pi computes si-
end for.

Step 2: for i = 0 to n - 1 do in parallel
if si < W
then z i t 1
else if si > W and si- < W

then zi + (W - si- ,)/wi
else zi + 0
end if

end if
end for. [7

354 Decision and Optimization Chap. 13

Note that the total profit Q may be computed at the root as follows:

(i) Each leaf processor Pi computes

profit, t zi x pi

and sends profit, to its parent.
(ii) Each intermediate processor adds the two inputs received from its children and

sends the result to its parent.
(iii) The root adds the two inputs received from its children; this is Q.

Example 13.4

Let n = 4 with {w, , w , , w,, w,} = {5 , 9, 2, 41, {p, , p,, p,, p,} = (100, 135, 26, 201, and
W = 15. Thus (so, s,, s,, s,) = (5 , 14, 16, 20). Since so < W and s , < W, z o = z l = 1 . Also
s, > Wand therefore z , = (15 - 14112 = 0.5. Finally, s , > W and hence z , = 0.

Analysis. Steps 1 and 2 require O(1ogn) and O(1) steps, respectively.
However, the running time of the algorithm is dominated by the time taken to initially
sort the profits and weights in the leaves in order of their nonincreasing ratios. This
time is known from section 4.8 to be R(n).

13.3.3 Mesh Solutions

As we saw in the previous two sections, the tree solutions require at least R(n) time if
the input sequences are not properly sorted. Our purpose here is to briefly show that
in these circumstances a mesh-connected parallel computer is a more attractive model
for solving these decision and optimization problems.

Assume that the inputs to the job sequencing and knapsack problems are not
sorted initially, as required by procedures TREE SEQUENCING and TREE
KNAPSACK, respectively. If an n'IZ x n1I2 mesh-connected computer is available,
then

(i) an input sequence with n elements can be sorted on the mesh in O(n'i2) time as
indicated in section 4.8 and

(ii) each of the two procedures TREE SEQUENCING and TREE KNAPSACK
can be easily modified to run on the mesh in O(n1I2) time.

It follows that the overall running time required to solve each of the job sequencing
and knapsack problems is

This is significantly faster than the time that would be required by the corresponding
tree algorithms. Since p(n) = n, it follows that c(n) = O(n3I2). This cost is not optimal
in view of the O(n1ogn) running time sufficient to solve these two problems
sequentially.

Sec. 13.4 Problems 355

Assume now that an N'I2 x N1J2 mesh is available, where N < log2n. We know
from section 4.8 that a mesh with this many processors can sort an n-element sequence
with optimal cost O(n log n). Since log2n < n2I3 for sufficiently large n, we also have
from section 13.2.4 that the prefix sums of an n-element sequence can be computed on
this N1I2 x N~~~ mesh with an optimal cost of O(n). These two operations, namely,
sorting and computing the prefix sums, dominate all others in solving the job
sequencing and knapsack problems. It follows that these two problems can be solved
optimally on a mesh of processors.

13.4 PROBLEMS

13.1 Are the "circle" processors in Fig. 13.2 really needed?
13.2 Do the computers described in sections 13.2 and 13.3 belong to the SIMD or MIMD

class?
133 State formally the modified procedure MESH PREFIX SUMS described at the end of

section 13.2.4 and whose cost is optimal.
13.4 A number so and two sequences of numbers {a, , a,, . . . , a,} and (b, , b,, . . . , b,} are given.

It is required to compute the sequence {s,, s,, . . . , s,) from the recurrence

Sequentially, this can be done in O(n) time. Show how procedure PARALLEL SUMS
can be modified to produce the desired sequence in O(logn) time on an n-processor
parallel computer. Define your model of computation.

135 Repeat problem 13.4 for the following computations:
(a) si = si-, x a,
(b) si = min(si- ,, ai)
(c) si = max(si- ,, ai)
(d) si = aisi-, + bisi-,
(e) si = (aisi- + bi)/(cisi - , + di)
(f) si = (sk , + a y 2

13.6 Let so and {a, , a,,. . . ,a ,) be logical variables taking the value true or false. Repeat
problem 13.4 for the following computations:
(a) si = si - , and ai
(b) si = st - , or ai
(c) si = s ~ - ~ xor ai

13.7 Prove that a feasible schedule exists if and only if any schedule where the jobs are
executed in nondecreasing order of deadlines is feasible.

13.8 Modify procedure TREE SEQUENCING for the case where N = log n processors are
available to perform both the initial sorting as well as steps 1 and 2. Analyze the resulting
procedure and discuss its cost optimality.

13.9 Consider the following variant of the job sequencing with deadlines problem. With each
job j i is associated a profit pi > 0. Profit pi is earned if and only ifjob ji is completed by its
deadline. It is required to find a subset of the jobs satisfying the following two conditions:
(i) all jobs in the subset can be processed and completed by their deadlines and
(ii) the sum of the profits earned is as large as possible.

356 Decision and Optimization Chap. 13

Assuming that t i = 1 for all i, describe a parallel algorithm for finding an optimal
solution.

13.10 Prove that an optimal solution to the knapsack problem is obtained if the objects are
examined in nonincreasing order of the profit-to-weight ratios.

13.11 Repeat problem 13.8 for procedure TREE KNAPSACK.
13.12 In a variant of the knapsack problem, the condition that 0 ,< z i ,< 1 is replaced with

z i = 1 or zi = 0, that is, the ith object is either included in the knapsack or not included.
Derive a parallel algorithm for this variant known as the 0-1 knapsack problem.

13.13 Consider the problem of maximizing the function of n variables

where gi(0) = 0 and gi (x i) 3 0 subject to the conditions
(i) CI=, x i = x and

(ii) x i 2 0 for all i.
One method for solving this problem is dynamic programming. In it the sequence f l (x) ,
f i (x), . . . , f , (x) is constructed from

where f,(x) = 0. The sequence x, (x) , x2(x), . . . , xn(x) is obtained in this way, where x i (x) is
the value that maximized gi (x i) + J - ,(x - xi) . Computationally, x i (x) is found by
probing the range [0, x] at equal subintervals. Derive a parallel version of this algorithm.

13.5 BlBL lOGRAPHlCAL R E M A R K S

As mentioned in chapter 2, the problem of computing in parallel the prefix sums of a sequence
has received considerable attention due to its many applications. The parallel computer in Fig.
13.2 was proposed in [Stone]. Other algorithms for a variety of models and their applications
are described in [Akl 11, [Akl2], [Dekel], [Fich], [Goldberg], [Kogge 11, [Kogge 21,
[Kruskal 11, [Kruskal 23, [Ladner], [Meijer 11, [Reif], [Schwartz], and [Wagner]. The tree-
based algorithm of section 13.2.3 is from [Meijer 21.

All these algorithms exploit the associativity of the addition operation in order to
compute the prefix sums. It is shown in [Kogge 21 that given two sequences of inputs
{a , , a , , . . . , a , - ,) and (b,, b,, . . . , b,- ,), a recursive doubling algorithm can be used to
compute, in logarithmic parallel time, outputs {so, s,, . . . , s,- ,} of the form

Here f and g are functions that have to satisfy the following restrictions:

1. f is associative, that is, f (x , f (y , z)) = f u (x , y), z) ;
2. g distributes over f; that is, g(x, f (y , z)) = f (g (x , y), g(x, z)); and
3. g is semiassociative, that is, there exists a function h such that g(x, g(y, z)) = g(h(x, y), 2).

Sec. 13.6 References 357

For example, if f is addition and g is multiplication, the algorithm computes the first-order
recurrences

If a, = 1 for all i, the sis thus computed are the prefix sums of {b,, b,, . . . , b,- ,}. The results in
section 13.2 imply that all recurrences with functions f and g as described in the preceding can
also be computed in O(1og n) time on an n-leaf tree and O(nl'') time on an nl/' x n1I2 mesh. In
particular, any binary associative operation such as multiplication, computing the maximum,
computing the minimum, and, or, xor, and so on, can replace addition in these algorithms.
Several other examples are provided in [Stone].

The need to compute the sis for various functions f and g arises in many applications.
Two such applications are described in [Meijer 21, on which section 13.3 is partly based. Other
applications are mentioned in [Fich], [Kogge 11, [Kogge 21, [Kruskal 11, [Ladner], [Reif],
and [Stone]. They include the evaluations of polynomials, general Horner expressions, and
general arithmetic formulas; the solution of linear recurrences; carry look-ahead adder circuits;
transforming sequential circuits into combinatorial circuits; the construction of fast Fourier
transform circuits; ranking and packing problems; scheduling problems; and a number of
graph-theoretic problems such as finding spanning forests, connected components, biconnected
components, and minimum-weight spanning trees. Also of interest is the related work on
computing the logical or of n bits ([Cook]), general arithmetic expressions ([Brent] and
[Winograd]), linear recurrences ([Hyafil]), and rational expressions ([Kung]).

Decision and optimization problems are treated in [Horowitz], [Lawler], and [Papadi-
mitriou]. Most decision problems such as the traveling salesman problem (problem 10.50) and
the subset sum problem (example 12.1) are NP-complete. Their optimization counterparts
(problems 12.9 and 13.12) are said to be NP-hard. We mentioned in section 10.8 that all known
sequential algorithms for these problems run in exponential time, and all known parallel
algorithms have exponential cost; see, for example [Karnin], [Kindervater], [Mead], and
[Mohan]. However, because of their many applications, solutions to these problems are needed
in practice. Fast approximation algorithms are therefore used in these cases, as illustrated in
problem 1.14 and in [Horowitz] and [Papadimitriou]. There are many kinds of approximation
algorithms. For example, an approximation algorithm may provide a solution that is
guaranteed to be very close to the optimal solution. Alternatively, the solution may be
guaranteed to be optimal with a certain probability. Or the solution may combine the
preceding two properties, that is, contain at most a certain amount of error with a known
probability. Parallel approximation algorithms are described in [Cole], [Felten], and [Peters].
Parallel implementations of dynamic programming are proposed in [Gilmore] and
[Kindervater].

13.6 R E F E R E N C E S

[AKL 11
Akl, S. G., Parallel Sorting Algorithms, Academic, Orlando, Fl., 1985.

[AKL 21
Akl, S. G., and Meijer, H., On the bit complexity of parallel computations, Integration: The
VLSI Journal, Vol. 6, No. 2, July 1988, pp. 201-212.

358 Decision and Optimization Chap. 13

[BRENT]
Brent, R. P., The parallel evaluation of general arithmetic expressions, Journal of the ACM,
Vol. 21, No. 2, April 1974, pp. 201-206.

[COLE]
Cole, R., and Vishkin, U., Approximate parallel scheduling Part I: The basic technique with
applications to optimal parallel list ranking in logarithmic time, SIAM Journal on
Computing, Vol. 17, No. 1, February 1988, pp. 128-142.

[COOK]
Cook, S., and Dwork, C., Bounds on the time for parallel RAM'S to compute simple
functions, Proceedings of the 14th Annual ACM Symposium on Theory of Computing, San
Francisco, California, May 1982, pp. 231-233, Association for Computing Machinery, New
York, N.Y., 1982.

[DEKEL]
Dekel, E., and Sahni, S., Binary trees and parallel scheduling algorithms, IEEE Transactions
on Computers, Vol. C-32, No. 3, March 1983, pp. 307-315.

[FELTEN]
Felten, E., Karlin, S., and Otto, S. W., The traveling salesman problem on a hypercubic
MIMD computer, Proceedings of the 1985 International Conference on Parallel Processing,
St. Charles, Illinois, August 1985, pp. 6-10, IEEE Computer Society, Washington, D.C.,
1985.

[FICH]
Fich, F. E., New bounds for parallel prefix circuits, Proceedings of the 15th Annual ACM
Symposium on Theory of Computing, Boston, Massachusetts, May 1983, pp. 100-109,
Association for Computing Machinery, New York, N.Y., 1983.

[GILMORE]
Gilmore, P. A., Structuring of parallel algorithms, Journal of the ACM, Vol. 15, No. 2, April
1968, pp. 176-192.

[~ L D B E R G]

Goldberg, A. V., Efficient graph algorithms for sequential and parallel computers, Ph.D.
thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, Cambridge, Mass., February 1987.

[HOROWITZ]
Horowitz, E., and Sahni, S., Fundamentals of Computer Algorithms, Computer Science Press,
Rockville, Md., 1978.

[HYAFIL]
Hyafil, L., and Kung, H. T., The complexity of parallel evaluation of linear recurrences,
Journal of the ACM, Vol. 24, No. 3, July 1977, pp. 513-521:

[KARNIN]
Karnin, E. D., A parallel algprithm for the knapsack problem, IEEE Transactions on
Computers, Vol. C-33, No. 5, May 1984, pp. 404-408.

[KINDERVATER]
Kindervater, G. A. P., and Trienekens, H. W. J. M., Experiments with parallel algorithms for
combinatorial problems, European Journal of Operational Research, Vol. 33, 1988, pp. 65-81.

Sec. 13.6 References 359

[KWE 11
Kogge, P. M., Parallel solution of recurrence problems, IBM Journal of Research and
Development, March 1974, pp. 138-148.

[KWE 21
Kogge, P. M., and Stone, H. S., A parallel algorithm for the efficient solution of a general class
of recurrence equations, IEEE 3ansactions on Computers, Vol. C-22, No. 8, August 1973, pp.
786-792.

[KRUSKAL 11
Kruskal, C. P., Rudolph, L., and Snir, M., The power of parallel prefix, IEEE Transactions on
Computers, Vol. C-34, No. 10, October 1985, pp. 965-968.

[KRUSKAL 21
Kruskal, C. P., Madej, T., and Rudolph, L., Parallel prefix on fully connected direct
connection machines, Proceedings of the 1986 International Conference on Parallel Process-
ing, St. Charles, Illinois, August 1986, pp. 278-283, IEEE Computer Society, Washington,
D.C., 1986.

[KUNG]
Kung, H. T., New algorithms and lower bounds for the parallel evaluation of certain rational
expressions and recurrences, Journal of the ACM, Vol. 23, No. 2, April 1976, pp. 252-261.

[LADNER]
Ladner, R. E., and Fischer, M. J., Parallel prefix computation, Journal of the ACM, Vol. 27,
No. 4, October 1980, pp. 831-838.

[LAWLER]
Lawler, E. L., Combinatorial Optimization: Networks and Matroids, Holt, Rinehart &
Winston, New York, 1976.

[MEAD]
Mead, C. A., and Conway, L. A., Introduction to VLSI Systems, Addison-Wesley, Reading,
Mass., 1980.

[MEIJER 11
Meijer, H., and Akl, S. G., Bit serial addition trees and their applications, Computing, Vol. 40,
1988, pp. 9-17.

[MEIJER 23
Meijer, H., and Akl, S. G., Optimal computation of prefix sums on a binary tree of processors,
International Journal of Parallel Programming, Vol. 16, No. 2, April 1987, pp. 127-136.

[MOHAN]
Mohan, J., Experience with two parallel programs solving the traveling salesman problem,
Proceedings of the 1983 International Conference on Parallel Processing, Bellaire, Michigan,
August 1983, pp. 191-193, IEEE Computer Society, Washington, D.C., 1983.

[PAPADIMI~U~U]
Papadimitriou, C. H., and Steiglitz, K., Combinatorial Optimization, Prentice-Hall,
Englewood Cliffs, N.J., 1982.

[PETERS]
Peters, J., and Rudolph, L., Parallel approximation schemes for subset sum and knapsack
problems, Acta Informatica, Vol. 24, 1987, pp. 417-432.

360 Decision and Optimization Chap. 13

[REIF]
Reif, J. H., Probabilistic parallel prefix computation, Proceedings of the 1984 International
Conference on Parallel Processing, Bellaire, Michigan, August 1984, pp. 291-298, IEEE
Computer Society, Washington, D.C., 1984.

[SCHWARTZ]
Schwartz, J. T., Ultracomputers, ACM Transactions on Programming Languages and Systems,
Vol. 2, No. 4, October 1980, pp. 484-521.

[STONE]
Stone, H. S., Ed., Introduction to Computer Architecture, Science Research Associates,
Chicago, 1980.

[WAGNER]
Wagner, R., and Han, Y., Parallel algorithms for bucket sorting and the data dependent
prefix problem, Proceedings of the 1986 International Conference on Parallel Processing, St.
Charles, Illinois, August 1986, pp. 924-930, IEEE Computer Society, Washington, D.C.,
1986.

[WINOGRAD]
Winograd, S., On the parallel evaluation of certain arithmetic expressions, Journal of the
ACM, Vol. 22, No. 4, October 1975, pp. 477-492.

The Bit Complexity
of Parallel Computations

14.1 INTRODUCTION

The theoretical models of computation commonly used to design and analyze
algorithms, whether sequential or parallel, are usually based on two important
assumptions.

1. The first of these assumptions is that the size of the smallest addressable unit in
memory, or word, is fixed. On a binary computer, for example, each word has
length b bits for some constant b.

2. The second assumption is that the entire word is available at once. Again for a
binary computer, this means that all b bits are accessible when needed.

As a result of these two assumptions, all fundamental operations on pairs of words,
such as comparison, addition, and multiplication, take a constant amount of time
on conventional models of computation. All previous chapters make assumptions 1
and 2.

The most obvious reason (and indeed a good one) for including these
assumptions in the theoretical models is that they are a faithful reflection of reality.
Existing digital computers have a fixed-size word, and all digits of a word can be
reached simultaneously. This is not to say that there are no situations where the
preceding two assumptions do not hold. For many applications, we may want to
make the size of a word variable, and/or the digits forming a word may not all be
available at the same time. In these cases, the theoretical models need to be modified
to count digit operations, while in practice software is used to enhance the existing
fixed-size hardware. The net effect-in both theory and practice-is that the time
required by operations on pairs of words is no longer a constant but rather a function
that grows at least linearly with the word size.

The purpose of this concluding chapter is to describe a number of architectures
that are specifically designed to handle those situations where the conventional

362 The Bit Complexity of Parallel Computations Chap. 14

assumptions do not hold, that is, where

1. the word size is variable and/or
2. the digits forming a word arrive serially, that is, one digit every time unit.

Although the concepts presented henceforth are applicable to all data types and
numbering systems, we shall assume for concreteness that the data are integers
expressed as strings of bits, and we shall take operations on bits as the basic
operations.

The following problems are considered:

1. adding n b-bit integers;
2. multiplying two b-bit integers;
3. computing the prefix sums of a sequence of n b-bit integers;
4. multiplying two n x n matrices of b-bit integers;
5. determining the kth smallest of a sequence of n b-bit integers; and
6. sorting n b-bit integers into nondecreasing order.

The solutions to these problems are all based on the concept of "on-the-fly" use of the
input and intermediate bits. To be specific, for each problem we describe a special-
purpose architecture, or network, that processes bits as they arrive at the interface with
the outside world. The concept is also applied within the network through pipelining
until the output is produced. This is illustrated in Fig. 14.1. The networks are obtained
by interconnecting a collection of simple devices known as gates. A gate receives two
bits as input, computes a function of these two bits, and produces a single bit as
output. This output may be one of another gate's two inputs. In analyzing these
networks, we use the following measures:

1. Number of processors used: This is equal to the number of gates used to build
the network.

2. Solution time: This is the time required by a network to produce its output, that
is, the time elapsed from the moment the first input bit enters the network to the
moment the last output bit leaves the network. The unit of time used in our
analysis is the time required by a gate to produce its output.

3. Cost: This is the product of the previous two measures.

From the preceding description, it is clear that we view these networks as parallel
algorithms. These algorithms receive their input words in parallel, each word being
presented one bit every time unit (i.e., bit serially), hence the title of this chapter.

The remainder of this chapter is organized as follows. We begin in section 14.2
by describing a basic network that serves as a building block for most subsequent
networks. Each of the following sections is devoted to one of the problems listed in the
preceding.

Sec. 14.2 Adding Two Integers 363

INPUT WORD 1 1 1001 01

INPUT WORD 2 1001 001

INPUT WORD n 10001 01

101 01 OUTPUT WORD 1

0001 0 OUTPUT WORD 2

11 010 OUTPUT WORD rn

Figure 14.1 Network for processing variable-size input words arriving bit serially.

14.2 ADDING TWO INTEGERS

Assume that we want to add two b-bit integers x and y whose binary representations
are

~ (b - 1) x(b - 2). . . x(0) and y(b - 1) y(b - 2). . .YO,
respectively. The addition can be performed by a network known as a serial adder
(SA). This network consists of a number of gates that perform on pairs of bits the
operations and, or, and xor defined as follows (the first two of these operations on bits
were defined in chapters 5 and 10):

0 and 0 = 0, 0 and 1 = 0, 1 and 0 = 0, 1 and 1 = 1,

OorO=O, O o r l = l , - l o r O = l , 1 or 1 = 1,

0 xor 0 = 0, 0 xor 1 = 1, 1 xor 0 = 1, 1 xor 1 = 0.

The behavior of the serial adder network is explained with the help of Fig. 14.2.
Integers x and y are fed into the network bit serially, least significant bit first.
Denoting the bits available at time i at inputs u, v, and c and outputs s and r by ui, vi,
ci, si, and ri, respectively, we have

ui = x(i) for i 2 0,

vi = y(i) for i 2 0,

si = (ui-, xor vi-l) xor c ~ - ~ for i 2 1,

ri = (ui- , and vi- ,) or ((ui-, or vi- ,) and ci- ,) for i 2 1,

ci = ri for i 2 1,

Co = 0.

The network of Fig. 14.2 therefore behaves as required: The sum of x and y is
produced one bit at a time at output s, starting with the least significant bit at time

The Bit Complexity of Parallel Computations Chap. 14

Figure 14.2 Serial adder.

Figure 14.3 An SA-box.

i = 1. The network has the following properties:

1. It can be built using a constant number of gates.
2. Each gate has a fixed fan-out, that is, the number of other gates to which it needs

to send an output signal is a constant.
3. The integers x and y can be arbitrarily large.
4. The bits of x and y arrive serially, and the sum of x and y is produced bit serially.
5. The sum is produced in O(b) time.
6. Given that the running time is O(b) and the number of processors is 0(1), the

network's cost is O(b). This cost is optimal since R(b) operations are needed to
receive the input.

For simplicity, we shall represent the serial adder of Fig. 14.2 as shown in Fig. 14.3 (i.e.,
we omit input c and output r and the feedback line connecting them) and refer to it as
an SA-box.

14.3 ADDING n INTEGERS

Suppose now that we want to compute the sum of n b-bit integers a,, a ,,.. . ,a,- ,.
Two solutions to this problem are described. Both solutions assume that b is a
variable and that each of the integers arrives bit serially.

14.3.1 Addition Tree

The sum can be computed using a tree of SA-boxes with n/2 leaves (and log n levels),
as shown in Fig. 14.4 for n = 8.

We call this network the addition tree. Starting at time i = 0, each one of the
integers to be added is fed one bit every time unit, least significant bit first, into the u or

Sec. 14.3 Adding n Integers 365

v input of a leaf. The sum of the n integers is produced on the s output of the root,
beginning with the least significant bit at time i = log n. Since each of the n integers
has b bits, the time required by the addition tree to compute the sum is a function of
both n and b and is given by

Also, since the tree consists of n - 1 SA-boxes, each with a fixed number of gates, the
number of processors, also a function of n and b, is given by

Finally, the tree's cost is

c(n, b) = O(n log n + nb).

For b 2 log n, this cost is optimal since Q(nb) operations are needed to receive the
input.

The foregoing analysis of the addition tree assumes that the time it takes a bit to
propagate along a wire from one SA-box to the next is constant. If, on the other hand,
the propagation time is assumed to be an increasing function of the length of the wire,
then the preceding expression describing the addition time, namely, O(1og n) + O(b), is
no longer valid. Indeed, as pointed out in the conclusion of section 5.3.2, in any planar
circuit layout of the addition tree, the edges in consecutive levels and hence the
propagation time for a signal grow in length exponentially with the level number. In
this case, a more regular structure is preferred where wires have constant length. Such
a structure is provided by the mesh connection.

SUM

Figure 14.4 Addition tree.

366 The Bit Complexity of Parallel Computations Chap. 14

14.3.2 Addition Mesh

An addition mesh consisting of SA-boxes is illustrated in Fig. 14.5 for adding twenty-
six b-bit integers bit serially. The starting time for each SA-box, that is, the time i at
which the box begins computing, is indicated below the box in the figure. Note that all
wires have the same length regardless of the size of the mesh, and therefore the
propagation time from one SA-box to the next is constant. It is easy to see that in
general

p(n, b) = O(n),

c(n, b) = O(n3I2 + nb).

For b 2 n'I2, this cost is optimal in view of the R(nb) lower bound derived in the
previous section. Furthermore, the period of the network (i.e., the time separating the
last output bit of one input sequence and the first output bit of the following sequence)
is constant. Therefore, the addition mesh represents a definite improvement over the
addition tree assuming that the propagation time of a signal is an increasing function
of the distance traveled.

14.4 MULTIPLYING TWO INTEGERS

We now turn to the problem of multiplying two b-bit integers

x = x(b - 1) x(b - 2). .. x(0) and y = y(b - 1) y(b - 2). .. y(0).

By the definition of multiplication, the product is obtained as follows:

~ (b - 1) ~ (b - 2) 42) 41) 40)
X

y(b - 1) y(b - 2) ~ (2) ~ (1) ~ (0)

Figure 145 Addition mesh.

368 The Bit Complexity of Parallel Computations Chap. 14

where zij = y(i) x xG). In other words x x y = CP=,'ri, where r i is a binary number
given by

Note that ri has exactly i zeros to the right of zio.
Since the product is expressed as the sum of a collection of binary integers, we

can use our addition tree or addition mesh to perform the multiplication.

14.4.1 Multiplication Tree

We begin by considering the network in Fig. 14.6. For input integers arriving bit
serially at a and g, the network behaves as follows:

di = hi-l and gi-l ,

This means that bit d at time i is the result of computing the and of two bits (h and g)
available at time i - 1. One of these two bits (bit g) propagates down (as e) while the
other (bit h) cycles back (as f). The or of a and f is now computed to produce a new
value for h. If input a is 0 at all times, except for a single time unit where it is 1, then the
left-hand side of the network serves to capture that 1 bit and maintain it as input to
the right-hand side as long as needed. For simplicity, we represent the network of Fig.
14.6 as shown in Fig. 14.7 and refer to it as the A-box.

A multiplication tree for computing x x y consists of an array of A-boxes A,,

Figure 14.6 Special-purpose network for capturing I-bit input.

Sec. 14.4 Multiplying Two Integers

Figure 14.7 An A-box.

A , , . . . , A, - , followed by an addition tree with b/2 leaves. This is illustrated in Fig.
14.8 for b = 8.

Initially, all inputs are set to zero. Integer x is now fed into the g input of the top
A-box, one bit per time unit; thus, bit x(i) is made available to box A, at time i.
Similarly, integer y is fed into the a inputs of all A-boxes one bit per box such that y(i)
is made available to Ai at time i. The first bit of the product emerges from the root
after 1 + log b time units. Therefore, for the multiplication tree we have

14.4.2 Multiplication Mesh

Given that the two integers x and y to be multiplied arrive bit serially, we must ensure
(as we did for the tree) that the strings ri, whose sum gives the product, are properly
formed and fed into the mesh at correct times. Let us reexamine the addition mesh. In
Fig. 14.5, SA-boxes with the same starting time fall on the same diagonal. We can say
that on diagonal j, the numbers to be added have to be fed into the network at time j.
Now recall that

If ri is the input to an SA-box on diagonal j, then bit zio must arrive at time i + j (since
ri has i zeros to the right of zi,). In Fig. 14.9, the pair of indices (i, m) below the SA-
boxes are interpreted as follows: bit zio of ri must arrive at SA-box (i, m) on diagonal j
at time m = i + j.

We are now ready to describe the multiplication mesh. It uses the A-box
presented in the previous section as well as a delay network shown in Fig. 14.10. This

Sec. 14.4 Multiplying Two Integers

Figure 14.9 Transforming addition mesh into multiplication mesh.

a - - - - - - - - - - - - - -+ g
Figure 14.10 A D-box.

network, which we call a D-box, has the following behavior:

that is, the output at time i is equal to the input at time i - 1. A D-box may be built
using an and gate (or an or gate) both of whose inputs equal the bit to be delayed.

A multiplication mesh for b = 21 is shown in Fig. 14.11. It consists of the
addition mesh of Fig. 14.5 augmented with A- and D-boxes. The bits of x are fed, least
significant bit first, into the top left corner. They circulate around the mesh in a
snakelike fashion along the dashed lines. Bit y(i) of y, on the other hand, is given as
input to the A-box associated with SA-box (i, m) at time m - 1 [i.e., when x(0) reaches
that box]. For the network of Fig. 14.1 1, both t(b) and p(b) are O(b). This means that
the multiplication mesh has exactly the same requirements as the multiplication tree

Sec. 14.5 Computing Prefix Sums 373

under the constant wire delay assumption. The multiplication mesh is, of course, faster
when the signal propagation time along a wire grows as a function of the wire length.

We conclude this section by pointing out that the assumption made at the outset
regarding the number of bits of x is really unnecessary. A b-bit multiplication tree or
mesh will operate correctly for an x with any bit size provided y has b bits. Thus, if x
has 1 bits, then

t(b, 1) = O(b) + O(l) and p(b, 1) = O(b)

for both multipliers.

14.5 COMPUTING PREFIX SUMS

Given a sequence A = {a,, a,, . . . , a,- ,) of n b-bit integers, it is required to com-
pute the prefix sums so, s,, . . . , s,- ,, where si = a, + a, + . . . + a,. Solutions to
this problem were described in chapters 2 and 13, assuming that b is a constant and all
b bits of each integer ai are available simultaneously. We now show how a collection
of SA-boxes can be used to obtain all sums when the integers a,, a,, . . . , a,-, have a
variable size and arrive bit serially. Two solutions are described: The first uses variable
fan-out gates; the second uses gates whose fan-out is constant. Both solutions are
recursive in nature.

14.5.1 Variable Fan -out

The first solution is illustrated in Fig. 14.12 for n = 8.
In general, a network for n = 2" consists of two networks for n = 2"-' followed

by n/2 D-boxes and n/2 SA-boxes. When n = 2, one D-box and one SA-box suffice.
Let us define the depth d(n) of a network with inputs as the longest path from input to
output. For the network in Fig. 14.12,

that is, d(n) = log n. Therefore, the time requirement of the network in Fig. 14.12 is

The number of processors used is

= O(n log n).

The fan-out of the gates used is 1 + 42. This can be seen from Fig. 14.12, where the
value of s, has to be sent to one D-box and four SA-boxes.

374 The Bit Complexity of Parallel Computations Chap. 14

RECURSIVE
B

SOLUTION

Figure 14.12 Computing prefix sums on network with variable fan-out.

14.5.2 Constant Fan -out

S A --qJ- s4

-q-J- SA s5

S A '6

a 4 m

a5 P

m

The second solution is illustrated in Fig. 14.13 for n = 8.
As mentioned in example 7.2 and section 13.2.2, the perfect shuffle connection

(and its inverse, the perfect unshuffle) may be regarded as a mapping from a set of
processors to itself or from a set of processors to another set of processors. The latter
of these connections is used to construct the network in Fig. 14.13. As with the
network in Fig. 14.12,

RECURSIVE

SOLUTION

d(n) = log n,

a7 I

p(n, b) = O(n log n).

SA s7

It is clear from Fig. 14.13 that the gate fan-out is 2.

14.6 MATRIX MULTIPLICATION

It is required to compute the product of two n x n matrices of b-bit integers. We begin
by showing how the networks of the previous sections can be used for the
computation of the inner product of two vectors of integers. A matrix multiplier is then
viewed as a collection of networks for inner-product computation.

Sec. 14.6 Matrix Multiplication 375

PERFECT PERFECT
[JNSHUFFLE SHUFFLE

Figure 14.13 Computing prefix sums on network with constant fan-out.

Let u = (u,, u,, . . . , un-,) and v = (v,, v,, . . . , v,-,) be two vectors of b-bit
integers whose inner product, that is,

is to be computed. The n products uivi , for i = 0, 1,. . . , n - 1, can be computed in
parallel using n multiplication trees. This requires O(b) time and O(nb) processors.
These n products are now fed into an addition tree with n/2 leaves to obtain the final
sum. This second stage runs in O(1og n) + O(b) time on O(n) processors. Consequently,
the inner product requires O(log n) + O(b) time and O(nb) processors. The inner-
product network is illustrated in Fig. 14.14, where the small triangles represent
multiplication trees and the large triangle an addition tree.

The product of two n x n matrices consists of n2 inner vector products (each row
of the first matrix is multiplied by each column of the second). Suppose that we have a
multiplier for vectors that multiplies two vectors in q time units using p processors.
Then n2 copies of this multiplier can be used to multiply two n x n matrices in q time
units using n2p processors. In general, na copies, where 0 d a d 2, will do the job in
n2-"q time units and use nap processors.

Our vector multiplier of Fig. 14.14 has

376 The Bit Complexity of Parallel Computations Chap. 14

Figure 14.14 Inner-product network.

Thus nu copies of this multiplier will compute the matrix product in time

t(n, b) = O(n2-"(log n + b))

using p(n, b) = O(nl+"b) processors.

14.7 SELECTION

Given a randomly ordered sequence A = {a,, a,, . . . , a,) of n b-bit integers and an
integer k, where 1 < k < n, it is required to determine the kth smallest element of A. In
chapter 2 we called this the selection problem and presented a parallel algorithm for its
solution that runs on the EREW SM SIMD model, namely, procedure PARALLEL
SELECT. Assuming that each integer fits in a word of fixed size b, the procedure uses
n 1 -" processors, where 0 < x < 1, and runs in O(nx) time, when counting operations

on words. When bit operations are counted, the procedure requires O(bnx) time for a
cost of O(bn). This cost is optimal in view of the SZ(bn) operations required to simply
read the input.

We now describe an algorithm for the selection problem with the following
properties:

1. The algorithm operates on b-bit integers where b is a variable, and the bits of
each word arrive one every time unit.

2. It runs on a tree-connected parallel computer, which is significantly weaker than
the SM SIMD model.

3. It matches the performance of procedure PARALLEL SELECT while being
conceptually much simpler.

We begin by describing a simple version of the algorithm whose cost is not optimal. It
is based on the following observation. If a set M consisting of the m largest members of

Sec. 14.7 Selection 377

A can be found, then either

(i) the kth smallest is included in M, in which case we discard from further
consideration those elements of A that are not in M, thus reducing the length of
the sequence by n - m, or

(ii) the kth smallest is not in M, in which case the m elements of M are removed from
A.

In order to determine M, we look at the most significant bit of the elements of A. If the
binary representation of element ai of A, where 1 < i < n, is

then ai is in M if ai(b - 1) = 1; otherwise ai is not in M [i.e., when ai(b - 1) = 01. If
this process is repeated, by considering successive bits and rejecting a portion of the
original sequence each time, the kth smallest will be left. (Of course more than one
integer may be left if all the elements of A are not distinct.)

For ease of presentation, we assume that n, the size of the input sequence, is a
power of 2. The algorithm runs on a tree-connected network of simple processors with
n leaves PI, P,, . . . , P,. Leaf processor Pi can

(i) receive the bits of ai serially, most significant bit first, from some input medium;
(ii) send the bits of ai to its parent serially;

(iii) send its own index i to its parent, if requested; and
(iv) switch itself "off ' if told to do so.

Initially, all leaf processors are "on." Once a leaf has been switched off, it is excluded
from the remainder of the algorithm's execution: It stops reading input and no longer
sends or receives messages to and from its parent.

Each of the n - 2 intermediate processors can

(i) relay messages of fixed size from its two children to its parent and vice versa;
(ii) behave as an SA-box; and

(iii) compare two O(1og n)-bit values.

Finally, the root processor can

(i) send and receive messages of fixed size to and from its two children;
(ii) compare two O(log n)-bit values;

(iii) behave as an SA-box; and
(iv) store and update three O(log n)-bit values.

The algorithm is given in what follows as procedure TREE SELECTION.
When the procedure terminates, the index of the kth smallest element of A is

378 The Bit Complexity of Parallel Computations Chap. 14

contained in the root. If several elements of A qualify for being the kth smallest, the
one with the smallest index is selected.

procedure TREE SELECTION (A, k)

Step 1: {Initialization)
(1.1) The root processor reads n and k
(1.2) 1 + n {I is the length of the sequence remaining)
(1.3) q + k {the 9th smallest element is to be selected)
(1.4) finished t false.

Step 2: while not finished do
(2.1) for i = 1 to n do in parallel

Pi reads the next bit of ai
end for

(2.2) The sum s of the n bits just read is computed by the intermediate and root
processors acting as an addition tree

(2.3) if 1 - q - s 3 0
then (9th not in M}
(i) 1 - 1 - s
(ii) the intermediate processors relay to all leaves the root's message:

if latest bit read was 1
then switch "off
end if

e l s e i f l - q - s = - 1 a n d s = 1
then (9th element found)

(i) the intermediate processors relay to all leaves the root's message:
if latest bit read was 1
then send index to root
end if

(ii) the intermediate processors relay to the root the index of the leaf
containing the 9th smallest element

(iii) finished t true
else (9th in M)

(9 4+4-(l-s)
(ii) l+s
(iii) the intermediate processors relay to all leaves the root's message:

if latest bit read was 0
then switch "off
end if

end if
end if

(2.4) if 1 = 1
then (i) the intermediate processors relay to all leaves the root's message:

if still "on"
then send index to root
end if

(ii) the intermediate processors relay to the root the index of
the only remaining integer

(iii) finished c true
end if

(2.5) if (there are no more input bits) and (not finished)
then (i) the intermediate processors relay to all leaves the root's message:

if still "on"
then send index to root
end if

(ii) the intermediate processors relay to the root the index of the
smallest-numbered leaf that is still "on"

(iii) finished c true
end if

end while. IJ

Note that none of the processors (root, intermediate, or leaf) is required at any
stage of the algorithm's execution to store all b bits of an input integer. Therefore, the
network's storage requirements are independent of b.

Example 14.1

Assume that we want to find the fourth smallest value in (10, 15, 12, 1; 3, 7, 6, 13).
Initially, 1 = 8 and q = 4. During the first iteration of step 2, the most significant bit of
each input integer is read by one leaf, as shown in Fig. 14.15(a). The sum of these bits,
s = 4, is computed at the root. Since 1 - q - s = 0, leaf processors PI, P,, P,, and P , are
switched off, and 1 = 4.

During the second iteration, the second most significant bits are read by the
processors that are still on. This is shown in Fig. 14.15(b), where the processors that were
switched off are marked with an x . Since s = 2 , l - q - s = -2, and processors P, and
P , are switched off. Now 1 = 2 and q = 2.

In'the third iteration, the sum of the third most significant bits, read by P, and P,,
is s = 2. Since 1 - q - s = -2 and both input bits were 1, no processor is switched OK
Again, 1 = 2 and q = 2.

In the fourth (and last) iteration, s = 1 and 1 - q - s = - 1: The index of processor
P, is sent to the root, signifying that the fourth smallest value in the input sequence is
7.

Analysis. Step 1 takes constant time. There are at most b iterations of step 2.
During each iteration the sum s of n bits read by the leaves can be obtained by the root
in O(1og n) time by letting the n - 2 intermediate nodes and root simulate an addition
tree with n one-bit numbers as input. Unlike the root of the addition tree, however, the
root processor here retains the log n bits of the sum. Thus the time required is
O(b log n). Since the number of processors is 2n - 1, the algorithm's cost is O(bn log n),
which is not optimal.

An algorithm with optimal cost can be obtained as follows. Let N be a power of
2 such that N log n < n, and assume that 2N - 1 processors are available to select the

Figure 14.15 Selecting fourth smallest in sequence of eight numbers.

Sec. 14.8 Sorting 381

kth smallest element. These processors are arranged in a tree with N leaves. The leaf
processors are required to be more powerful than the ones used by procedure TREE
SELECTION: They should be able to compute the sum of n/N bits. Each leaf
processor is "in charge" of n/N elements of the sequence A. These n/N integers arrive
on n/N input media that the leaf examines sequentially. The parallel algorithm
consists of b iterations. For j = b - 1, b - 2, . . . ,0, iteration j consists of three stages.

(i) Every leaf processor finds the sum of the jth bits of (at most) n/N integers.
(ii) These sums are added by the remaining processors, and the root indicates which

elements must be discarded.
(iii) Every leaf processor "marks" the discarded inputs.

Stages (i) and (iii) require O(n/N) operations. There are O(1og n) operations
involved in stage (ii) to go up and down the tree. The time per iteration is O(n/N), for a
total running time of

Since p(n) = 2N - 1, we have

and this is optimal.

14.8 SORTING

Given a sequence of n b-bit integers A = {a,, a,, . . . , a,), it is required to sort A in
nondecreasing order. We assume that b is a variable and that the bits of each integer
arrive one every time unit. The sequence can be sorted by adapting the odd-even
sorting network of Fig. 4.1. The adapted network has two features:

1. Each integer ai is fed into the network most signijicant bit first.

2. Bit comparators replace the word comparators in Fig. 4.1. A bit comparator
has the same function as a word comparator: It compares two integers, producing the
smaller on the top output line and the larger on the bottom output line. The only
difference is that bit comparators perform their task bit serially. A bit comparator
receives two bits as input and produces two bits as output in the following way. As
long as the two input bits are equal, they are produced on the two output lines
unchanged. As soon as the two input bits differ,

(i) the 0 bit, and all subsequent bits of that integer, are produced as output on the
top output line of the comparator and

(ii) the 1 bit, and all subsequent bits of that integer, are produced as output on the
bottom output line of the comparator.

382 The Bit Complexity of Parallel Computations Chap. 14

As the odd-even network consists of O(log2n) stages, the modified network requires

t(n, b) = O(log2n) + O(b)

time and

processors.

14.9 P R O B L E M S

14.1 Let x and y be two b-bit integers, where b is a variable. Design a network for computing
X - y.

14.2 A full adder for bits is a device that takes three bits as input and returns their sum as a
two-bit binary number. A collection of full adders (arranged side by side) can take three
b-bit integers x, y, and z as input and return two binary integers u and v as output such
that x + y + z = u + v. Assume that b is a constant and all bits of x, y, and z are available
at once. Each full adder receives one bit from each of x, y, and z and returns one bit of
each of u and v. Thus u and v can be obtained from x, y, and z in constant time. Let us call
this device a (3, Ztadder. Show that a network of (3,2)-adders reduces the problem of
adding n numbers to the problem of adding two numbers. Analyze the running time,
number of processors, and complexity of this network.

14.3 Discuss the cost optimality of the networks described in section 14.4.
14.4 Let x and y be two b-bit integers, where b is a power of 2. A divide-and-conquer algorithm

can be used to multiply x and y. We first split each of x and y into two equal parts of b/2
bits each and write

Now x x y is computed from

where the products uw, uz, vw, and vz are obtained by the same algorithm recursively. Let
q(b) be the number of bit operations required to compute x x y by the preceding
algorithm. Since the algorithm involves four multiplications of two (b/2)-bit integers,
three additions of integers with at most 2b bits, and two shifts (multiplications by 2b and
2b'2), we have

q(b) = 4q(b/2) + cb,

for some constant c. It follows that q(b) = O(b2).
(a) Can the algorithm be implemented in parallel? Can it be used in a setting where b is a

variable and the bits of x and y arrive serially?
(b) Consider now the following modification to the algorithm. The quantity uz + vw is

obtained from (u + v)(w + z) - uw - uz. Only three multiplications of (b/2)-bit
integers are now required, four additions, two subtractions, and two shifts.

Sec. 14.9 Problems

Consequently,

for some constant c. It follows that q(b) = O(b'0g23) = O(b1.s9). Repeat part (a) for this
new version.

145 Let x and y be b-bit integers. Design a network to compute the quotient and remainder of
x divided by y.

14.6 Which of the two networks described in section 14.5 for computing the prefix sums of a
sequence relies on the commutativity of the addition operation, that is, a + b = b + a?

14.7 The networks of section 14.5 have a cost of O(n logZn + bn log n). This cost is clearly not
optimal since a single SA-box can compute all prefix sums in O(bn) time. Can a cost-
optimal solution be obtained for the bit-serial version of the prefix sums problem?

14.8 The networks of section 14.5 produce, as one of their outputs, the sum of their n inputs.
Compare this method of computing the sum of n integers to the one described in section
14.3.

14.9 Repeat problem 13.4 for the bit-serial case.
14.10 Repeat problem 13.5 for the bit-serial case.
14.11 Repeat problem 13.6 for the bit-serial case.
14.12 Discuss the cost of the matrix multiplier of section 14.6.
14.13 Describe formally the algorithm given at the end of section 14.7.

14.14 Adapt procedure TREE SELECTION to run on an n1I2 x n1I2 meshconnected
computer and analyze its running time.

14.15 Can the cost of the algorithm derived in 14.14 be made optimal?

14.16 Consider a linear array of processors PI , P,, . . . , P, and the following algorithm for
sorting a sequence of n b-bit integers that arrive one at a time at PI . At every step, the
contents of the entire array of processors are shifted to the right making room in P, for a
new input item. This is followed by a comparison-exchange: For all odd i, the items in Pi
and Pi+, are compared, with the smaller going to Pi and the larger to Pi+,. After n
repetitions of these two steps, input is complete and output can start. The contents of the
array are shifted left producing as output from P, the current smallest element in the
array. This is followed by a comparison-exchange. After n repetitions of the preceding
two steps output is complete. When several sequences are queued for sorting, this sorter
has period 2n. The period can be reduced to n by allowing both P, and P, to handle input
and output. While P, is producing output, P, can receive input and conversely. Sorted
sequences are produced alternately in ascending order (through P,) and in descending
order (through P,). Thus m sequences of n integers each are sorted in (m + 1)n instead of
2mn steps. Obviously the time to compare two b-bit integers x and y, when b is not fixed,
is a linear function of b. Thus, the preceding times are in reality (m + 1)nb and 2mnb. It is
of course possible to compare two b-bit integers in fewer than b steps by using additional
circuitry in each processor. This circuitry is in the form of a complete binary tree with b
leaves. Assume that bit-parallel input is allowed, that is, all b bits of an integer arrive
simultaneously. Each leaf compares one bit of x with the corresponding bit of y and sends
the result upward. These results propagate up the tree, and in log b steps the larger of x
and y is determined. This would make the running time (m + 1)n log b and 2mn log b.

384 The Bit Complexity of Parallel Computations Chap. 14

Show that a network derived from the linear array whose processors use no special
circuitry and operate at the bit level can sort in (1 + m/2)n + b time. This would represent
a significant improvement over the preceding approach.

14.17 Consider the following algorithm for sorting the sequence A = {a,, a,, . . . , a,) of b-bit
integers. Two arrays of n entries each are created in memory. These two arrays are called
bucket 0 and bucket I. The algorithm consists of b iterations. At the beginning of each
iteration, all positions of both buckets contain zeros. During iteration j, each element ai
of A, where

ai = ai(b - 1) ai(b - 2). . . ai(0),

is examined: A 1 is placed in position i of either bucket 0 or bucket 1 depending on
whether ai(j) is 0 or 1, respectively. The values in bucket 0, followed by those in bucket 1,
form a sequence of 0's and 1's of length 2n. The prefix sums {s,, s,, . . . , s,,) of this
sequence are now computed. Finally element ai is placed in position si or si+, of A
(depending on whether bucket 0 or bucket 1 contains a 1 in position i), concluding this
iteration. Show how this algorithm can be implemented in parallel and analyze its
running time and cost.

14.18 The networks in sections 14.2-14.6 receive their inputs and produce their outputs least
signijicant bit jrst. By contrast, the networks in sections 14.7 and 14.8 receive their inputs
and produce their output's most signijcant bit jrst. This may be a problem if the output
of one network (of the first type) is to serve as the input to another network (of the second
type), or vice versa. Suggest ways to overcome this difficulty.

14.19 Let us define
(i) clock cycle as the time elapsed from the moment one input bit arrives at a network to

the moment the following bit arrives and
(ii) gate delay as the time taken by a gate to produce its output.
Show that, for the networks in this chapter to operate properly, it is important that

clock cycle > gate delay.

14.20 Argue that the running time analyses in this chapter are correct provided that the ratio
of clock cycle to gate delay is constant.

14.21 Show that the process of computing the majority of fundamental statistical quantities,
such as the mean, standard deviation, and moment, can be speeded up using the networks
described in this chapter.

14.22 Design a network for computing the greatest common divisor of two b-bit integers.

14.10 B lBL lOGRAPHlCAL R E M A R K S

As mentioned in the introduction, most models of computation assume that the word size of the
input data is fixed and that each data word is available in its entirety when needed; see, for
example, [Aho], [Akl 11, [Horowitz], and [Knuth 11. In this section, we briefly review some of
the algorithms that were designed to solve the problems addressed in sections 14.2-14.8 based
on these two assumptions. When comparing those algorithms to the networks of this chapter,
one should keep in mind that the latter do not make the preceding two assumptions and can
therefore be used (if needed) in situations where these assumptions apply (as well as in situations
where they d o not).

Sec. 14.1 0 Bibliographical Remarks 385

The fastest known algorithm for adding two b-bit integers is the carry-look-ahead adder
[Kuck]. It runs in O(1og b) time and uses O(b log b) gates with arbitrarily large fan-out. The
algorithm's cost is therefore O(b log2b). This is to be contrasted with the O(b) cost of the SA-box
(CBaerl).

The sum of n b-bit integers can be computed by a tree of carry-look-ahead adders
[Ullman]. This requires O((logn)(log b)) time and O(nblogb) gates for a cost of
O((n log n)(b log2b)). By comparison, the tree of SA-boxes described in section 14.3 uses fewer
gates, has a lower cost, and is faster for b = O(1og n). Another algorithm superior to the tree of
carry-look-ahead adders is described in problem 14.2.

Two solutions are given in [Kuck] to the problem of multiplying two b-bit integers. The
first one uses carry-look-ahead adders and requires O(log2b) time and O(b210g b) gates. The
second and more elaborate solution is based on a combination of carry-save and carry-look-
ahead adders. It uses O(b2) gates and runs in O(log2b) time (when the fan-out of the gates is
constant) and O(log b) time (when the fan-out is equal to b) for costs of O(b210g2b) and
O(b210g b), respectively. Both of these costs are larger than the O(b2) cost of the multiplication
tree and multiplication mesh of section 14.4.

If carry-look-ahead adders are used in section 13.2.3 for computing the prefix sums of a
sequence of n integers, then the tree algorithm described therein would require O((1og n)(log b))
time and O(nb log b) gates for a cost of O((n log nub log2b)). Assume for concreteness that
b = O(log n). Then the preceding expressions describing the running time, number of gates, and
cost become O((1og n)(log log n)), O((n log n)(log log n)), and O((n log2n)(log210g n)), respectively.
The corresponding expressions for the networks of section 14.5 are O(1og n), O(n log n), and
O(n log2n).

Procedure CUBE MATRIX MULTIPLICATION of section 7.3.2 uses n3 processors
and runs in O(log n) time. If the processors are based on the integer multiplier given in [Kuck]
and whose gate and time requirements are O(b2) and O(log2b), respectively, then the product of
two n x n matrices of b-bit integers can be obtained in O((1og n)(log2b)) time using O(n3b2) gates.
This yields a cost of O((n310g n)(b210g2b)). Again, let b = OOog n). The cost of procedure CUBE
MATRIX MULTIPLICATION in this case is O(n310g3n log210gn). This is larger than the
O(n310g2n) cost of the network described in section 14.6. Note also that the product of the
solution time by the number of gates used for any sequential matrix multiplication algorithm of
the type described, for example, in [Coppersmith] and [Gonnet], can be improved from
O(nxb210g2b) where x < 3 (using the integer multiplier in [Kuck]) to O(nxb2) (using the
multiplication tree or mesh of section 14.4).

Many tree algorithms exist for selecting the kth smallest element of a sequence of n b-bit
integers (assuming that all bits are available simultaneously). Some of these are reviewed in
[Aggarwal 11. The best such algorithm uses O(n) processors and runs in O(log2n) time. Counting
bit operations, this running time becomes O(b log2n). Unlike (the modified) procedure TREE
SELECTION described in section 14.7, this algorithm is not cost optimal.

A cost-optimal algorithm for sorting n b-bit integers is described in [Leighton]. It uses
O(n) processors and runs in O(b log n) time (counting bit operations), for an optimal cost of
O(bn log n). Using the bit comparators described in section 14.8 and in [Knuth 21, sorting can
be performed in O(b + log n) time with O(n) gates.

The networks in this chapter are mostly from [Akl 23, [Cooper], and [Meijer]. Other
algorithms concerned with bit operations are described in [Aggarwal 21, [Akl 31, [Batcher],
[Bini], [Brent], [Kannan], [Luk], [Reeves], [Siegel], and [Yu] for a variety of computational
problems.

The Bit Complexity of Parallel Computations Chap. 14

14.11 R E F E R E N C E S

[A GGARWAL 11
Aggarwal, A., A comparative study of X-tree, pyramid and related machines, Proceedings of
the 25th Annual IEEE Symposium on Foundations of Computer Science, Singer Island,
Florida, October 1984, pp. 89-99, IEEE Computer Society, Washingon, D.C., 1984.

[A GGARWAL 21
Aggarwal, A., and Kosaraju, S. R., Optimal tradeoffs for addition on systolic arrays, in
Makedon, F., Mehlhorn, K., Papatheodorou, T., and Spirakis, P., Eds., VLSI Algorithms and
Architectures, Lecture Notes in Computer Science, Vol. 227, Springer-Verlag, Berlin, 1986,
pp. 57-69.

CAHOI
Aho, A. V., Hopcroft, J. E., and Ullman, J. D., The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1974.

[AKL 11
Akl, S. G., Parallel Sorting Algorithms, Academic Press, Orlando Fl., 1985.

[AKL 23
Akl, S. G., and Meijer, H., On the bit complexity of parallel computations, Integration: The
VLSI Journal, Vol. 6, No. 2, July 1988, pp. 201-212.

[AKL 33
Akl, S. G., and Schmeck, H., Systolic sorting in a sequential input/output environment,
Parallel Computing, Vol. 3, No. 1, March 1986, pp. 11-23.

[B AER]

Baer, J.-L., Computer Systems Architecture, Computer Science Press, Rockville, Md., 1980.
[BATCHER]

Batcher, K. E., Bit-serial parallel processing systems, IEEE Transactions on Computers, Vol.
C-31, No. 5, May 1982, pp. 377-384.

[BINI]
Bini, D., and Pan, V., A logarithmic boolean time algorithm for parallel polynomial division,
in Makedon, F., Mehlhorn, K., Papatheodorou, T., and Spirakis, P., Eds., VLSI Algorithms
and Architectures, Lecture Notes in Computer Science, Vol. 227, Springer-Verlag, Berlin,
1986, pp. 246-251.

[BRENT]
Brent, R. P., and Kung, H. T., The area-time complexity of binary multiplication, Journal of
the ACM, Vol. 28, No. 3, July 1981, pp. 521-534.

[COOPER]
Cooper, J., and Akl, S. G., Efficient selection on a binary tree, Information Processing Letters,
Vol. 23, No. 3, October 1986, pp. 123-126.

[COPPERSMITH]
Coppersmith, D., and Winograd, S., Matrix multiplication via arithmetic progressions,
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, New York,
May 1987, pp. 1-6, Association for Computing Machinery, New York, N.Y., 1987.

[GONNET]
Gonnet, G. H., Handbook of Algorithms and Data Structures, Addison-Wesley, Reading,
Mass., 1984.

Sec. 14.1 1 References 387

[HOROWITZ]
Horowitz, E., and Sahni, S., Fundamentals of Computer Algorithms, Computer Science Press,
Rockville, Md., 1978.

[KANNAN]
Kannan, R, Miller, G., and Rudolph, L., Sublinear parallel algorithm for computing the
greatest common divisor of two integers, Proceedings of the 25th Annual IEEE Symposium
on Foundations of Computer Science, Singer Island, Florida, October 1984, pp. 7-1 1, IEEE
Computer Society, Washington, D.C., 1984.

[KNUTH 11
Knuth, D. E., The Art of Computer Programming, Vol. 1, Fundamental Algorithms, Addison-
Wesley, Reading, Mass., 1973.

[KNUTH 23
Knuth, D. E., The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-
Wesley, Reading, Mass., 1973.

[KUCK]
Kuck, D. J., The Structure of Computers and Computations, Vol. 1, Wiley, New York, 1978.

[LEIGHTON]
Leighton, F. T., Tight bounds on the complexity of parallel sorting, IEEE Transactions on
Computers, Vol. C-34, No. 4, April 1985, pp. 344-354.

CLUKI
Luk, W. K., and Vuillemin, J. E., Recursive implementation of optimal time VLSI integer
multipliers, in Anceau, F., and Aas, E. J., Eds., VLSI '83, North-Holland, Amsterdam, 1983,
pp. 155-168.

[MEIJER]
Meijer, H., and Akl, S. G., Bit serial addition trees and their applications, Computing, Vol. 40,
1988, pp. 9-17.

CREEWI
Reeves, A. P., and Bruner, J. D., Efficient function implementation for bit-serial parallel
processors, IEEE 7kansactions on Computers, Vol. C-29, No. 9, September 1980, pp. 841-844.

[SIEGEL]
Siegel, A. R., Minimum storage sorting networks, IEEE Transactions on Computers, Vol. C-
34, No. 4, April 1985, pp. 355-361.

[ULLMAN]
Ullman, J. D., Computational Aspects of VLSI, Computer Science Press, Rockville, Md., 1984.

n u 1
Yu, G.-S., and Muroga, S., Parallel multipliers with NOR gates based on G-minimum adders,
International Journal of Computer and Information Sciences, Vol. 13, No. 2,1984, pp. 11 1-121.

Author Index

Aas, E. J., 387
Abelson, H., 195
Agarwal, V. K., 139
Agerwala, T., 195, 249
Aggarwal, A., 56, 306, 386
Agrawal, D. P., 247
Ahmed, H., 246
Aho, A. V., 386
Ajtai, M., 56, 108
Akl, S. G., 33,34,56,82,84,108,167,272,306,

338, 357, 359, 386, 387
Alt, H., 34
Anceau, F., 387
Anderson, R., 272
Arnold, C. P., 226
Atallah, M. J., 136, 273, 307

Baer, J. -L., 34, 136, 386
Barlow, R. H., 83
Barnard, D. T., 33, 338
Barton, M. H., 37
Batcher, K. E., 83, 109, 167, 195, 386
Baudet, G. M., 109,226, 338
Benes, V. E., 167
Bentley, J. L., 109, 136, 273
Bergland, G. D., 247
Bhatt, P. C. P., 198, 249, 273, 275, 276, 309
Bhatt, S. N., 137
Bhattacharjee, G. P., 168
Bhuyan, L. N., 34, 247
Bini, D., 386
Bitton, D., 109
Blum, M., 56
Bojanczyk, A., 226

Bokhari, S. H., 56
Bonnucelli, M. A., 109, 137
Boral, H., 137
Borodin, A., 83, 195, 196, 226
Boxer, L., 307
Bramer, M. A., 33, 338
Brent, R. P., 226, 358, 386
Briggs, F. A., 35, 197, 227, 248
Briggs, W. L., 247
Brigham, E. O., 247
Brown, D. J., 109
Bruner, J. D., 387
Buckley, C., 139
Bunch, J., 226
Burrus, C. S., 247
Buzbee, B. L., 226

Camp, P. T., 226
Campbell, M., 36, 339
Cannon, L. E., 196
Carey, M. J., 137
Chan, B., 167
Chandra, A. K., 196,275
Chandran, S., 56
Chandy, K. M., 273
Chang, E. J. H., 273
Chang, H., 110
Chang, L.-C., 249
Chang, R. C., 307
Chang, S.-K., 137, 140
Chazelle, B., 137, 196, 306, 307
Chen, G. H., 167, 309
Chen, I. N., 273
Chen, K.-L., 58

Chen, S. C., 229
Chen, Y. K., 273
Cheng, K. H., 196
Cheng, Y.-H., 197
Chern, M.-S., 167
Chin, F. Y., 273
Chow, A. L., 307
Chow, P., 247
Chow, Y.-C., 11 1
Christofides, N., 273
Chung, K. M., 137
Clint, M., 196, 308
Clos, C., 168
Cochran, W. T., 247
Cole, R., 56, 358
Conte. S. D., 226
Conway, L. A., 36, 198, 228, 249, 276, 359
Cook, S. A., 34, 273, 358
Cooley, J. W., 247
Cooper, J., 56, 386
Coppersmith, D., 386
Coraor, L. D., 137
Cordella, L. P., 309
Corinthios, M. J., 247
Corneil, D. G., 276
Cosnard, M., 34, 248
Crane, B. A., 273
Csanky, L., 196, 226
Cyre, W. R., 247

Dadoun, N., 307
Davidson, E. S., 140
de Boor, C. J., 226
Deering, M. F., 338
Dehne, F., 307
Dekel, E., 196, 273, 358
Delosme, J.-M., 246
Demuth, H. B., 109
Deo, N., 37, 169, 273,274,276
Dere, W. Y., 247
Despain, A. M., 247, 248, 250
Devreese, J. T., 226
Devroye, L., 110
Dewe, M. B., 226
DeWitt, D. J., 109, 137
Dhall, S. K., 110
Doran, R. J., 33, 338
Doshi, K. A., 274

Douglass, R. J., 35
Du, H. C., 136
Duff, M. J. B., 309
Dunbar, R. C., 227
Dwork, C., 358
Dyer, C. R., 307

Eberly, W., 196, 227
Eckstein, D. M., 83
EIGindy, H., 308
Ellis, C., 137
Enslein, K., 247
Enslow, P. H., 34
Eriksen, O., 227
Er, M. C., 274
Evans, D. J., 34, 83, 227, 248
Even, S., 109, 274

Favin, D. L., 247
Feather, A. E., 309
Feilmeier, M., 34, 139
Feldman, J. A,, 338
Felten, E., 358
Feng, T.-Y., 38, 169, 273
Fennel, R. D., 338
Fernbach, S., 34
Fich, F. E., 56, 358
Finkel, R. A,, 338
Fischer, M. J., 57, 359
Fishburn, J. P., 196, 227, 248, 338
Fisher, A. L., 137
Flanders, P. M., 248
Floyd, R. W., 56
Flynn, M. J., 196
Forgy, C. L., 338
Fortes, J. A. B., 196, 227
Foster, M. J., 274
Fox, G. C., 196
Fraenkel, A. S., 168
Fraser, D., 168
Frenkel, K. A,, 34
Fujimoto, R. M., 37
Fukumara, T., 338
Fussell, D. S., 199

Gajski, D., 138
Gal, S., 138, 227
Gallagher, R. G., 274
Gannon, D. B., 35, 37, 309

Index

Garey, M. R., 274
Gavril, F., 83
Gehringer, E. F., 35, 227
Gelernter, D., 34
Gentleman, W. M., 196..
Gilmore, P. A., 358
Goke, L. R., 197
Goldberg, A. V., 274, 358
Golomb, S. W., 168
Golub, G. H., 226
Gonnet, G. H., 197, 386
Goodrich, M. T., 307
Goos, G., 140
Gottlieb, A,, 109
Graham, R. L., 34
Greenberg, A. G., 56
Grishman, R., 109
Guibas, L. J., 197, 274, 306
Gupta, P., 168

Hagerup, T., 34,
Haggkvist, R., 83
Hamming, R. W., 227
Han, Y., 360
Hart, L. B., 247
Hartmanis, J., 140
Hawthorne, P. B., 137
Haynes, L. S., 227
Hell, P., 83
Heller, D., 227, 248
Helms, H. D., 247
Hembold, D., 274
Hey, A. J. G., 196
Hillis, W. D., 35
Hillyer, B. K., 138
Hirschberg, D. S., 83, 109, 197, 274, 275
Hochschild, P. H., 275
Hockney, R. W., 35,227,248
Holt, C. M., 196, 308
Hong, Z., 83
Hopcroft, J. E., 83, 196, 226, 386
Hord, M. R., 35
Horowitz, E., 35, 109, 197, 248, 358, 387
Howe, C. D., 35
Hsiao, D. K., 109
Huang, J. W., 230
Humblet, P. A., 274
Hwang, K., 35, 197, 227, 248
Hyafil, L., 358

Ibaraki, T., 339
Ibrahim, H. A. H., 308
Imai, M., 338, 339
Ito, M. R., 11 1

Ja'Ja', J., 275, 276
Jamieson, L. H., 35, 37, 309
Jesshope, C. R., 35, 227, 248
Johnson, D. S., 274
Jones, A. K., 35,227
Joubert, G., 34, 139

Kaenel, R. A., 247
Kahle, B., 140
Kalra, N. C., 275
Kanal, L., 339
Kannan, R., 387
Karin, S., 35
Karlin, A. R., 35
Karlin, S., 358
Karnin, E. D., 358
Karp, A. H., 35
Karp, R. M., 138, 228
Kautz, W. H., 275
Kemmerer, F. C., 309
Kender, J. R., 308
Kim, W., 138
Kindervater, G. A. P., 339, 358
Kirkpatrick, D. G., 307
Knott, G. D., 168
Knuth, D. E., 57, 83, 387
Kogge, P. M., 57, 359
Komlos, J., 56, 108
Korn, D. G., 248
Kosaraju, S. R., 136, 273, 275, 386
Kowalik, J. S., 228
Kronsjo, L., 35, 197,228, 248, 275
Kruskal, C. P., 57, 83, 109, 138,359
KuEera, L., 109, 197, 275
Kuck, D. J., 36, 138, 228, 229, 387
Kuhn, R. H., 36
Kulkarni, A. V., 197, 248
Kumar, M., 83, 109
Kumar, S. P., 228
Kumar, V., 339
Kung, H. T., 36, 84, 11 1, 137, 138, 197, 226,

228, 248, 274, 276, 308, 358;359, 386
Kwan, S. C., 275
Kwong, Y. S., 138

Ladner, R:E., 57, 136, 359
Lai, T.-H., 339
Lakhani, G. D., 275
Lakshmivarahan, S., 110
Lam, J., 273
Lambiotte, J. J., Jr., 248
Lang, W. W., 247
Lavington, S. H., 137, 140
Lawler, E. L., 359
Lawrie, D. H., 36, 168, 197, 228, 229
Lee, D. T., 110, 308
Lee, R. C. T., 84, 11 1, 307, 309
Legendi, T., 36
Lehman, P. L., 138
Leighton, F. T., 36, 110, 198, 248, 387
Leilich, H. O., 137
Leiserson, C. E., 36, 136, 138, 198, 275
Lenfant, J., 168
Lesser, V. R., 338
Levialid, S., 309
Levitt, K. N., 275
Lewis, P. A,, 247
Li, G.-J., 339, 340
Li, Z.-N., 308
Lint, B. J., 195, 198, 249
Lipovski, G. J., 36, 197, 247
Liu, C. L., 168
Llaberia, J. M., 198
Lodi, E., 109, 137
Lord, R. E., 228, 274
Lorin, H., 36
Lucio, F., 137
Luk, W. K., 387

Ma, Y. W. E., 340
Madej, T., 359
Maestrini, P., 137
Maggs, B. M., 275
Maheshwari, S. N., 198, 249, 276, 309
Mai, S., 248
Makedon, F., 228, 274, 386
Malek, M., 36
Maling, G. C., Jr., 247
Manber, U., 56
Marsland, T. A,, 36, 339
Masuyama, A., 140
Mateti, P., 276
Mayr, E. W., 272, 274, 275

McAuliffe, K. P., 109
McClelland, J. L., 340
Mead, C. A., 36, 198,228, 249, 276, 359
Megiddo, N., 57
Mehlhorn, K., 34, 36, 228, 274, 308, 386
Meijer, H., 357, 359, 386, 387
Menon, J., 109
Merrett, T. H., 110
Mifsud, C. J., 168
Miller, G., 387
Miller, L. L., 110
Miller, R., 307, 308, 309
Miller, R. E., 228
Miranker, G., 110
Miranker, W. L., 138, 227, 228
Misra, J., 273
Missikoff, M., 137
Miura, H., 339
Mohan, J., 276, 339, 359
Monier, L., 137, 196
Mor, M., 168
Morf, M., 246
Moxon, B., 35
Mueller, P. T., 309
Miihlbacher, J. R., 138
Muller, D. E., 249
Munro, J. I., 139, 195, 198, 226, 228
Muroga, S., 387

Naik, V. K., 299
Nassimi, D., 83, 110, 168, 196, 273, 276
Nath, D., 198, 249, 276, 309
Navarro, J. J., 198
Nelson, D. E., 247
Ngyuen, H. B., 139
Nicol, D. M., 229
Nielson, C. W., 226
Nievergelt, J., 37, 169
Nigam, A., 138
Nijenhuis, A,, 169
Nozaka, Y., 140
Numrich, R. W., 228

O'Dunlaing, C., 306
O'Gallagher, A., 247
Oleinick, P. N., 36
Orcutt, S. E., 169
Orenstein, J. A., 110

Ottman, T. A., 139
Otto, S. W., 196, 358
Ozkarahan, E. A., 139

Padua, D. A., 36
Page, E. S., 169
Pagli, L., 109, 137
Pan, V., 228, 386
Pang, C. Y., 274
Papadimitriou, C. H., 36, 276, 359
Papatheodorou, T., 228, 274, 386
Parberry, I., 36, 110
Parker, D. S., Jr., 249
Parkinson, D., 36
Parks, T. W., 247
Parr, M. I., 226
Paterson, M., 198
Pease, M. C., 169, 198, 249
Perl, Y., 83
Perrot, R. H., 196, 308
Peters, J., 359
Poole, W. G., Jr., 228
Popowich, F., 339
Potter, J. L., 36, 139
Pratt, V., 56
Preparata, F. P., 34, 110, 198, 249, 308, 309
Preston, K.. 37, 309

Quinn, M. J., 37, 198, 228, 249, 276, 339
Quinton, P., 34, 248

Rabinowitz, P., 228
Rader, C. M., 247
Ralston, A., 228, 247
Ramakrishnan, I. V., 198, 199
Ramamoorthy, C. V., 139, 249
Reddy, D. R., 339
Redinbo, G. R., 249
Reed, D. A., 37
Reeves, A. P., 309, 387
Reghbati, (Arjomandi), E., 276
Reif, J. H., 57, 110, 228, 360
Reijns, G. L., 37
Reingold, E. M., 37, 169
Reinsch, C., 230
Reischuk, R., 57, 110
Rivest, R. L., 56
Robert, Y., 34, 248
Robertson, E. L., 139

Rodrigue, G., 37, 229, 250
Rohl, J. S., 169
Rosenberg, A. L., 139
Rosenfeld, A., 56
Rosenfeld, J. L., 229
Rudolph, D., 139
Rudolph, L., 57, 109, 359, 387
Rumelhart, D. E., 340
Rustin, R., 228
Ruzzo, W. L., 275

Sack, J.-R., 307
Sahni, S., 35, 83, 109, 110, 168, 196, 248, 273,

276, 339, 358, 387
Sakrison, D. J., 247
Salton, G., 139
Saltz, J. H., 229
Sameh, A. H., 36, 228, 229
Sankar, P. V., 309
Santoro, N., 82, 276, 307
Sarwate, D. V., 275
Savage, C., 198,276
Savage, J. E., 198
Schendel, U., 34, 37, 139,229
Schlosser, K.-H., 139
Schmeck, H., 139, 386
Schonhage, A., 229,249
Schroder, H., 139
Schuster, S. A., 139
Schwartz, J. T., 360
Schwarz, P., 35
Seaborn, T., 139
Sedgewick, R., 83, 169
Shamos, M. I., 309
Shanehchi, J., 83
Shapiro, S. C., 340
Sharma, C. U., 309
Shaw, D. E., 138, 308
Shih, Z.-C., 309
Shiloach, Y., 57, 83, 110, 277
Siegel, A. R., 275, 387
Siegel, H. J., 37, 169, 199, 309
Siegel, L. J., 309
Simon, J., 275
Sklansky, J., 309
Smalley, H. E., 309
Smith, K. C., 247
Smith, N. P., 35

Smith, S. D., 199, 309
Snir, M., 57, 109, 139, 359
Snyder, L., 37, 309
Somani, A. K., 139
Song, S. W., 140
Spira, P. M., 274
Spirakis, P., 228, 274, 386
Sproull, R., 276
Stanfill, C., 140, 340
Staunstrup, J., 227
Steele, G., 276
Steiger, W. L., 56
Steiglitz, K., 36, 276, 359
Stevens, J. E., 249
Stevenson, D., 109
Stewart, A., 196, 308
Stewart, G. W., 229
Stockman, G. C., 340
Stockmeyer, L. J., 37, 139
Stone, H. S., 37,57,110,140,199,249,359,360
Stout, Q. F., 57, 83, 110, 308, 309
Strassen, V., 37, 199, 249
Su, S. Y. W., 140
Swarztrauber, P. N., 229, 250
Sweet, R. A., 229, 247
Szemeredi, E., 56, 108

Tagaki, N., 11 1
Tahe, S., 168
Tanaka, Y., 140
Tang, L., 1 10
Tanimoto, S. L., 57
Ta jan, R. E., 56
Tchuente, M., 34, 248
Temperton, C., 250
Thompson, C. D., 84, 111, 137, 140, 197, 250,

274
Todd, S., 11 1
Toussaint, G. T., 306, 309
Traub, J. F., 37, 228, 229, 340
Trienekens, H. W. J. M., 339, 358
Tseng, S. S., 84, 11 1
Tukey, T. W., 247
Turner, J. L., 139

Uhr, L., 37, 308, 309, 340
Ullman, J. D., 37, 199, 250, 277, 340, 386,387
Upfal, E., 35, 37, 38

Valero, M., 198
Valiant, L. G., 57, 84, 110, 229
Van Scoy, F. L., 199,277
Varman, P. J., 198, 199, 274
Vishkin, U., 36, 37, 38, 56, 57, 58, 83, 84, 110,

277, 358
Voight, R. G., 228
Vollmar, R., 36
von zur Gathen, J., 196, 226, 230
Volper, D. J., 274
Vranesic, Z. G., 247
Vuillemin, J. E., 198, 249, 387

Wagner, R., 360
Wah, B. W., 38, 58, 139, 196, 227, 339, 340
Wah, W., 84
Waksman, A,, 275
Waltz, D., 340
Wang, H. H., 250
Webb. J. A.. 308
Welch, P. D., 247
Weller, D. L., 140
Wigderson, A., 38
Wilf, H. S., 169, 199, 247, 250
Wilkinson, J. H., 230
Wilson, L. B., 169
Wing, O., 230
Winograd, S., 228, 360, 386
Winslow, L. E., 11 1
Wold, E. H., 250
Wolf, G., 36
Wong, C. K., 110, 137, 140
Wong, F. S., 11 1
Wood, D., 138
WU, C.-L., 38, 169
Wyllie, J., 277

Yajima, S., 1 11
Yamashita, M., 339
Yao, A. C.-C., 84
Yao, F. F., 84
Yao, S. B., 138
Yap, C. K., 56, 306
Yasuura, H., 111
Yen, D. W. L., 197, 248
Yen, J. L., 247
Yoo, Y. B., 274

Yoshida, Y., 338
Young, D. M., 230
Yovits, M. C., 36, 110, 197
Yu, C. F., 340

Yu, G.-S., 387
Yun, D. Y. Y., 250

Zhang, C . N., 250
Zorat, A., 109, 197

Subject Index

A-box, 368
Adaptive, 43, 44
ADAPTIVE COMBINATIONS, 162
ADAPTIVE PERMUTATIONS, 156
Adding n integers, 364
Adding two integers, 363
Addition mesh, 366
Addition tree, 364
Adjacency matrix, 252
Algebraic eigenvalue problem, 21 5
Algorithm analysis, 21
Algorithm design, 21
All -pairs shortest paths, 257
ALLSUMS, 47, 342
Alpha-beta algorithm, 314
And, 29, 254, 363
APPLY, 327
Approximation algorithm, 357
Area, 27, 128
Articulation point, 269
Artificial intelligence, 337
Asynchronous operation, 17
Average-case analysis, 55

Back substitution, 221
Backgammon, 3 12
Biconnected component of a graph, 269
BINARY SEARCH, 66
Bipartite graph, 270
BISECTION, 206
Bit comparator, 381
Bit-serial, 362
Bitonic merging, 79, 80
Bitonic sequence, 79

Bitonic sorting, 103
Boolean matrix multiplication, 254
Boolean value, 8
Boundary value problem, 212
Branch-and-bound, 3 1, 337
Breadth-first search, 266
BRIDGE, 299
Bridge, 269
BROADCAST, 46
Broadcasting, 8
Bus, 53, 106, 134
Butterfly network, 246

Carry-look-ahead adder, 385
Carry-save adder, 385
Ceiling function, 40
Cellular array, 272
Center, 269
Checkers, 31 2
Chess, 18, 312
Chip, 27
Classification, 287
Clock, 6
Clock cycle, 384
Closest element, 125
Closure of a graph, 254
Clustering, 287
Collision, 135
Combination, 142
Commutativity, 383
Comparator, 60
Comparison model, 55
Comparison problem, 39

COMPLEMENT, 148
Composition, 166
Computational step, 22
COMPUTE W, 234
Connected component, 256
Connectivity matrix, 254
Construction problems, 278
Continuous search, 135
Convex hull, 288
Convolution, 191
Cost, 26
Cost optimal, 26
Count, 124
CRCW MATRIX MULTIPLICATION, 187
CRCW SM SIMD computer, 7, 53, 81, 93,

106, 107, 118, 120, 134, 187, 194, 266
CRCW SORT, 94
CREW MERGE, 66
CREW SEARCH, 115
CREW SM SIMD computer, 7,24,26,53,64,

81,96, 107, 114, 120, 134, 135, 201,207, 270,
304

CREW SORT, 97
Cube, 15, 28, 81, 106, 181, 193, 194, 219, 246,

255, 256, 259, 266, 267, 269
CUBE COMPONENTS, 256
CUBE CONNECTIVITY, 255
CUBE EIGENVALUES, 219
CUBE MATRIX MULTIPLICATION, 183
CUBE SHORTEST PATHS, 259
Cube-connected cycles, 245
Cutoff, 19, 316
Cycle, 22
Cycle in a graph, 253
Cyclic index, 270

D-box, 371
Database, 135
Datum, 6
Dead end path problem, 270
Decision problem, 337
Deletion, 126
Depth of a game tree, 3 13
Depth of a network, 373
Depth-first search, 19, 314
Derangement, 165
Diagonal matrix, 217
Diameter, 269

Difference equation, 212
Difference quotient, 212
Digit operation, 361
Directed graph, 25 1
Discrete search, 135
Disjoint paths in a graph, 270
Distributed system, 18
Divide-and-conquer, 41, 66, 291, 297, 382
Division, 383
Dynamic programming, 356

Edge of a graph, 251
Efficiency, 27
Eigenvalue, 2 15
Eigenvector, 215
Enumeration sorting, 94
ERCW SM SIMD computer, 7, 120
EREW CONVEX HULL, 297
EREW MERGE, 76
EREW MST, 263
EREW SM SIMD computer, 7,8,9,10,22, 25,

45,49, 69, 73, 76, 81, 98, 107, 113, 120, 132,
133, 135, 151, 156, 157, 158, 162, 163, 165,
175, 193, 194, 263, 267, 268, 296, 304

EREW SORT, 101
EREW TRANSPOSE, 178
Evaluation function, 314
Expected running time, 55
Exponential time algorithm, 272
Exponentiation, 246

Fan-out of a game tree, 313, 318
Fan-out of a gate, 364, 373
First-in-first-out order, 20
Floor function, 40
Folding, 129
Fourier transform, 231
Full adder, 382
FULL PERMUTATIONS, 158
Fundamental cycles of a graph, 270

Gain matrix, 269
Game of strategy, 312
Game tree, 18, 313
Gate, 27, 362
Gate delay, 384
Gauss-Jordan method, 201
Gauss-Seidel method, 203
Gaussian elimination, 221

General-purpose architecture, 20
Generalized cube, 195
GENERATE, 325
GENERATE MOVES, 326
Go, 312
Graph, 251, 310
Gray level, 32
Greatest common divisor, 384
Greedy algorithm, 262, 270

Hamilton cycle, 270
HANDLE, 325
Hashing, 135
Hexagonal array, 222
Hypercube, 15

Identity matrix, 194, 202
Inclusion problems, 278
Indirect binary n-cube, 195
Inner product of two vectors, 374
Insertion, 125
Instruction, 6
Integration, 27
Interconnection network, 6, 12, 54, 107, 134,

164, 193, 266, 267
Intersection problems, 278
Inverse of a matrix, 194, 202, 225
ITERATIVE FFT, 244

Jacobi's algorithm for eigenvalues, 218
Jacobi's method for PDEs, 224
Job sequencing, 34 1, 35 1

Knapsack problem, 341, 352

Last-in-first-out order, 20
Least significant bit, 364, 384
Lexicographic order, 141
Linear array, 13, 53,78, 89, 104, 105, 134, 188,

222, 243, 383
Linear equations, 201
LINEAR MV MULTIPLICATION, 189
Linear order, 39
Linearly separable sets, 304
Local neighborhood search, 32
Loosely coupled machines, 17
Lower bound, 22
LU-decomposition, 221

Maintenance, 125
Matching, 270, 304
Matrix, 170
MATRIX MULTIPLICATION, 179
Matrix multiplier, 374
MAXIMUM, 152
Mean, 384
Median, 40, 75, 269
Median pair, 74
MERGE SPLIT, 92
Merging, 59
Merging network, 60, 87
Mesh, 14, 24, 53, 54, 78, 105, 128, 135, 171,

179, 193, 213, 222, 224, 239, 243, 266, 270,
349, 354, 355, 366, 369, 383

MESH MATRIX MULTIPLICATION, 180
Mesh of trees, 103, 193,235,283,286,288,292,

303
MESH PDE, 214
MESH FFT, 239
MESH PREFIX SUMS, 349
MESH SEARCH, 129
MESH TRANSPOSE, 172
MIMD ALPHA BETA, 324
MIMD computer, 3, 17, 19, 107,194,203,209,

222, 223, 319, 336, 355
MIMD MODIFIED GS, 204
MIMD ROOT SEARCH, 21 1
Minimax principle, 314
MINIMUM, 151
Minimum spanning tree, 261, 304
MISD computer, 3,4
Mixed radix integer, 145
Model of computation, 3
Model Problem, 212
Modular architecture, 28
Moment, 384
Most significant bit, 377, 381, 384
Multicomputer, 17
MULTIPLE BROADCAST, 70
Multiple broadcasting, 10
MULTIPLE STORE, 82
Multiple storing, 10
Multiplication mesh, 369
Multiplication tree, 368
Multiplying two integers, 366
Multiprocessor, 17
Multistage network, 164

NC, 272
Nearest neighbor, 53
Network, 362
Network flow problem, 270
Newton's method, 209
NEXT COMBINATION, 147
NEXT PERMUTATION, 144
Node of a graph, 251
NP-complete problems, 272
NP-hard, 357
Number of processors, 25
Numbering combinations, 148
Numbering permutations, 145
Numerical analysis, 200
Numerical errors, 200
Numerical integration, 225
Numerically unstable, 221

Oblivious of input, 64, 87
Odd-even merging network, 61
Odd-even sorting network, 87, 381
ODD-EVEN TRANSPOSITION, 90
Office automation, 135
Offspring, 3 13
Omega network, 194
Optimal, 23
Optimization problem, 337
Or, 29, 122, 254, 363
ORDER, 149
Order statistics, 54
ORDERINV, 150
Orthogonal matrix, 222
Overflow, 125

P-complete problems, 272
Parallel algorithm, 3
PARALLEL COMBINATIONS, 159
Parallel computer, 2
PARALLEL PERMUTATIONS, 152
Parallel pipelined computer, 136
PARALLEL SCAN, 152
PARALLEL SELECT, 49
PARALLEL SUMS, 342
Parallelism, 2
Partial differential equation, 212
Partition, 165
Path in a graph, 253
Pattern recognition, 280

Perfect shuffle, 14, 28, 53, 106, 175, 193, 194,
374

Perfect unshuffle, 53, 343, 344, 374
Perfectly ordered game tree, 318
Period, 28, 128
Permutation, 141
Permutation network, 164, 166
Picture element, 20
Pipelining, 17, 122, 282, 362
Pivoting, 221
Pixel, 20, 305
Planar subdivision, 279
Plane rotation, 218
Plus-minus 2', 31
Ply, 313
POINT IN POLYGON, 28 1
POINT IN SUBDIVISION, 284
Poisson's equation, 212
Poker, 312
Polygon, 278, 279
Polynomial multiplication, 232
Polynomial time algorithm, 272
Position, 124
Positive definite matrix, 221
PRAM model, 7
Predecessor, 135
Prefix sums, 47, 341, 362, 373
Primality testing, 5
Primitive root of unity, 194, 231
Probalistic algorithm, 55
Problem reduction, 289
Process, 19
Processor, 2, 19
PROPAGATE, 235
Proximity problems, 278
Pyramid, 80, 106, 304, 305

QR-factorization, 222
Quadratic convergence, 210
Querying, 121, 128
Queue, 20, 122
QUICKSORT, 85

Radius, 269
Rank, 40, 125
RANKC, 149
RANKCINV, 150
RANKP, 146
RANKPINV, 146

Recursive doubling, 342
Regula faisi, 223 .
Regular architecture, 28
Resolution, 20
Routing step, 22, 240
Row-major order, 78, 183, 219,238
Running time, 2 1

SA-box, 364
SCORE, 325
Score table, 324
Searching, 1 12
Selection, 39, 40, 99, 376
Semaphore, 205, 323
Sequential algorithm, 4
SEQUENTIAL COMBINATIONS, 147
SEQUENTIAL CONVEX HULL, 291
SEQUENTIAL FFT, 232
SEQUENTIAL MERGE, 65
SEQUENTIAL PERMUTATIONS, 143
SEQUENTIAL SEARCH, 112
SEQUENTIAL SELECT, 41
SEQUENTIAL SUMS, 342
Serial adder, 363
Serial algorithm, 4
Shared memory, 6,7,17,54,119,164,221,342
Shortest path, 257
SHUFFLE TRANSPOSE, 176
Shuffle-exchange, 14, 245
Shuffled row-major order, 105
SIMD computer, 3, 5, 355
SIMD DFT, 237
SIMD GAUSS JORDAN, 201
SIMD ROOT SEARCH, 209
Single-source shortest paths, 269, 304
Single-stage network, 164
SISD computer, 3
SM SEARCH, 120
Snakelike row-major order, 105
Sorting, 23, 24, 26, 85, 381
Sorting by bucketing, 107
Sorting by enumeration, 94
Sorting network, 87, 163
Sparse graph, 268
Special-purpose architecture, 20, 54, 342
Speedup, 24
Standard deviation, 384
Staran flip, 195

State-space graph, 310
State-space traversal, 310
Step, 22
Storage and retrieval, 135
STORE, 54
Storing, 10
Strong component of a graph, 269
Subgraph, 253
Subset sum problem, 3 1 1, 337
Successive over-relaxation, 212
Successor, 135
SUM, 236
Sum, 4, 15, 24, 25, 46
Supercomputer, 1
Supervertex, 267
SW-banyan, 195
Symmetric difference of two graphs, 270
Symmetric matrix, 221
Synchronous operation, 6
Systolic array, 272

Terminal node, 3 13
Tic-tac-toe, 3 13
Tightly coupled machines, 17
Topological sorting, 269
TRANSPOSE, 171
Trapezoidal rule, 225
Traveling salesman problem, 271, 337
Tree, 14, 16, 25, 26, 28, 53, 80, 106, 121, 135,

190, 194, 268, 281, 337, 346, 351, 353, 355,
356, 364, 368, 375, 377, 383

TREE KNAPSACK, 353
TREE MV MULTIPLICATION, 190
TREE SELECTION, 378
TREE SEQUENCING, 352
Triconnected components of a graph, 271
Two-dimensional array, 13
TWO-SEQUENCE MEDIAN, 75

Undirected graph, 252
Unfolding, 128
UPDATE, 326
Update, 126
Upper bound, 22, 23
UPPER HULL, 298

Vector, 188
Vertex of a graph, 251
VLSI, 27

Weak component of a graph, 269
Weighted graph, 252
Wire delay, 127, 304, 349, 365
Wire length, 28, 128
Word, 361
Worst-case analysis, 55

Wraparound connections, 193, 246
Write conflict, 7, 93, 187

Xor, 29, 363

Zero matrix, 202
Zero of a function, 206

