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Abstract

We present a formal model for the analysis of com-
munication networks in parallel computers. Unlike
most others, our model focus on the transmission de-
lays as opposed to the propagation delays of commu-
nication patterns. The model allows all symmelric
communication networks to be ezamined by their spec-
trums and characterized by their transmission dimen-
stons. A min-cut transformation is introduced as a
tool for the spectrum analysis, which reduces any sym-
metric network to the same canonical form. Parallel
architectures with different topologies can then be cas-
tly compared and evaluated.

1 Introduction

A communication network in a parallel computer
supports inter-processor communications. The char-
acteristics of the communication network are key fac-
tors to the overall performance of the parallel machine.
The question is then how the network should be de.
signed. Alternatively, we may ask how a given commu-
nication network can be evaluated and analyzed since
a systematic analysis of given networks can be used to
guide the design of the networks and help in making
the right choices.

Communication networks have been previously
characterized by their diameter, connectivity, block-
ingness, etc. In the case of meshes, including hyper-
cube as a special case, they are also characterized by
their dimensions. All these characterizations depend
on the abstract topology of the network, and are inde-
pendent of the bandwidth of the links. These charac-
terizations can be used to answer questions related to
propagation delays (or latency), which is a function of
distance, but contains little information about trans-
mission delays, which is a function of bandwidth In

fact, much of the previous work on the mappings and
analysis of communication patterns was aimed at min-
imizing the propagation delay, which may or may not
result in overall good performance.

There has been a trend of moving from the design
of a large number of small processors (LS) to the de-
sign of a small number of large processors (SL) in re-
cent years. Broadly speaking, an LS architecture has
thousands or more processors where each processor
has less than one Mbytes memory and less than 10
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MFLOPS processing power. In contract, an SL ar-
chitecture usually has less than one thousand proces-
sors, but each processors has more than one Mbytes
of memory and more than 10 MFLOPS of processing
power. Examples of LS machines include the early
parallel machine models such as TM(C’s CM-2, Mas-
Par’s MP, and WaveTracer’s DTC. Examples of SL
machines include most of the more recent parallel ma-
chines such as TMC CM-5, Intel’s Paragon, Meiko’s
CS-2, KSR’s KSR-1, IBM’s SP, SGI’s Onyx.

It can be argued that the trend from LS to SL im-
plies that the propagation based analysis is increas-
ingly losing its relevance to the performance. On one
hand, the smaller number of processors means the
largest distance for a message to travel cannot be that
large. On the other hand, the larger size of processors
means from each processor a much larger amount of
messages is likely to be send in and out in each unit of
time. And therefore, it is the transmission delay, and
not the propagation delay, that is much more likely to
be the major cost of communications on SL machines
which are currently dominating the MPP market *.

The objective of this paper is to develop a formal
framework for transmission delay analysis of commu-
nication networks. This framework allows a network
to be characterized by its spectrum and its transmais-

*For communications with large messages relative to the net-
work’s capacity, as is the case with almost all the commercial
parallel computers, the propagation time is fairly insignificant
compared to transmission time. To see this let w be the weight
of the message, c the capacity of the links, £ the longest path

(diameter) in the network. The propagation time Ty, and trans-
mission time T, are respectively

Tp = tstg, Te = w/c

where tg is the clock period of the network. For a typical FFT
algorithm, the message weight w is likely to be near the size of
memory per node, which is in the order of 32 mbyes or more
on machines such as SP-1, KSR, Meiko, CM5. The capacity
of the links on those machines
Mbytes/s.

seconds.

are typically in the order of 10
The transmission time T} is thus in the order of
The diameter r on the other hand is in the order of
10-100, whereas the network clock cycle is in the order of micro-
seconds or even shorter. We thus conclude that the transmission

time is at least two or three orders of magnitude higher than
the propagation time in this case,

. n dimension. The spectrum of the network tells the
swntive bandwidths of the network for communica-
e atterns of different frequencies, where frequency
tlc;]n l;s the locality of a given communication pattern.
l.'Ie‘h::ct.ransmission dimension of a network is derived
from the spectrum, and captures the overall.per'for-

3 nce of the network for a range of communications
r\:l]i;:h different degrees of loc;lities. :

The transmission dimension we mtrpduce and the
conventional notion of network dimension (which can
be referred to as propagation dzmg’ns_ton) are re}atqd
but different. First of all, transmission dimension is
defined over all symmetric nptworks (Sec. 3) as op-
posed to over only networks in the mesh famuly. S]ec-
ondly, transmission dimension generally takes rea ;s
opposed to integral values. Finally, trans_mxssx?n 1};
mension is affected by changing the bandwidth of eac
communication link even 1fvthe abstract topologﬁ stfayi
the same. The two dimensions are related by t! E a}(;
that a k dinwnsiona'l rogl!lar mefsh (mgsh Wl(; .é“e]
same size along all dimensions) with unit bandwi
has a transmission dimensionality ofl.c as we.lL

As a tool for the spectrum analysis, we mtrodukce
the min-cut transformation of symmetric networ :
The min-cut transformation transforms any symgm -
ric network into a logarithmic sequence of nur{l) ers.
The min-cut transformation of a net“work can be in-
terpreted as a canonical network. Since the canoni-
cal network for all symmetric networks have theﬁsame
abstract topology, the min-cut trlan‘sformatlonli) e’1i§ha
way of comparing topologically distinct networ Sk e
spectrum and the dimensionality of the network can
then be calculated from the min-cut transformation.

This work is in part motivated by the fact that pr(l%—'
vious work on communication nfjtworks have mostly
focused on the study of propagation delay of clomrirlm-
nications [8, 7, 6, 4, 5, 12, 11, 10, 9]. The pli)ob Pdm'dtal?
been recognized by Culler et. al., and the ban wflthe
has entered in their LogP model as a paramet‘elf;)h ‘
machine (in reciprocal form) [2]. The haindwu ita:{
the LogP model however is asst_lmed to be con~Thiq

and independent of the communication pattern.t e

assumption cannot be justlﬁed in reality. lvn C(t)}l: rfré-'

the dependency of effective bandwidth c;\er liec_lt 3

quency of communication patterns is made exp

our model. _ o

In Section 2, we review and |_ntrodl‘1(e lsome3 }a-

sic concepts needed in the discussion. Section 12

troduces the min-cut transformation. In SP(‘[}]OI] e

we study the number sequence generated by the n_l:m

cut transformation. The spectrum based on ’F;ln Ut

transformation is presented in Section SS Li(l; [()3
plications to mesh networks are given 1n ;c ussioné

Applications to other networks _and some (flLS}C sLops

are made in Section 7. The main results of this

are summarized in the last section.

2 Preliminaries

2.1 Networks and Communications

A communication network is a tuple H = (G, P,¥)
where

e G = (U,E) is a connected directed graph, called
its topology

e P: a subset of U called terminals, indexed by
integers from 0 to |P|— 1.

e ¥ : E — Rt is a function that maps each edge in
E to a non-negative real number called its capacity
or bandurdth.

The nodes in the set (G — P) are referred to as switch-
ing node. G A

gA message over a network is a triple (p, ¢, w) whers
p and q are terminals of the netyvork called source anA
destination of the message, w is called its weight. A
message pattern is a set of messages. A message pat-
tern is uniform if all the messages in it have the same
weight. ]

EA bisectional message pattern of frequency i and
(uniform) weight w is the set of messages

?((;‘, t;,)w:) | p and g differ in ith least significant bit}

A full spectrum of communication of weight w llsl
the sequence of bisectional communications with a
possible frequencies:

®(w) = (6(0,w),...,0(n—1,w))

where n = log(|P|). An example of full spectrum com-
munication is given in Figure 1.
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1 - A full spectrum commu_nicatl_on over 16
E:)%l:’rsea}ld a mappiﬁg onto a two 'dlme.nsmna.l mesgl.
The mapping is explained in Section 6, and cartl_ e
shown to be optimal in terms of both propagation time
and transmission time.

ssage Flow ‘

2.2A ﬂmin a Eetwork H for a communication pattern
is a mapping f which assigns each messagel(p,q, tti)J) in
the pattern a path from p to ¢, and a re? ntl;]m e;sc_'
called the strength or weight of the flow for “e';nﬂ

sage. The flow is said to have uniform weight if the
strength assigned to all messages is equal, 1xlnxf’¢i‘r}111
path if the lengths of all the paths are_el(llua 5 e
flow is uniform if it has both uniform weight an um(i
form path. In this paper, we are primarily concerne

with uniform flow for uniform bisectional commllntl_ca-
tion patterns. A flow for a sequence of communication
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patterns is simply a sequence of flows, one corresponds
to one pattern in the sequence.

We assume the network is clocked. Let f be a flow
over H for a pattern s, (p,q,w) € s, and f(p,q, w) =
(z,¢). Then the source p injects a parcel of weight ¢
into the network at each clock cycle. A flow is not
valid unless

e the sum of weights of all parcels that travel
through a link at any time step is smaller or equal
to the bandwidth of the link.

e for any node, the total weight of outgoing parcels
at clock cycle ¢ equals the total weight of incoming
parcels not destined to the node at cycle t — 1.

In other words, a valid flow never overflows a link,
and never causes accumulations of messages at any
intermediate node.

2.3 Performance Measurement

Let f be a uniform flow over H for a frequency
¢ bisectional communication é(i, w) with strength ¢
and path length ¢. We define ¢ and w/c to be re-
spectively the abstract propagation time and abstract
transmission time of the communication under flow if
Let the network be clocked at frequency w, r = 1/w,
then the concrete propagation time is the product of
abstract propagation time and 7, the concrete trans-
mission time is the product of the transmission time
and 7. In the following discussions, abstract propa-
gation time and abstract transmission time are often
referred to by propagation time and transmission time
respectively unless indicated otherwise.

Observe that propagation and transmission are or-
thogonal and independent. The former is a function
of distance, the latter a function of bandwidth. Pre-
vious studies of communications on networks centered
around propagation time analysis, also widely known
as latency analysis. This work, by contrast, focuses
on the transmission time analysis (or bandwidth anal-
ysis).

We use T,(w,i, H, f) and Ty(w,i, H, f) to denote
respectively the propagation time of frequency 7 bi-
sectional communication ¢(i, w) over the network H
under flow f. Similarly, we use Tp(w, H, f) and
Ty(w, H, f) to denote respectively the propagation
and transmission time for the full spectrum of bisec-
tional communications. For notational convenience,
we will also sometimes omit the network H and/or
flow f when one or both are clear from the context,.
For instance, T;(64k) refers to the transmission time
for a full spectrum communication of weight 64k over
a certain network under a certain flows.

2.4 Characterizations
We define a set of network parameters.

® propagation diameter R,(H) = Ty(x, H), where
T is any weight

e transmission diameter Ri(H)=T,(1,H)

e bandwidth for
B(H,i) = 1/T,(1,H,i)

frequency i

e ensemble bandwidth B(R,(H)) = 1/Ry(H)),

e propagation dimension Kp(H) = kp, where k
satisfies
RP(H) = kP(Nl/l‘r e 1)

and N is the number of terminal nodes in H.

e transmission dimension K(H) = k,. where ky
satisfies
Ry(H) = ky(NYE _ 1)

Note that since propagation and transmission are in-
dependent, it is quite possible for a network to have
different transmission and propagation dimensions.

The response spectrum of a network is defined to be
the sequence

(B(H,0), B(H,1),..., B(H,log(n) — 1))

The response spectrum of a network thus gives the ef-
fective bandwidth of the network for communications
of all different frequencies. The response spectrums of
a 1-d mesh, 2-d mesh, 3-d mesh, and a 12 dimensional
hypercube are plotted in Figure 5.

Finally, we say two networks are equivalent denoted
by = if and only if they have the same response spec-
trum.

2.5 Notation of sequences

A sequence is usually given in the form enumer-
ation S = (sg,s1,...,8q,-1). The length of the se-
quence is denoted by |S|. We sometimes use the ex-
pression < s; > to denote a sequence, which consists
of (so,s1,..., Sn—1) when the values of the terms and
the length of the sequence are given by the context.

Given sequences s =< s; >, §' =< st >. We define

e Constant multiply: cs =< cs; >.

e Normalization: !'s =< sifso >

3  Min-Cut Transformation

In this section, we introduce the min-cut transfor-
mation as a tool in the bandwidth analysis of net-
works. This transformation maps a wide range of net-
works to sequences of real numbers with lengths loga-
rithmic to the numbers of terminals in the networks.
The bandwidth analysis can then be performed over
the sequences.

3.1 Min-cut transformation

By graph theory, a cut of a connected graph is a
set of edges whose removal results in two disconnected
subgraphs. Suppose the edges are weighted, the weight
or bandwidth of a cut is the sum of the weights of all
the edges in the cut. A min-cut is a cut that has
minimum weight. The min-cut is symmetric if the
two subgraphs are isomorphic. A graph is a symmetric
graph if symmetric min-cuts exist recursively.
~ We define the min-cut transformation of a symmet-
ric network H to be the sequence of

“(H) = (C(),Cl,...,(’m_])

i dwidth of the ith cut when the
" thevglayncut. Note th}(: w?i%::t cl>f tthe ﬁtrsl;
i d the weight of the last cu
a lf? t?eerllisr; eirrllut);\ear;equence. g’We refer to the cut
g l.Sond'mg to the weight c; in the sequence the cut
cor’resp“ which is counted from left to right. ' .
pifeve ’example, a 16-processor network M with uni-

Asl?r?k-bandwidth of one, connected by a 4 by 4 two
t(-ioil;rr:ensional mesh, has the min-cut transformation of

u(M) =(1,2,2,4)

where cm—i :
network 1s recursi

as shown in Figure 2.

-~

: L
Figure 2: The min-cut transformation of two dim

sional mesh

! i etry seems
1 be pointed out that while symm
e erst,riclion over the domain of networllizi
it is a property that all networks folund ml reizlt;})‘z(i)r; <
ines seem to possess. Examples incluc
lll[l?;a\clhgll(’—slsplf\'gll{ (})\'ALH— 1, MasPar MP-2, Intel Paragon,
Meiko CS-2, TMC CM-5. | ,
P{‘\'g define a sequence of numbers ﬁ"— ,&C,?}fﬁ-
. Cm—1) as properif 2¢; 2 Ciy for a liion Igns
.p.or'tanl, property of the min-cut Lransfom:at e
properness of the produced sequence as state

following theorem.

to be a severe

5 if and
Theorem 1 A sequence is a min-cul sequence f

only 1f 1t 1s proper.

. The if part of the lemr oust
s\fogfll only pfréw the only if pért by cox:ltvfi?(htf:lfl?e
Let c1 be the weight of a cut at step laga‘;l e i
weight of the next cut. Suppose f‘l > 2c2, :
must exist another cut at the ith step, S
2¢'+1 which is smaller than ¢' (see Figure 5.
mvan; the ¢l was not a min-cut.

na should be obvious.

3.2 Linearity of 1\‘/Im-$uttmil

is section, we show that :
t.io:lni;hal linear operation with respect to we
operations. The linearity of this trta
portant since it means that the tr
network can be derived
the network’s component networks.

p, whose weight is

. This

Transformation
1-cut transforma-
11-defined
nsformation is im-
ansformation of a
from the transformations of

Figure 3: The schematic illustration for the proof of
the properness of min-cut.

Let us define two operations over netwotrks. l:lul’r{nbli';
multiplication, and addition. Given a ni wo}:'ere s
product with a number a is the networ tWv(s:; e
link’s capacity is multiplied by a. ‘Given e
with the same terminal nodes, their sum 1(5l e
in which the terminals are inter-connecte g s
two networks. More formal definitions are g
follows: i
multiplication Let H = (G, P, t/)()l, t{ler:p(zex) bz
(G, P,¢¥') where Y'(e) = az if and only

). Ob-
iti = (G Pl¢), H = (G5Bl
addlst;r(:/‘; {f;t}{hey (share the same ltermmal setHI::
where G = (V,E),G' = (V',E'). :I‘h.en (
H') = (G",P,¢"), where G" = GUG’ with nodes
in P overlapped; ¥"(¢) = if (¢ € E) then ¥(e)
else ¢'(e).

Theorem 2 (Linearity) The min-cut transformation
is a linear transformation:

1. p(aH) = ap(H)

2 p(H+ H') = p(H) + p(H')
a’reogg:ly give the proof for (2) because (1) i(sf;)’l))v;
ous. Let pu(H) = (c(l), P o s/

> B
/ o 166 A= )v“(H i H) =
(Coye=s Gt 2n—11). Thus the ith cut E; for H

U
i ; d the ith cut E! for H' has
has capacity C(n—i-1), an :
capacity cj_;_,. Clearly, EE = E; U E! is a cut for

= ! ith stage with the capacity of
M=l theAlll \lve ng,ed to show is that the

(S0y--+»Sn—i=1y--

Cln—i=1)a" E(n =) S
is a min-cut for H .

mtSf;ﬁ)c;se EE is not a min-cut for HH , then tl¥ere

should be another cut Y'Y with capacity yy <t s,),,_‘a_nl.

The cut YY can be (l&COr}\{;)Osi(}i‘ into t-:vt(;: cyu}s” salle
! re Y is a cut for H with capa: v,

{ v;lh’ewit,h capacity y’. We now have yy =y +fg/th<e
% — ¢p_i_1 + ¢ _;_1- Equivalently, one o
Sp—i—-1 = Cn-i- e

following must hold

1. y < ¢(n—i-1) and Y.< Cm—i=1)
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2. Cn-i-n)—y <y - Cfn-.'-x)

But (1) implies neither C(n—i—1) Was the ith min-cut
for H, nor cEn—i—l) the ith min-cut for H’ whereas (2)
implies that one of them was not the min-cut for H
or H'. The hypothesis that EE is not a min-cut thus
must be false.

For example, let H be a network of 64 terminals
connected by two overlapped networks. One is an 8
by 8 two dimensional mesh with uniform bandwidth
8. The other is an 8 dimensional hypercube with
uniform bandwidth 0.5. Suppose we know that the
min-cut transformation of a 64 node 2-d mesh with
unit bandwidth, denoted by M?(64), has the min-cut
transformation (1,2,2,4,4,8), and the min-cut transfor-
mation of a 64 node hypercube with unit bandwidth.
denoted by M8(64), is (1,2,4,8,16,32). Then, since
H =8M?*(64) + 0.5M8(64), we have

H(H) = pu(8M?*(64) +0.5M5(64))
= 8u(M?*(64) + 0.5u(M5(64))
= 8(1,2,2,4,4,8)+0.5(1,2,4,8,16,32)
= (8,16,16,32,32,64) + (0.5,1, 2,4, 8, 16)
= (8.5,17,18,36,40, 80)

Note that the min-cut transformation of this network
is derived from the linear property of the transforma-
tion without actually “cutting” the network

4 Sequence Analysis

In the previous section, we showed how the min-
cut transformation maps symmetric networks into se-
quences of real numbers. This section is devoted to
the analysis of sequences. In the next section, we will
put the two things together, and show how a network
can be analyzed by a min-cut transformation followed
by a sequence analysis. A tool we use in the sequence
analysis is a simple model called canonical networks
which can be thought as the physical interpretations
of the sequences by min-cut transformation
4.1 Canonical networks

A canonical network is a complete binary tree where
the capacity of any edge at height i is s;, for i = 0 to
n—1. The N = 2" terminals are leaves, indexed
from left to right by the numbers from 0to N —1.
Qlea.rly, a canonical network defines a sequence, and
vice versa. We use Z(s) to denote a canonical net-
work corresponding to a sequence s. An example of
a canonical network Z(co, 1,2, c3) with 16 nodes is
given in Figure 4.

It is fairly straightforward to see that a bisectional
communication of frequency i uses all links with height
smaller than or equal to 7 on a canonical network.
More concretely, given ¢}i,w), the frequency i bisec-
tional communication (o weight w) and a canonical
network Z(s), a message in é(i, w) will go through
some node(s) and link(sg of height (0,1,... 7). More-
over, links of height greater than i are not used, the
flow for ¢(i,w) therefore is a conjunction of 2n-i-1

disjoint and identical sub-flows, each oi which is over

Co

Figure 4: An example of a
Z(co, c1, €2, €3)

canonical network

a sub-tree of height i + 1. As a special case, for fre-
quency 0, the pairs of communicating terminals are
(0,1),(2,3),(4,5), .... The flow goes through N/2 sub-
trees, each of which is a binary tree of height one.

Now let us consider B(Z(c), i), the bandwidth of
a canonical network Z(c) for frequency i. Note that
a link at height j < i will have to be shared by 2
processors. Therefore, B(Z(c), 1) must simultaneously
satisfy the following inequalities.

B(Z(c),i) < ¢o/2°,

B(Z(c),i) < ¢ /2",

B(Z(c),i) < e/,
from which we conclude

Theorem 3 The bandwidth for biscctional communi-
cation of frequency 1 on a canonical network Z(s) 1s

B(Z(c),1) = min(c; /27 | j=0to i—1)

Given a sequence ¢ — (co,...,cn-1), we define a
power divided min sequence denoted by #c by
*c = (co, min(cy, c1/2), min(co, (‘1/2l , (‘g/22),
<oymin(eg, ¢y /28, .. chel/25ms))
This allows us to rewrite the statement in Theorem 3

as B(Z(c),1) = *¢;. Moreover, we have

Corollary 1 The response spectrum of a canonical
network Z(c), denoted by B(Z(c)) 1s the sequence

(*l‘u,*('l, S *Cn—1)

Example 1

1. B((?(Il/,l,1,/1,1,1,1,1,1,1,],l))
=(1,1/2,1/4,1/8,1/16,1/32,1/64,1/128,
1/256,1/512,1/1024,1/2048)

2. B(7(1,2,2,4,4,8,8,16,16,32,32,64))
=(1,1,1/2,1/2,1/4,1/4,1/8,1/8,1/16,1/16)

3. B(Z(1,2,4,4,8,16,16,32,64,64,128,256))
=(IN 1 2,1/2,1/2,1/4,1/4,1/4,1/8,1/8,1/8)
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Figure 5: The response spectrum of the canonical mlest(-)
works in Example 1. As will be seen, the¥ can adi-
be interpreted as the response spectrums g z;.)ontei"ee
mensional mesh (a), two dimensional mesl ( l),h =
dimensional mesh (c), and a twelve dimensiona T}{Eef.
cube (d) respectively, all with 4096 processors. iejek
fective bandwidth for high frequency commkumca
increases with the dimension of the network.

LAl LT

4 B(Z(1,2,4,8,16,32,64,128,256,512,1024,2048,4096)
(1

which are plotted in Figure 5. %)
The transmission time for bisectional cqmmumcha
\sion and the weight of the

[ -pends on the dimer ’
D et he sequence of the network.

communication, as well as t
More precisely,

Theorem 4

Ty (w, 1, Z(c)) e
: 02 ; oi—

ur/min(s(,,51/21,52/2 s (2

w/*c;

Proof: It follows directly from Theorem 3 and

Corollary 1. . '

1ss1 1 of a
The transmission diameter and dulnenillon
canonical network can also be computed easily
Theorem 5 Let ¢ = (co,c1,- - (ysik

1. transmission diameter:

R(Z(c)) = (1/xco+1/#cit -+ 1/%cn1)

2. transmission dimension:
K(Z(c)) = ki

k
where k; is the root for R(Z(c)) = k(NY* —
1) OINE=F2%"

4.2 Normalization :
Given a sequence s = (so,51,--
1 1 lized form
an convert it to 1its norma E
El 51/50,---,Sn—1/50). For a network H(s)' W(; re
fer to H(!s) as its normalization, Is as its struc ureé
and sp, the first term of s, as its base. Furtherrr(\iol'e,twd
say two networks H(s) and H(t) ar'e s:mrlal:, T:rjs
by H(s) ~ H(t) if and only if s =M. ltn other ;
tructure.
two networks share the same struc ;
tdhe’l‘he bandwidth and transmission time on a cz;nolr)le
ical network for all frequencies i can be shovs;? c;on_
related to those of network’s stn{cture by a the
stant factor equal to the network’s base.

.,s,._l?, we
s

Theorem 6
1. B(w,i, Z(ac)) = a(B(w,1, Z(c)),
2. Ty(w,i,Z(ac)) = Te(w,1, Z(c))/a.

This allows us to focus our attention on the Ttl;pcl-l
ture of canonical networks. Since the.51mllfalr l;f a la,(;n
“~” is obviously an equivalence x:elatlo_n, the om(_ :
of all possible networks are partitioned ll:ﬂ.o rr;i?gs 1:n
finite) equivalent classes each of whic cﬁon“ows .
infinite number of networks. Theorem a Dua
to study each equivalent class of infinite mem lizeﬁ
studying one representative, that is the norma

network in that class.

5 Spectrum Analysis

Thepmin-cut transformation is a powerful tool for
network spectrum analysis because a network is gqulv;
alent to the canonical network defined by the min-cu

sequence. Formally,

Theorem 7 Let H be a symmetric network, pu(H) its
min-cul transformation, then H = Z(p(H))-

S iTet p(H) = (coticy) - hichap) =iCt Welpdex
azo&imilr;alslcff f)I in(such a way that two tei;-rlr)nnt:;‘l:
are respectively in the two subgraphs gene_r;te | )t,,heir
cut with capacity ¢; if and only if they differ }:nt, I
ith least significant bit. We omit the proof tha P
can always be done (see Figure 64f01'l an exacr}r‘\pSide

at there are always 2' terminals on each
cljfo::cthhcut at level 7, and the cut has the ga;l:aqltytlo:
¢;. Although the messages may go across links n} t,}ie
cuts of other level(s), the properness properti’hot the
min-cut transformation (Theorem 1) ensures tha el
min-cut of the flow (the bottleneck) occurs at.icu o
level i. The strength of the flow therefore is ¢; /2. Thli
holds for any frequency i, which means the netw_ol'l
H has the same response spectrum as the canonica
H).
net";}?zkagcgeeg th)eorem allows us to perform the spec-
trum analysis of communication networks 1n terms
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tE’lgure 6: An example of mapping so that messages of
ortf;]qenaybx gobz;cross cuts at level i. This mapping is

lained by a bit-permutation of the terminal indi o
as illustrated in Figure 7. s

of their min-cut transformations. Since the min-cut
transformations of networks are sequences with lengtl
logarithmic to the size of the network. it can be al:' ;
lyzed much easily than the original network -
It should also be pointed out that while min-cut
transfqrmatlon preserves information about spectrur
analysis and transmission time related par;uine-te-r\' |ll]
does not preserve the information required for rop
agation time related analysis. As a matter nfl f'l:‘lli
all symmetric networks are mapped by the llllll—’l‘l t
trqnsformathn to canonical networks with log: II
mic propagation diameter. e
The following proposition follows Theorem 7

Theorem 8 Let H be

; a symmetric network, H’ the
canonical network defined by H’s min-cut transforma
tion, then we have .

1. The trans 5 -5
e nsmission diameters of H and H’ are

2 hf hansm'cei 9 T S 7 T€
. ] 1sswon (ll nension o H 4
) f a Ul II a

3. The ensemble bandwidth of H and H’ are equal.
6 Mesh Networks

N tMesEes. are simple and among the most widely used
etworks in parallel architectures. This section is de
(\ﬁ)ted to the analysis of mesh networks. Althoug}.n t(}‘u:
Si;Ic]usswn focuses on parameters based on transmis-
sion, some discussion about propagation analysis is
included for the purpose of comparison L

6.1 Basics

A k dimensional mesh of shape
consists of the following tern:ilr:laplfs )

P:{(on.’r],.u,rk_l |0<z; < Ni}

and no sv;itching nodes. N; is the size of the ith di
mension for i = 0 to k — 1 whereas N = T7¥-! ;
lbsytl;elisll]zke i(t?fatr:]; (r)nc;sh:f’lt‘}wq terminals are_cc!;l:;gtﬁi
; only if their coordinates differ

along one dimension b ‘or i N

s y one. For instance p i
connected to (1,3,3) but not to (3,2,3) O:Ie;l (tlhyrze's)ll'S
mensional mesh. All the links on a ?h netwdfk(i;

practice have uniform bandwidth alt}
[ ! q hough o
fine a non-uniform mesh in theory. _—
A mesh is regular if its si
its sizes along all dj i
eg ‘ ; ime
are equal, and it is quasi-regular if the sizes of a:s?ns
d.lmeqs!ons dlffer by‘ at most a factor of two Als{; t"No
snmph.clty of discussion, we assume that Lhe'size al =
any dimension is a power of two ! =
It is important to reali i
alize that binary h
) ypercube:
special cases of regular meshes where the dimensiS arz
and size N are related by k = log,(N). g
i _Thf' (topological) diameter of a mesh (largest
distance between any two processors) of shl?xepse

N - . k=1, ,, :
( 0 ,'l\k_l) is Y i—o (N;i = 1). For regular meshes
of size N, the diameter is k(NY/E _ 1), which is
to log,(N) when k = log,(N) » -
The propagation time :
~Th g ne of the full spectrum
ac 3 p (‘ 3
nication has been previously studied in (10,9 llo]m'rII‘]lll
main results are summarized as follows: 3

Theorem 9

. ok :
A ful[l spectrum communication on any dimen
S 4 ’
tonal mesh takes propagation steps that 1s at least
equal to the diameter of the mesh :

. ’(’)]rllnnul’mup];myl,s of full spectrum communica-
on exist such that the propagat leps
the diameter of the nu.shl PAOSTIIN MR

' We showed that the propagation optimal mappings
;::;j“f)]‘l u'r;]lq.uv, and in fact any bit-pe rmulmlg[ Imu;-

g , 3] is optimal. There is eve / one
mapping that has the property ll l<lallml“|:«'\((‘:)vll(l)llllllzll;z‘l:
tion dlstanry«:svaro monotonically increasing with tl:e:
frequency. This mapping is illustrated in [l'?i qure 6 1
for the case of two dimensional meshes. ¢ l
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ll;'B;tir;,—]:(.-nm;tll’){)'mg fr)f full spectrum communication
binses nlrunlwdly)“m or a two dimension mesh. The
Ol)taill two [l('\:’ l”‘—l‘ .'4 3 b“ ()f ”l(l(.x 1 l\ 'P(.r”””‘t)(l 2
B s )m.tr‘nm.r) numbers, one consists of all the
in even )milt' ""“l”}. the ot,ln-rl consists of all the bits
e )r(-E ¥ tions. I'hese two binary numbers are then

preted as integers which define the mesh coordi-
nates of the processor for index i .

' This is justi
based n l-Sl ‘?ISO Justified by the fact that most commercial mesh
bnacd machines such as MasPar MP-1, WaveTracer DTC, TMC
‘M-2 have power-of-two sizes along all dimensions. X

quasi- ;
which we refer to as s(k,n) sequences, with certain

6.2 The s(k,n) sequences

As will be shown, the min-cut transformation of
regular meshes produces a family of sequences

strong properties. In this section, we study s(k,n)
sequences and their corresponding canonical network.

Formally, a s(k,n)sequence is a sequence of length
n consisting of [n/k] subsequences as in

s(k,n) =(1,2;...52Y, 2F o A

k k
ogn/k=(k=1) gn/k=(k=2) "2n/k-(k—m))

m

where m is n modular k. Although the definition looks
complicated, there is a very simple way to construct
the sequences. We will construct k numbers at a time
from left to right. The first k numbers are always
1,2,...,2F"1. To construct any other group of k num-
bers, repeat the last number in the previous group as
the first in the current group, and double it each time
to get an additional number until all the numbers are
generated for the group. The last group may and may
not contain k numbers depending on whether n Is a
multiple of k. But the rule for constructing the num-
bers is the same, which is to repeat the last number in
the previous group, and double it each time until all

the numbers in the group are genera
Example 2

1. s(1,8)=(1,1,1,1,1,1,1,1)

2. 5(2,8) = (1,2, 2,4, 4,8,8,16,16,32)

3s(3,11) = (1,2,4,4,8,16,16,32,64,64,128)

4. s(10,10)= (1,‘2,4,8,l6,3?,64,1‘28,‘256,51‘2,1024)

Note that the definition does not require that n be
a multiple of k. The canonical network defined by a

s(k,n) sequence has the following property

Theorem 10 Let M =
of k, N =2". Then

1. the transmission dimensionality of M 1s k,

2. the transmassion

k(NY/* —1).

We omit the proof since it follows directly from
5. It should also be noted that
k, the transmission dimen-
1-integer

Theorems 4 and
when n is not a multiple of
sionality of the corresponding network is a nor
that is smaller than k.

As some examples, we have

Example 3
1. R(Z(d(1,n))) =n, D((Z(d(1,n))) =1

2. Ry(Z(d(2,10))) = 62, D«(Z(d(2, 10))
3. R(2(d(3,12))) = 45, D,(2(d(3,12))
4. R(Z(d(n,n))) = n, D(Z(d(n,n))) =n

5. Ri(2(d(2,5)) = 10, Di(Z(d(2,5))) = 1.879798

It should be obvious that Z(d(1,n)) corresponds to
a conventional tree, and Z(d(n,n)) a fat-tree [1].

6.3 Mesh analysis

orem. Keep in mind that M(k,N,c
mensional quasi-regular mes
link bandwidth c.

ted. For example,

Z(s(k,n)) be the canonical
network defined by the s(k,n) sequence, n 1s a multiple

diameter over M s exactly

=2
=

The following theorem reveals the relations between

mesh and s(k,n) sequences under the min-cut trans-
formation.

Theorem 11 Let M(k,N,c) be a quasi-regular mesh,
where k is the dimensiona
of terminals, c 1s the uniform ba

Then p(M(k,u,c)) = c-s(k, log,(N))-

ity, N 1s the total number
ndwidth of the links.

for the above the-
) denotes a k di-
h of size N with uniform

The following are some examples

Example 4

1. 1-d mesh: uM(1,64,8)=8(1,1,1,1,1,1,1,1)

2. 2-d mesh:
uM(2,1024,4) = 4(1,2,2,4,4,8,8,16, 16, 32)

3. 3-d mesh:
uM(3,256,1) = (1,2,4,4,8,16, 16, 32,64)

4. 10-d hypercube: p(M(10,1024,2) =
2(1,2,4,8,16,3‘2,64,128,256,512)

By Theorem 11, the examples in Example 1 are
the min-cut transformation of one, two, three, and
ten dimensional regular meshes of size 4096 and unit
bandwidth. The spectrums plotted in Figure 5 can
now be interpreted as the response spectrums of the
four meshes of dimensions one, two, three, and twelve
respectively. Observe that higher dimensional meshes
have higher responses to higher frequency communi-

cations.
The correspondence between meshes and the s(k,n)

sequences allows us to calculate the response spectrum
and other transmission parameters easily.

Theorem 12

1. Let M = M(k,N,c) be a k dimensional quasi-
reqular mesh,n = log,(N). Then the spectrum of
M s given by the length n sequence

u(k,n) = (1 S 120/ 2 2
NG N L

k k
PR e ma Y PR g TP
where m = k if n is a multiple of k, m =

modular k otherwise.
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2. The transmission time for frequency i '
e tra y 1 of unit
weight is c/(u(k,n);), and has the form of a prod-
uct between the base bandwidth ¢ and a power of
two. The transmission diameter 1s given by

R(M) 1/c (pzf;(} 2') + 1/c (m2n/k-1)

1/¢ (No+ N1+ -+ Nioy — k)

where p = [n/k| -1, m the same as in (1), N; 1s
the size for the ith dimension for i =0 to k — 1.

Proof: By definition of the response spectrum and
Theorem 11.

Now we are in the position to present the relations
between the characterizations based on transmission
and those based on propagation.

Theorem 13 Let M be a i

) quasi-reqular mesh of unat
ba_sc bandwidth, R and D respectively the transmission
diameter and dimension, R’ and D’ respectively the
propagation diameter and dimension. Then R = R’

D=D::

Proof: By Theorem 12 (2), the transmission di-
ameter is equal to the physical diameter of the mesh
topology, which in turn equals to the propagation di-
ameter for the spectrum communication by [11, 10]
That the two diameters are equal in turn imp ies that
the transmission dimension and propagation dimen-
sion are equal.

7 Other Applications

‘The previous section shows that the spectrum anal-
ysis is effective in the analysis of mesh networks. In
thls section, we demonstrate that it can also be effec-
tively applied to other communication networks

As an example, let us consider a butterfly network
of N terminals and log(n) switching nodes. Let ¢ be
the uniform link bandwidth of the network. It is easy
to see that the min-cut transformation is :

c(1;2;4;8,:.1, N/2)

which is the same as a binary hypercube wit
number of nodes. The butterﬂgllpnetwork thl}:st;:;ssalllr:ll:
form bandwidth for communication of all frequencies
and is equivalent to hypercube of the same size 5
~ Tree networks, strictly speaking, are not syfnmet-
ric networks. However, if we (recursively) remove the
tl:oot and connect the links adjacent to the root, the
t‘;']ietnetwo_rk becomes a symmetric network prov’ided
: rele;-anty'ls even. The min-cut transformation for
rees thus exists as long as the trees are symmetric
(e.g. completed binary trees). The min-cut transfo
mation of a symmetric tree networks is in fact t}:;
:)ree itself on which the spectrum analysis can easil
e performed in the first place. When the tree is con)-,
l\::‘:letllsonie:l,isl.zdut_hellmtki are of unit bandwidth at all
, it ivalent to a one dimensio i
terms of its response spectrum despite thenlec;n:}fgt lirz

has much smaller i i
> physical diameteg, : :
ality of conventional trees is thu:bThe dinenzion:
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Recently, the so-called fat-trees have gai
popularity in the parallel computing comgr:llil:i(: sol;ne
trees are essentially canonical networks withy' &
quence of link bandwidths that can be assi adse-
different values. If the sequence consists of iﬁget' .
numbers, the fat-tree degenerates to a non-fat con i
tional tree. At the other extreme, if the sec uenvel'l.
such that each number is twice as large asl thnce -
before, the network will have the same responsees e
trum as a binary hypercube and is referred to E[:sec-
complete fat-tree . Since complete fat-trees are ex :
sive to build, incomplete fat-trees are often ado I;.ei;-
The CM-5 by Thinking Machines is an exam lep? ;
nPtl\:votrk based on a non-complete fat-tree net\gorl:) 1

et us consider an incomplete ith t
bandwidth sequence of uplete fat'free witil

(1,2,4,4,8,8, 16, 16)

of 256 terminals. Its response spectrum is thus

(1,1,1,1/2,1/2,1/4,1/4,1/8)

which has an equal or narrower bandwidth for all fre
quencies than a three dimensional mesh network witl-
unit bandwidth. The transmission diameter is the sun:
of all the reciprocals in the response spvrtrun; which is
equal to 23. For comparison, a unit bandwidth two di-
mensional mesh of the same number of terminals has
a not much larger diameter of 30. Not surprisingl
the transmission dimensionality of this fat tree ‘wlﬁc)lli
is the root of the equation '

L(9epl/k
k(256 —1)=1+1+14+24+24+44+4+8=23

is only 2.320. In other words, we expect this fat-tree
to behave very much like a two dimensional mesh in
terms of its transmission performance, and not re-
spond to high frequencies very well. This example
shows that neither the small topological diameter nor
the fact that there is a topological isomorphism be-
Lw:on fat-trees and hypercubes can automatically con-
tv:(l)r)i(lt( to the transmission performance of the net-
} Sf[iw it is obvious that low-dimensional meshes
1ave low bandwidth response to high frequency com-
munications, it is frequently proposed that a high-
dimensional network be added to enhance the overall
performance. The additional high dimensional mesh
often has much smaller base bandwidth to reduce the
overall cost. %

Let us consider the case where 1024 processors are
connected by a 2-d mesh with the min-cut Bl =

Csj:a::;'fl‘};\;l’;;lngfc;llt (‘(;Hlllll?r(‘iﬂl machines, in('hul?ng M?ik(,
of fault tulerancrj ﬂl-ld ’""; Smecaoniatitrees, For (’onsulem'tmns
arity than two ar‘ul re ]u lf;ru, the networks often have a higher

SMasPar’s MP-1 . u:]l‘lam F)Mhs b‘.‘tw"" processors:
where 1k or more pr()::so figmachinesjargauch 'exam.plcs,
o proce I's are :nnm'-.rted by a two dlmcmlunl}l
well as a “global router” which has a much smaller di-

ameter an i
di : d a much narrower bandwidth than those of the two
imensional mesh.

(1,2,2,4,4,8,8,16,16,32) as well as a “high-dimensional”
network with reduced bandwidth of

B2 =1/16(1,1,1,1,2,4,8, 16, 32, 64)

It would be interesting to consider how much this addi-
tional high dimensional network has enhanced the net-
work transmission performance. The question can be
easily answered by exploiting the linearity of min-cut
transformation (Section 3). The response spectrum of
the 2-d mesh is (1, 1, 0.5, 0.5, 0.25, 0.25, 0.125, 0.125,
0.063, 0.063), while the response spectrum of the
additional network is 0.0625(1, 0.5, 0.25,0.125,0.125,
0.125,0.125, 0.125, 0.125, 0.125). The “high dimen-
sionality” of this network is evidenced by the fact
that the bandwidth for frequency 4 or higher com-
munications remains constant. The combined band-
width spectrum is then (1.0625, 1.0313, 0.5016,0.5008,
0.2508.0.2508,0.1258, 0.1258, 0.0638, 0.0638). The
transmission diameter is Ty = 0.941240.97 +1.994 +
1.997 + 3.987 + 3.987 + 7.9491 + 7.9491 + 15.674 +
15.674 = 61.1224, compared to the transmission di-
ameter of the 2d mesh of 62. The transmission di-
mension of the composed network is then 2.0111. The
contribution of the “high dimensional” global router
to the overall dimension is thus only 0.0111.

8 Conclusion

In this paper, we started with an observation that
the recent trend of moving from a large number of
small processors (LS) to a small number of large pro-
cessors (SL) in the design of parallel machines calls for
new models for network analysis based on bandwidth
and transmission time as opposed to those based on
distance and propagation time.

We introduced the notion of frequency. We name
the model “spectrum analysis” since it attempts to
capture the behavior of the network by observing its
transmission response to communications with all dif-
ferent frequencies. By an analogy with propagation
based models, we redefine the notion of diameter and
dimension in the context of transmission time analy-
sis. The transmission diameter and dimension agree
in value with their propagation counterpart in the case

and only in the case — of regular meshes with unit
link bandwidth. Just as propagation diameter and di-
mension characterize a network’s propagation behav-
ior, the transmission diameter and dimension charac-
terize a network’s transmission behavior.

The min-cut transformation is introduced which al-
lows us to study complex networks in terms of short se-
quences of real numbers. These sequences can be nat-
urally interpreted as tree-structured networks which
preserve the response spectrum of networks. By this
interpretation, min-cut transformation can be thought
as a process that maps symmetric networks to their
canonical forms with tree structures. The properties
of min-cut transformation, sequences, and canonical
forms are studied. The result of this work 1s a system

by which the response spectrum, transmission diame-
ter, and transmission dimension can be automatically
derived for a wide range of communication networks.
The applications of the model to mesh and several

other
strate

networks are included in this paper to demon-
the effectiveness and usefulness of the model.
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