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1. PARALLELISM AND RECURSION

Many important synchronous parallel algorithms—Fast Fourier Transform,

routing and permutation, Batcher sorting schemes, solving tridiagonal linear

systems by odd-even reduction, and prefix-sum algorithms—are conveniently

formulated in a recursive fashion. Network structures on which parallel

algorithms are typically implemented—butterfly, sorting networks, hyper-

cube, and the complete binary tree—are also recursive in nature. However,

parallel recursive algorithms are typically described iteratively, one parallel

step at a time. 1 Similarly, the connection structures are often explained

pictorially by displaying the connections between one “level” and the next.

The mathematical properties of the algorithms and connection structures are

rarely evident from these descriptions.

1A notable exception is the recursive description of a prefix-sum algorithm in Karp and

Ramachandran [ 1990].
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We propose in this article a data structure called powerlist that highlights

the role of both parallelism and recursion. Many of the known parallel

algorithms such as FFT, the Batcher Merge, prefix-sum, and embedding

arrays in hypercubes, etc. have surprisingly concise descriptions using pow-

erlists. Simple algebraic properties of powerlists permit us to deduce proper-

ties of these algorithms that employ structural induction.

2. POWERLIST

The basic data structure on which recursion is employed in LISP [McCarthy

et al. 1962] or ML [Milner et al. 1990] is a list. A list is either empty or is

constructed by concatenating an element to a list. In this article, we restrict

ourselves to finite lists. We call such a list linear because the list length

grows by 1 as a result of applying the basic constructor, Such a list structure

seems unsuitable for expressing parallel algorithms succinctly; an algorithm

that processes the linear-list elements has to describe how successive ele-

ments of the list are processed.

We propose powerlist as a data structure that is more suitable for describ-

ing parallel algorithms. The base, which corresponds to the empty list for the

linear case, is a list of one element. A longer powerlist is constructed from the

elements of two powerlists of the same length (described later). Thus, a

powerlist is multiplicative in nature as its length doubles by applying the

basic constructor.

There are two different ways in which powerli sts are joined to create a

longer powerlist. If p, q are powerlists of the same length, then

p I q is the powerlist formed by concatenating p and q, and

p M q is t,he powerlist formed by successively taking alternate items from

p and q, starting with p.

Furthermore, we restrict p, q to contain similar elements as defined in

Section 2.1. In our examples, the sequence of elements of a powerlist is

enclosed within angular brackets, while for notational convenience linear

lists will be enclosed in square brackets.

(0)1(1) = (0 1)
(o) N (1) = (o 1)
(o 1)1(2 3)=(0 1 2 3)
(o 1)M(2 3)=(0 2 1 3)

The operation I is called tie, and ~ is zip.

2.1 Definitions

A data item from the linear list theory will be called a scalar. Typical scalars

are the items of base types—integer, boolean, etc. —tuples of scalars, func-

tions from scalars to scalars, and linear lists of scalars. However, scalars are

uninterpreted in our theory, as we assume merely that scalars can be

checked for type compatibility. We will use several standard operations on

scalars for illustration purposes.

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 6, November 1994



Powerlist . 1739

(((a)(b))((4 (4))
Fig. 1. Representation of a complete binary

tree where the data are at the leaves. For

((a) (b))

h

(c) (d)) leaf nodes, the powerlist has one element.
For nonleaf nodes, the powerlist has two

elements, namely, the powerlists for the left
and right subtrees.

(a) (b) (c) (d)

A powerlist is a list of length 2 n, for some n, n >0, all of whose elements

are similar.

Two scalars are similar if they are of the same type; two powerlists are

similar if they are equal in length and if any element of one is similar to any

element of the other. Note that similar is an equivalence relation.

Let S denote an arbitrary scalar, P a powerlist, and u, v similar pow-

erlists. A recursive definition of a powerlist is the following:

(S)or(P) oruluoru M~.

2.1.1 Examples

(2) is a powerlist of length 1 containing a scalar.

((2) ) is a powerlist of length 1 containing a powerlist of length 1 of scalar.

( ) is not a powerlist.

([ 1)is a pmwwlistof length 1 containing the empty linear list.
(([2] [3 4 7]) ([4] [ ])) is a powerlist of length 2, each element of which is

a powerlist of length 2, whose elements are linear lists of numbers.

((O 4)(1 5)(2 6)(3 7)) is a representation of the matrix

[

0123

4567 1
where each column is an element of the outer powerlist.

((O 1 2 3)(4 5 6 7)) is another representation of the above matrix where
each row is an element of the outer powerlist.

((( a) (b)) ((c) (d))) is a representation of the tree in Figure 1. The
powerlist contains two elements, one each for the left and right subtrees.

2.2 Functions over Powerlists

We write function application without parentheses where no confusion is

possible. Thus, we write “ fx” instead of” f( x)” and “gx y“ instead of “g(x, y).”

The constructors / and M have the same binding power, and their binding

power is lower than that of function application. Throughout this article, S

denotes a scalar, P a powerlist, and x, y either scalar or powerlist. Typical
names for powerlist variables are p, q, r, s, t, u, and U.

Functions over linear lists are typically defined by case analysis; a function

is defined over the empty list and, recursively, over nonempty lists. Functions

ACM Transactions cm Programming Languages and Systems, Vol. 16, No 6, November 1994.
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over powerlists are defined analogously. For

reu reverses the order of the elements of the

rev(x) = (x)

instance, the following

argument powerlist:

function

reu(plq) = (reuq)l(reup)<

The case analysis, as for linear lists, is based on the length of the argument

powerlist. We adopt the pattern-matching scheme of ML [Milner et al. 1990]

and Miranda [Turner 1986] z to reconstruct the argument list into its compo-

nents, p and q, in the recursive case. In general, reconstruction uses the

operators I and M ; see Section 3. In the definition of rev, we have used I for

reconstruction, but we could have used N instead, defining rev in the

recursive case by

reu(p H q) = (rez~q,) ~ (reup).

It can be shown by using the laws in Section 3 that the two proposed

definitions of rev are equivalent and that we have

reu(reu P) =P

for any powerlist P.

2.2.1 Scalar Functions. Operations on scalars are outside our theory.

Some of the examples in this article, however, use scalar functions, particu-

larly, addition and multiplication over complex numbers and cons over linear

lists. A scalar function f has zero or more scalars as arguments, and its value

is a scalar. We coerce the application of f to a powerlist by applying f
“pointwise” to the elements of the powerlist. A scalar function f of one

argument is defined as follows:

f(x) = (f-~)

f-(plq)=(fp)l(fq).

Also, it can be shown that

f(p Wq) = (fp) ~ (fq).

A scalar function that operates on two arguments will often be written as an

infix operator. For any such function @ and similar powerlists p, q, u, v, we

have

(x)@ (y)= (x @y)

(plq)@(u lu)=(p@u)l(q @u)

(p Mq)@(tt Mu)= (p@z4)M(q6 u).

Thus, scalar functions commute with both I and N .

It is important to note that because a scalar function is applied recursively

to each element of a powerlist, its effect propagates through all “levels.” Thus,

+ applied to matrices forms their elementwise sum.

2 Miranda is a trademark of Research Software Ltd.
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2.3 Discussion

The base case of a powerlist is a singleton list, not an empty list. Empty lists,

or equivalent data structures, do not arise in the applications we have

considered. For instance, in matrix algorithms, the base case is a 1 X 1

matrix rather than an empty matrix. Similarly, the Fourier transform is

defined for a singleton list rather than an empty list, and the smallest

hypercube has one node.

The recursive definition of a powerlist says that a powerlist is either of the

form ZL N u or u I u. In fact, every nonsingleton powerlist can be written in

either form in a unique manner (see Section 3). A simple way to view

P I q = L is that if the elements of L are indexed by n-bit strings in increas-
ing numerical order, where the length of L is 2‘, then p is the sublist of

elements whose highest bit of the index is O, and q is the sublist with 1 in the

highest bit of the index. Similarly, if u N u = L, then u is the sublist of

elements whose lowest bit of the index is O, and u‘s elements have 1 as the

lowest bit of the index.

At first, it may seem strange to allow two different ways for constructing

the same list by using tie or zip. But as we see in this article, this causes no

difficulty, and furthermore, this flexibility is essential because many parallel

algorithms—the Fast Fourier Transform being most prominent—exploit both

forms of construction

We have restricted u, u in u I u and zz M u to be similar. This restriction

allows us to process a powerlist by recursive divide and conquer, where each

division yields two halves that can be processed in parallel by employing the

same algorithm. (Square matrices, for instance, are often processed by quar-

tering them. We will show how quartering, or quadrupling, can also be

expressed in our theory.) The similarity restriction allows us to define com-

plete binary trees, hypercubes, and square matrices that are not “free”

structures. And, though the length of a powerlist is a power of 2, which

somewhat restricts our theory, it is possible to design a more general theory

eliminating this constraint. We sketch an outline of it in Section 6.

3. LAws

LO. For singleton powerlists, ( x), (y) we have

(X)1(Y) = (x) ~ (Y).

L1. Dual Reconstruction. For any nonsingleton powerlist P there exist

similar powerlists r, s, u, u such that

P=rls and P= UNU.

L2. Unique Reconstruction

((x) = (y)) = (X=y)

(plq==u ]u)=(p=u Aq=U)

(p Mq=u CUu)=(p=u Aq= v).

L3. Commutatiuity of / and CQ. (plq)~(u lu)=(p~u)l(q~ u).

ACM TransactIons on Programming Languages and Systems, Vol. 16, No. 6, November 1994.
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These laws can be derived by defining tie and zip suitably, using the

standard functions from the linear list theory. One possible strategy is to

define tie as the concatenation of two equal length lists, then to use Laws LO

and L3 as the definition of zip; Laws L1 and L2 can be derived next.

Alternatively, these laws may be regarded as axioms relating tie and zip.

Law LO is often used in proving base cases of algebraic identities, Laws L1

and L2 allow us to reconstruct uniquely a nonsingleton powerlist using either

1 or N . Law L3 is crucial. It is the only law relating the two construction

operators I and M in the general case. Hence, it is invariably applied in

proofs by structural induction where both constructors play a role,

3.1 Inductive Proofs

Most proofs on powerlists are by induction on the length, depth, or shape of

the list. The length len of a powerlist is the number of elements in it. Since

the length of a powerlist is a power of 2, the logarithmic length lgl is a more

useful measure. Formally,

lgl(x)=o

lgl(ulu) = 1+ (lglu).

The depth of a powerlist is the number of “levels” in it:

depth(S) = O

depth(P) = 1 + (depth P)

depth(u I v) = depth u.

In the last case, since u and u are similar powerlists, they have the same

depth. Most inductive proofs on powerlists order them lexicographically on

the pair (depth, logarithmic length). For instance, to prove that a property II

holds for all powerlists, it is sufficient to prove that

rI(s),

II P* II(P), and

(HuJ ~ (IIv) ~ (u, v) similar = II(u1 u).

The last proof step could be replaced by

The shape of a powerlist P is a sequence of natural numbers nO, nl, , . . . n~
where d is the depth of P and

n,1 is the logarithmic length of P,

nl is the logarithmic length of (any) element of P, say r, and

n ~ is the logarithmic length of any element of r, . . .

A formal definition of shape is similar to that of depth. The shape is a linear

sequence because all elements, at any level, are similar. The shape and the

type of the scalar elements define the structure of a powerlist completely. For

inductive proofs, the powerlists may be ordered lexicographic ally by the pair

(depth, shape), where the shapes are compared lexicographically.

ACM TransactIons on Programmmg Languages and Systems, Vol 16. No 6, November 1994
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Example. The len, lgl, and depth of ((O 1 2 3)(4 5 6 7)) are 2, 1, and 1,

respectively. The shape of this powerlist is the sequence 1 2, because there

are 2 elements at the outer level and 4 elements at the inner level.

4. EXAMPLES

Here, we show a few small algorithms on powerlists. These include such

well-known examples as the Fast Fourier Transform and Batcher sorting

schemes. We restrict the discussion in this section to simple or unnested

powerlists where the depth is O. Higher-dimensional lists and algorithms for

matrices and hypercubes are taken up in a later section. Since the powerlistx

are unnested, induction based on length is sufficient to prove properties of

these algorithms.

4.1 Permutations

We define a few functions that permute the elements of powerlists. The

function rev defined in Section 2.2 is a permutation function. These functions

appear as components of many parallel algorithms.

4.1.1 Rotate. Function rr rotates a powerlist to the right by one; thus,

rr(a b c d) = (d a b c). Function r-l rotates to the left: rl(a b c d) =

(b c d a).

rr(x) = (x), rl(x) = (x)

rr(u M u) = (rr 0) N u, rl(u Ku) =u M (rl u).

There does not seem to be any simple definition of rr or rl using I as the

reconstruction operator. It is easy to show through structural induction that

rr and rl are inverses. An amusing identity is reu(rr(rev( rrf’))) = P.

A powerlist may be rotated through an arbitrary amount k by applying k

successive rotations. A better scheme for rotating (u M u ) by k is to rotate

both u and u by about k/2. More precisely, the function grr given below

rotates a powerlist to the right by k, where k > 0. It is straightforward to

show that for all k, k > 0, and that for all p, (grrkp) = (rr(~) p), where rr(~~

is the k-fold application of rr:

grrk(x) = (x)

grr(2 xh)(u Mu) = (grrku) M (grrku)

grr(2 Xk + 1)(u w v) = (grr(k + l)u) M (grrk u).

4.1.2 Rotate Index. A class of permutation functions can be defined by the

transformations on the element indices. For a powerlist of 2 n elements, we

associate an n-bit index with each element, where the indices are the binary

representations of O, 1, . . . . 2 n – 1 in sequence. For a powerlist u Iu, indices

for the elements in u have O as the highest bit, and elements in u have 1 as

the highest bit. In u ~ u, similar remarks apply for the lowest bit. Any
bijection h mapping indices to indices defines a permutation of the powerlist:

the element with index i is moved to the position where it has index (hi).

Next, we consider two simple index mapping functions; the corresponding

ACM Transactions on Programrn]ng Languages and Systems, Vol. 16, No. 6, November 1994
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P’s indices = (000 001 010 011 100 101 110 111)

List P = (abcd~f~h)

P’sindices rotated right = (000 100 001 101 010 110 011 111)
rsP = (a c e 9 bd f h)

P’sindices rotated left = (000 010 100 110 001 011 101 111)
18P = (aebfcgdh)

Fig 2. Permutation functions rs, redefined in Section 4.2.2

permutations of powerlists are useful in describing the shuffle-exchange

network. Note that indices are not part of our theory.

A function that rotates an index to the right by one position has the

permutation function for right shuffle, or rs, associated with it. The defini-

tion of rs may be understood as follows. The effect of rotating an index to the

right is that the lowest bit of an index becomes the highest bit; therefore, if rs

is applied to u N u, the elements of u—those having O as the lowest bit—will

occupy the first half of the resulting powerlist because their indices have O as

the highest bit after rotation: similarly, u will occupy the second half. Figure

2 shows the effects of index rotations on an 8-element list. Analogously, the

function that rotates an index to the left by one position induces the permuta-

tion defined by left shuffle, or 1s, as shown below:

rs(x) = (.x), 15(X) = (x)

rs(u MJu)=ulu, ls(ul U)= Zf~rJ.

It is trivial to see that rs and 1s are inverses.

4.1.3 Inoersion. The function int) is defined by the following function on

indices: an element with index b in P has index b‘ in ( inu P ), where b‘ is the

reversal of the bit string b. Thus,

000 001 010 011 100 101 110 111

znv(ahcde fg h)=

(a e c g b f dh ).

The definition of in v is:

inu(x} = (x)

inu(plq) = (inup) M (inuq)

This function arises in a variety of contexts. In particular, in u is used to

permute the output of a Fast Fourier Transform network into the correct

order.

The following proof shows a typical application of structural induction:

INV1. inu(p M q) = (inup)l(inuq).

Proof is by structural induction on p and q.

ACM Tranbact,ons on Programmmg Languages and Systems, Vol 16, No 6, November 1994
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Base.

irzr)((. x)Lx (y))

={From Law LO: (x) N (y) = (x)1(Y)}

imx(. %)1(y))
= {definition of inv}

inv(x} M inu<y)

= {irw ( x) = (x), zrm( y) = (y). Thus, they are singletons. Applying LO}

inu(z)linu(y)

Induction.

inu((r I s) ~ (u I u))

= {commutativity of I , N}

inu((r M U)l(s M u))

= {definition of inv}

inu(r N u) N inu(s M u)

= {induction}

(invrlinuzf) M (inuslinuu)

= {1, M commute}

(inur M znus) I(inu u M inu u)

= {apply definition of inv to both sides of I}

irzu(r I S)l inu(u I u).

Using IN?71 and structural induction, it is easy to establish that

inu(inv P) =P,

inu(rev P) = 7-eu(inu P),

and for any scalar operator @,

inu(P @ Q) = (inv P) @ (inu Q).

The last result holds for any permutation function in place of inu.

4.2 Reduction

In the linear list theory [Bird 1989], reduction is a higher-order function of

two arguments, an associative binary operator, and a list. Reduction applied

to @ and [aOal . . . a.] yields (aO EBal @ . . . @ a,,). This function over pow-

erlists is defined by the following:

4.3 Gray Code

Gray code sequence [Gray 1953] for n, when n >0, is a sequence of 2 n n-bit

strings, where the consecutive strings in the sequence differ in exactly one bit

ACM Transact]on~ cm Programmmg Languages and Systems, Vol 16, No 6, November 1994
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n=o ([1)
n=l ([0][1])

7Z=2 ([00] [01] [11] [10])

n=3 ([000][001] [011][010] [11 O][lll]PO1] [W}

Fig 3 Standard Gray code sequence fern, n =0.1,2,3.

position. The last and the first strings in the sequence are considered

consecutive. Standard Gray code sequences for n = O, 1,2, 3 are shown in

Figure 3. We represent the n-bit strings by linear lists of length n and a Gray

code sequence by a powerlist whose elements are the linear lists. The

standard Gray code sequence may be computed by function G, for any n:

GO= ([])
G’(n+ 1) =( O: P)l(l:(reUP))

where P = (Gn).

Here, (O :) is a scalar function that takes a linear list as an argument and

appends O as its prefix. According to the coercion rule, (O : F’) is the powerlist

obtained by prefixing every element of P by O. Similarly, ( 1: (rev P )) is

defined, where the function rezl is from Section 2.2.

4.4 Polynomial

A polynomial with coefficients p,, 0 <j <2’, where n >0, may be repre-
sented by a powerlist p whose jth element is p]. The polynomial value at

some point 0 is Zo<l<zn Pj x ~ J. For n > 0 ~his quantity is

The following function ep evaluates a polynomial p using this strategy. In

anticipation of the Fast Fourier Transform, we generalize ep to accept an

arbitrary powerlist as its second argament. For powerlists p and w, which

have possibly unequal lengths, let (pep w) be a powerlist of the same length

as w, obtained by evaluating p at each element of w:

(x)ep (w) = (x)

pep(ulv) =(pepu)l(pepv)

(p CQq)epw =(pepwz) +(w X(qepw2)).

Note that w 2 is the pointwise squaring of w. Also, note that ep is a pointwise

function in its second argument.

4.5 Fast Fourier Transform

For a polynomial p with complex coefficients, its Fourier transform is

obtained by evaluating p at a sequence (i.e., powerlist) of points ( Wp ). Here,

(Wp)is the powerlist (oJ”, ZO],..., w-l ), where n is the length of p and co is
the n th principal root of 1. Note that ( Wp ) depends only on the length of p

ACM Transactions on Programming Languages and Systems, VOI 16, No 6, November 1994
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but not on its elements, so for similar powerlists, p, q, ( Wp) = (Wg). It is

easy to define the function W in a manner similar to ep.

We need the following properties of W for the derivation of FFT. Equation

(1) follows from the definition of W and the fact that ti2’N = 1, where N is

the length of p (and q). The second equation says that the right half of

W( p K q) is the negative of its left half. This is because each element in the

right half is the same as the corresponding element in the left half multiplied

by ON; since OJis the (2 x IV)th root of 1, CON= – 1.

W’(p M q) = (Wp)l(wq) (1)

W(p ~q) =ul(–u), forsomeu (2)

The Fourier transform, FT, of a powerlist p is a powerlist of the same

length as p, given by

FTp = pep (Wp)

where ep is the function defined in Section 4.4.

The straightforward computation of ( p ep v ) for any p, u consists of evalu-

ating p at each element of u; this takes time O(N z) where p, u have length

N. Since ( Wp ) is of a special form, the Fourier transform can be computed in

O(A7 log IV) steps, using the Fast Fourier Transform algorithm [Cooley and

Tukey 1965]. This algorithm also admits an efficient parallel implementation,

requiring O(log lV ) steps on O(IV ) processors. We derive the FFT algorithm

next.

FT( X )

= {definition of FT}

xep (W(x))

= {Since W{ x ) is a singleton, from the definition of ep}

(x)

For the general case,

FT(p N q)

= {From the definition of FT}

(p N q)epw(p N q)

= {from the definition of ep}

pep W2(p Nq) + W(p Mq) X(qep W2(p Mq))

= {from the property of W; see Eq. (1)}

pep((Wp) l(Wq)) + W(J7 M q) X (qep((Wp) l(Wq)))

= {distribute each ep over its second argument}

((pep (Wp))l(pep (Wq))) + W(p ~ q) x ((qep(Wp)) l(qep(Wq)))

= {(WP) = (Wq), pep (Wp) = FTP, qep(Wq) = FTq}

(( FTp)l(FTp)) + W(p M q) x ((FTq) l(ZW’q))
= {using P, Q for FTp, FTq, and u 1(-zJ) for W(p N q); see Eq. (2)}

ACM Transactions on Programming Languages and Systems, Vol. 16, No, 6, November 1994
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(P IP)+(u+LL)x(QIQ)
= { I and x in the second term commute}

(Hp)+((ztx Q)](-u xQ))

= { I and + commute}

(P+ LLx Q)l(P-ux Q).

We collect the two equations for FT to define FFT, the Fast Fourier

Transform. In the following, ( powersp) is the powerlist ( co”, CO1,. . . . ti~’1 )

where N is the length of p and OJthe (2 X N)th principal root of 1. This was

the value of Zt in the previous paragraph. The function powers can be defined

similarly to ep:

FFT(x) = (.x)

FFT(pcu q)=(P+z~x Q)\(P-LLx Q)

where

P = FFTp

Q = FFTq

u = powersp.

It is clear that FFT( p M q ) can be computed from ( FFTp ) and ( FFT q ) in

O(N) sequential steps or 0(1) parallel steps, using 0(N) processors ( u can

be computed in parallel), where N is the length of p. Therefore, FFT( p ~ q)

can be computed in O(N log N) sequential steps or, O(log N ) parallel steps,

using O(N) processors.

The compactness of this description of FFT is in striking contrast to the

usual descriptions; for an example, see Chandy and Misra [1988, Section

6.13]. The compactness can be attributed to the use of recursion and the

avoidance of explicit indexing of the elements by employing I and M . FFT

illustrates the need for including both I and M as constructors for powerlists.

Another function that employs both I and N is inu of Section 4.1.

4.5.1 Inoerse Fourier Transform. The inverse of the Fourier transform,

IFT, can be defined similarly to the FFT. We derive the definition of IFT

from that of the FFT by pattern matching.

For a singleton powerlist, ( x), we compute the following:

IFT( x )

= {(x) =FFT(x)}

IFT(FFT( X ))

= {IFT, FFT are inverses}

(x).

For the general case, we have to compute IFT( r I s) given r and s. Let

IFT(rls)=p Mq
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in the unknowns p and q. We chose this form of reconstruction so that we

can easily solve the equations we next generate. Taking FFT of both sides,

FFT(IFT(rl s)) =FFT(p M q).

The left side is (r I s) because IFT and FFT are inverses. Replacing the

right side by the definition of FFT( p M q ) yields the following equations:

rls=(P+ uxQ)l(P–ux Q),

P = FFTp

Q = FFTq

u = powersp.

These equations are easily solved for the unknowns P, Q, u, p, q. The law of

unique reconstruction, L2, can be used to deduce from the first equation that

r= P+ux Qands=P –uXQ. Also, since pand rare of the same

length, we may define u using r instead of p. The solutions of these

equations yield the following definition for lFT. Here, /2 divides each

element of the given powerlist by 2:

IFT(x) = (X)

lFT(rls)=p Mq

where

P = (r + s)/2

u = powers r

Q = ((r – s)/2)/u

p = IFTP

q = IFTQ.

As in the FFT, the definition of IFT includes both constructors I and N . It

can be implemented efficiently on a butterfly network. The complexity of IFT

is the same as that of the FFT.

4.6 Batcher Sort

In this section, we develop some elementary results about sorting and discuss

two remarkable sorting methods developed by 13atcher [1968]. We find it

interesting that cu , not 1, is the preferred operator in discussing the princi-

ples of parallel sorting. Henceforth, a list is sorted means that its elements

are arranged in a nondecreasing order. A general method of sorting is given

by

sort(x) = (x)

sort(p M q) = (sortp) merge (sortq)

where merge, written as a binary infix operator, creates a single sorted
powerlist out of the elements of its two argument powerlists, each of which is

sorted. In this section, we show two different methods for implementing

merge. One scheme is the Batcher merge, given by the operator bm. Another
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scheme is given by bitonic sort where the sorted lists u and u are merged by

applying the function bi to (u I ( reu u)).

A comparison operator $ is used in these algorithms. The operator is

applied to a pair of equal length powerlists p, q; it creates a single powerlist

out of the elements of p, q by

p$q=(pmin q)~(pmax q).

That is, the 2ith and (2i + l)th items of p $ q are (p, min q, ) and (p, max q,),

respectively. The powerlist p $ q can be computed in constant time using

0( lenp ) processors.

4.6.1 Bitonic Sort. A sequence of numbers, XO, xl, . . . . x,, . . . . x~, is

bitonic if there is an index i, O < i s N, such that XO, xl, ..., xl is rnonokonic

(ascending or descending) and x,, . . . . XN is monotonic. The function bi given

below applied to a bitonic powerlist returns a sorted powerlist of the original

items:

hi(x) = (x)

bi(p Mq) = (bip)$(biq).

For sorted powerlists u and u, the powerlist ( u I (rev u )) is bitonic; thus u and

u can be merged by applying bi to ( u I(rev v)). The form of the recursive

definition suggests that bi can be implemented on 0(N) processors in

O(log N) parallel steps, where N is the length of the argument powerlist.

4.6.2 Batcher Merge. Batcher also proposed a scheme for merging two

sorted lists. We define this scheme, bm, as an infix operator below:

(x) bin(y) = (x) $ (y)

(r~s)bm (u~v)=(rbm v)$(sbmu).

The function bm is well suited for parallel implementation. The recursive

form suggests that (r bm v ) and (s bm u) can be computed in parallel. Since $

can be applied in O(1) parallel steps using O(N) processors, where N is the

length of the argument powerlists, the function bm can be evaluated in

O(loglV ) parallel steps, In the rest of this section, we develop certain elemen-

tary facts about sorting and prove the correctness of bi and bm.

4.6.3 Elementary Facts about Sorting. We consider only “compare-and-

swap” sorting methods. It is known [Knuth 1973] that such a sorting scheme
is correct if and only if it sorts lists containing 0s and 1s only. Therefore, we

restrict our discussion to powerlists containing 0s and 1s only.

For a powerlist p, let ( zp ) be the number of 0s in it. To simplify notation,

we omit the space and write zp. Clearly,

AO. Z(P M q) = zp + zq and z(x) is either O or 1.

Powerlists containing only 0s and 1s have the following properties:

Al. ( x ) sorted and ( x ) bitonic.

AZ. (p M q) sorted GP sorted // q sorted ~ O SZp –zq s 1.
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A3. (p M q) bitonic ~ p bitonic A q bitonic A Izp – zql < 1,

Note that the condition analogous to (A2) under which p I q is sorted is:

&?’. (p I q) sorted s p sorted A q sorted A (zp < (lenp) * zq = O).

The simplicity of A2 compared with A2’, may suggest why H is the primary

operator in parallel sorting.

The following results, B1 and B2, are easy to prove. We prove B3.

B1. p sorted, q sorted, zp > zq * (p minq) =p A (pmax q) = q

B2. Z(p $ q) = Zp + Zq

B3, p sorted, q sorted, Izp – zql s 1 + (p $ q) sorted

PROOF. Since the statement of B3 is symmetric in p, q, assume zp > zq.

p sorted, q sorted, Izp – zql < 1

* {assumption: 2P 2 zq}

p sorted, q sorted, O < zp – zq s 1

+ {A2 and Bl}

p N q sorted, (pminq) =p, (pmaxq) = q

= {replace p,q in p N q by (p minq), (p max q)}

(p min q) M (p max q) sorted

= {definition of p $ q}

p $ q sorted. ❑

4.6.4 Correctness of Bitonic Sort. We show that the function bi applied to

a bitonic powerlist returns a sorted powerlist of the original elements: B4

states that bi preserves the number of zeroes of its argument list (i.e., it loses

no data), and B5 states that the resulting list is sorted.

B4. z(bip) = zp

PROOF. By structural induction using B2.

B5. L bitonic = ( bi L) sorted. ❑

PROOF. By structural induction.

Base. Straightforward.

Induction. Let L = p M q

p M q bitonic

* {A3}

p bitonic, q bitonic, Izp – zq I < 1

== {induction on p and q}

(hip) sorted, (bz q) sorted, \zp – zql s 1

= {from B4: z(bip) = zp, z(biq) = zq}

(hip) sorted, (big) sorted, lz(bip) – z(biq)l s 1
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* {apply B3with(bip), (biq)forp, q}

(hip) $ (biq) sorted

- {definition of bi}

bz(p ~ q) sorted. ❑

4.6.5 Correctness of Batcher Merge. We can show that bm merges two

sorted powerlists in a manner similar to the proof of bi. Instead, we establish

a simple relationship between the functions bm and bi from which the

correctness of the former is obvious. We show that:

B6. p bm q = bi(p I(rev q)), where rev reverses a powerlist (Section 2.2).

If p and q are sorted, then p I (rev q ) is bitonic, which is a fact that we do

not prove here. Then, from the correctness of bi, it follows that bi( p I(reu q))

is sorted, so p bm q is sorted. And it contains the elements of p and q.

PROOF OF B6. By structural induction.

Base. Let p,q = (x),(Y)

bi((x) I reu(y))

= {definition of rev}

bz((x) l(y))

= {((”l?)l(y))= ((x) ~ (y))}

bi((x) H (y))

= {definition of bi]

(x) $ (Y)

= {definition of bm}

(x) brn(y)

Induction. Let p, q = r N s, u CQv

bi(p I(reu q))

= {expanding p, q}

bi((r Ws)lreu(u M u))

= {definition of rev}

bi((r H s) I(reo v ~ reo ZL))

= (1, N commute}

bi((rlreu u)~(slreu u))

= {definition of bz}

bi(rlrecu) ~ bi(slreuu)

= (induction}

(r bmu)$(sbmu)

= {definition of bm}

(r Ns)brn(u Ru)

= {using the definitions of p, q}

pbm q. ❑
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The compactness of the description of Batcher’s sorting schemes and the

simplicity of their correctness proofs demonstrate the importance of treating

recursion and parallelism simultaneously.

4.7 Prefix-Sum

Let L be a powerlist of scalars and @ be a binary, associative operator on

that scalar type. The prefix sum of L with respect to @, ( ps L), is a list of the

same length as L given by

ps(xo, xl, . . ..xl. xN), xN)

=(xo, xo@xl,..., xoa3x1xt,. xt,. ... XO(BX1(B.. .8)X N);

that is, in ( ps L), the element with index i, i >0, is obtained by applying @

to the first (i + 1) elements of L in order. We will give a formal definition of

prefix-sum later in this section. Prefix sum is of fundamental importance in

parallel computing. We show that two known algorithms for this problem can

be concisely represented and proved in our theory. Again, zip turns out to be

the primary operator for describing these algorithms.

A particularly simple scheme for prefix-sum of 8 elements is shown in

Figure 4. In that figure, the numbered nodes represent processors, though the

same 8 physical processors are used at all levels. Initially, processor i holds

the list element L,, for all i. The connections among the processors at

different levels depict data transmissions. In level O, each processor from O

through 6 sends its data to its right neighbor. In the ith level, processor h

sends its data to (h + 2 ~) if such a processor exists; this means that for

j < 2‘, processor j receives no data in level i data transmission. Each

processor updates its own data, d, to r @ d where r is the data it receives; if

the processor receives no data in some level then d is unchanged. It can be

shown that after completion of the computation at level (logz( len L)), proces-

sor i holds the ith element of ( ps L).

Another scheme, due to Ladner and Fischer [1980], first applies @ to

adjacent elements Xz,, Xz, + ~ tocompute the list (XO @ xl, ... Xz, @ Xz, +1, .,.).

This list has half as many elements as the original list; its prefix-sum is then

computed recursively. The resulting list is ( XO @ xl, . . . . X. @ xl @ “.. @ xz~ @

x~L+ ~,... ). This list contains half of the elements of the final list; the missing

elements are XO, XO CBxl @ Xz, ..,, XO @ xl @ .“” ESXzl, . . . These elements can

be computed by “adding” Xz, X4, . . . . appropriately to the elements of the

already computed list.

Both schemes for prefix computation are inherently recursive. Our formula-

tions will highlight both parallelism and recursion.

4.7.1 Specification. As we did for the sorting schemes (Section 4.6), we
introduce an operator in terms of which the prefix-sum problem can be

defined, First, we postulate that O is the left identity element of @, i.e.,

O @ x = x. For a powerlist p, let p‘ be the powerlist obtained by shifting p to
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level O

level 1

level 2

level 3

F1g,4. Anetwork tocompute theprefix-sum ofeight elements,

the right by one. The effect of shifting is to append a O to the left and discard

the rightmost element of p; thus, (a b c d)” = (O a b c). Formally,

(x)” = (o)

(p Mq)”=q Hp.

Then, it is easy to show

S1. (r @ s)* = r“ @ s“

S2. (p M q)”” =p’ M q’.

Consider the following equation in the powerlist variable z.

z=z~~~ (DE)

where L is some given powerlist. This equation has a unique solution in z

because

Z. = (z”)O @L.

==OG3L0

= Lo, and

z=L+l 27L fB14L+1, O s i < (len L) – 1.

For L=(abcd), z=(a, a@ b,a@b@c, a@ b@c~d), which isex-

actly ( ps L). We define ( ps L) to be the unique solution of (DE), and we call

(DE) the defining equation for ( ps L).

Notes

(1) The operator @ is not necessarily commutative. Therefore, the rhs of (DE)
may not be the same as L o z*.

(2) The operator @ is scalar, so it commutes with ~ .

(3) The uniqueness of the solution of (DE) can be proved entirely within the
powerlist algebra, similar to the derivation of Ladner-Fischer scheme

(given later).
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(4) Adams [1994] has specified the prefix-sum problem without postulating

an explicit O element. For any @, he introduced a binary operator @ over

two similar powerlists such that p ~ q = p* 6 q. The operator ~ can be

defined without introducing a O.

4.7.2 Computation of the Prefix-Sum. The function sps (simple prefix-

s urn) defines the scheme of Figure 4:

Sps (x) = (x)

sps L = (SpSU) ~ (SpSU),

where UHU=L*QL.

In the first level in Figure 4, L* @ L is computed. If L = ( XO, x ~, . . . ,.%l,... ),
then this is(xO, xO@xl, . ..xl@x Z+l+l . . . ). This is the zip of the two sublists

(xO, xl@xz,..., xz, _l@xz, )...) and (xO@xl,..., xz, @xzl+ l)...). Next,

prefix-sums of these two lists are computed independently, then zipped. The

Ladner-Fischer scheme is defined by the function lf

if(x) = (x)

lf(p Mq)=(t*@p)Mt

where t =lf(p @q)

4.7.3 Correctness. We can prove the correctness of sps and lf by showing

that the function ps satisfies the equations defining each of these functions.

It is more instructive to see that both sps and lf can be derived easily from

the specification (DE). We carry out this derivation for the Ladner-Fischer

scheme as an illustration of the power of algebraic manipulations. First, we

note that ps(x) = (x):

ps(x)

= {from the defining equation (DE) for ps( x )}

(pS(x))* @ (x)

= {definition of *}

(o) @ (x)

= {@ is a scalar operation}

(o @x)

= {O is the identity of @}

(x)

Derivation of Ladner-Fischer Scheme. Given a powerlist p N q, we derive

an expression for ps(p M q). Let r H t, in unknowns r, t, be ps(p N q). We

solve for r, t:

rC4t

= {r M t =ps(p K q). Using (DE)}

(r Nt)*@(plXq)
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= {(r~t)”=t”~r}

(t’ Wr)@(p Mq)

= {@, CU commute}

(t*8p)14(r @q)

Applying the unique reconstruction law, L2, to the equation r N t = (t* @p)
N (r @ q), we conclude that:

LF1. r = t+ @p.

LF2. t=r @q.

Now, we eliminate r from LF2 using LF1 to get t = t @ p @ q, Using (DE)

and this equation we obtain

LF3. t =ps(p @ q).

Below, we summarize the derivation of PS( p ~ q):

ps(p M q)

= {by definition}

r~t

= {Using (LF1) for r}

(t”@p)Mt

where t is defined by LF3. This is exactly the definition of the function lf for

a nonsingleton powerlist. We also note that

= r {by eliminating t from LF1 using LF2}

(r@q)*@p

= {definition of ‘ }

r“@q” @p.

Using (DE) and this equation, we obtain LF4 that is used in proving the

correctness of sps.

LF4. r = ps(q” @p).

Correctness of sps. We show that for a nonsingleton powerlist L,

psL = (psu) ~ (psv), where u ~ u =L* @L.

PROOF. Let L = p N q. Then we have:

ps L

= {L=p Nq}

ps(p M q)

= {ps(p M q) = r N t, where r, t are given by LF4 and LF3}

ps(q’ @p) Cups(p @ q)

= {Letting u=q*@p, v=p @q}

(psu) ~ (psu)
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Now, we show that u M v = L* 6 L:

ubQiJ

= {z4=q”@p, rJ=pf3q}

(q*@p)iM(p @q)
= {@, M commute}

(q’ wp)@(pcuq)

= {Apply the definition of* to the first term}

(p Klq)*@(p Mq)

= {l/=p Mq}

L*QL ❑

Remarks. A more traditional way of describing a prefix-sum algorithm,

such as the simple scheme of Figure 4, is to name explicitly the quantities

being computed and establish relationships among them. Let y,j be computed

by the ith processor at the jth level. Then, for all i, j, O < i <2’, 0< j < n,

where n is the logarithmic length of the list:

Y,O = x,, and

The correctness criterion is

yLn=xof3””” @x,.

This description is considerably more difficult to manipulate. The parallelism

in it is harder to see. The proof of correctness requires manipulations of

indices: for this example, we have to show that for all i and j,

where k = max(O, i – 2J + 1).

The Ladner-Fischer scheme is even more difficult to specify in this manner.

Algebraic methods seem preferable for describing uniform operations on

aggregates of data.

5. HIGHER-DIMENSIONAL ARRAYS

A major part of parallel computing involves arrays of one or more dimensions.

An array of m dimensions (dimensions are numbered O through m – 1) is

represented by a powerlist of depth m – 1. Conversely, since powerlist

elements are similar, a powerlist of depth m – 1 may be regarded as an

array of dimension m. For instance, a matrix of r rows and c columns may be

represented as a powerlist of c elements, each element being a powerlist of

length r storing the items of a column; conversely, the same matrix may be

represented by a powerlist of r elements, each of which is a powerlist of c

elements.
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Fig. 5. Applying 1, LX ,\r, W’ over matrices, Matrices are stored by columns Typical matrix

format is used for display, though each matrix is to be regarded as a powerlist of powerlists.

In manipulating higher-dimensional arrays, we prefer to think in terms of

array operations rather than operations on nested powerlists. Therefore, we

introduce construction operators analogous to I and N for tie and zip along

any specified dimension. We use 1’, ~ ‘ for the corresponding operators in

dimension 1, l“, ~” for the dimension 2, etc. The definitions of these opera-

tors are in Section 5.2; for the moment it is sufficient to regard 1’ and M ‘ as

the pointwise applications of I and M , respectively, to the argument pow-

erlists. Thus, for similar power matrices A and B that are stored columnwise

(i.e., each element is a column), A I B is the concatenation of A and B by

rows, and A 1’B is their concatenation by- columns. Figure 5 shows applica-

tions of these operators on specific matrices.

Given these constructors, we may define a matrix to be either

a singleton matrix ( ( x )), or

P I q where P, q are similar matrices, or

u 1’u where u, u are similar matrices.

Analogous definitions can be given for n-dimensional arrays. Observe that

the length of each dimension is a power of 2. As in the case of a powerlist, the

same matrix can be constructed in several different wavs. first bv construct-

ing the

or that

Note.

OWS, then the columns, or vice versa. We will show in Section 5.2 that

(plq)lf (ulu)=(p l’u)l(ql’ u),

,1’ commute.

We could have defined a matrix using ~ and N ‘ instead of I and l’.

As I and M are duals in the sense that either can be used to construct or

uniquely reconstruct a powerlist, 1’ and M ‘ are also duals, as shown in

Section 5.2. Therefore, we will freely use all four construction operators for

matrices.
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Example (Matrix Transposition). Let r be a function that transposes

matrices. From the definition of a matrix, we have to consider three cases in

defining r:

l-((x)) = ((x))

T(plq) = (7p) l’(Tq)

T(UI’U) =( TZL)I(T U).

The description of function ~, though straightforward, has introduced the

possibility of an inconsistent definition. For a 2 x 2 matrix, for instance,

either of the last two reconstructions apply, and it is not obvious that the

same result is obtained independent of the order in which the rules are

applied. We show that ~ is indeed a function.

We prove the result by structural induction. For a matrix of the form

((x )), only the first reconstruction applies, so the claim holds. Next, consider
a matrix to which both of the last two reconstructions apply. Such a matrix is

of the form (p I q) 1’(u I v) which, as remarked above, is also (p 1’ZL)I(q 1’u).

Applying one step of each of the last two rules in different order, we get

d(p I q)l’(ulu))

= {applying the last rule}

(T(p I q))l(du I u))

= {applying the middle rule)

((7p) l’(Tq)N((7- U)I’(T u))

and

d(p 1’u)l(q 1’u))

= {applying first the middle rule, then the last rule}

((7p)l(T u))l’((Tq)l(T u))

= {1,1’ commute}

((Tp) 1’(Tq)) I((7 u) 1’(Tu))

From the induction hypothesis, (~ p ), (T q), etc., are well defined. Hence,

T((plq)l’(ul u)) = T((pl’u)l(ql’ u)).

Crucial to the above proof is the fact that I and 1’ commute; this is

reminiscent of the “Church-Rosser Property” [Church 1941] in term-rewriting

systems. Commutativity is so important that we discuss it further in the next

subsection. It is easy to show that

T(~Mq) ‘(TP) ~’(T(j)

T(utx’u) =( Tu)kl(T u).

Transposition of a square power matrix can be defined by reconstructing

the matrix into quarters, transposing them individually, then rearranging
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Fig. 6. Schematic of the

powermatrlx.

Misra

transposition of a square

‘m=m

them, as shown in Figure 6. From the transposition function ~ for general

matrices, we get a function u for transpositions of square matrices:

a((x)) = ((x))

a((plq) l’(ulv))=((mp)l’ (crq))l ((cTzL)l’(cTrJ))

Note the effectiveness of pattern matching in this definition.

5.1 Pointwise Application

Let f be a function mapping items of type a to type ~. Then f’ maps a

powerlist of a-items to a powerlist of ~-items:

f’(x) = (f*)

f’(rls) = (f ’r)l(f’ s).

Similarly, for a binary operator op:

(X)op’ (y) = (Xopy)

(rls)op’ (ulu)=( rop’u)l(sop’u).

We have explicitly defined these two forms because we use one or the other in

all our examples; f’ for a function f of arbitrary arity is similarly defined.

Observe that f‘ applied to a powerlist of length IV yields a powerlist of length

IV. The number of primes over f determines the dimension at which f is

applied; the outermost dimension is numbered O. Therefore writing M , for

instance, without primes, simply zips two lists. The operator for pointwise

application also appears in Backus [1978] and in Steele and Hillis [1986].

Common special cases for the binary operator op are I and M and their

pointwise application operators. In particular, writing Mm to denote

,rl
/-

M“...’,

O=M and form>O:we define, M

(x) Mm (y) = {x N”-’ y)

(rls)Mm (ulu)=(r Mm u)l(sC4~ u).

From the definition of f‘, we conclude that f‘ and I commute. Below, we

prove that f’ commutes with M .

THEOREM 5.1.1. f’, M commzde.

PROOF. We prove the result for unary f; the general case is similar. Proof

is by structural induction.
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Base.

f’((~) ~ (Y))

= {(x) w (y) = (X)1(Y)}

f’((x) l(y))

= {definition of f“}

f’(x) if’(y)

= {f’(~), f’(y) = (f x), (f y). These are singleton lists]

f’(x) ~f’(y)

Induction.

f’((p I q) ~ (U1 u))

= {1, MI in the argument commute}

f’((p lx U)l(q ~ u))

= {f’, I commute}

f’(p ~ U)l f’(q ~ u)

= {induction}

((f ’p) ~ (f ’u))l((f’q) ~ (f’u))

= {1, N commute}

(( f’p)l(f’ q))~((f’u)l(f’ v))
= { f‘, I commute}

(f ’(plq)) M (f’(ul u)) ❑

THEOREM 5.1.2. For a scalar function f, f’ = f.

PROOF. Proof by structural induction is straightforward. ❑

THEOREM 5.1.3. If f, g commute then so do f’, g’.

PROOF. By structural induction. ❑

The following results about commutativity can be derived from Theorems

5.1. 1–5. 1.3. In the following, m, n are natural numbers.

Cl. For any f and m > n: f~, 1’ commute, and fm, M“ commute.

C2. For m # n: In, 1“ commute, and Mm , M“ commute.

C3. For all m, n: 1“’, N n commute.

C4. For any scalar function f f, Im commute, and f, w n commute.

Cl follows by applying induction on Theorems 5.1.1 and 5.1.3 and the fact

that f‘, I commute. C2 follows from C 1; C3 follows from C 1, L3, and Theorem

5.1.3; C4 from Cl and Theorem 5.1.2.

5.2 Reconstruction

In this section, we show that any powerlist that can be written as p I~ q for

some p, q can also be written as u Mm u for some u, u and vice versa; this is

analogous to L1 for dual reconstruction. Analogous to L2, we show that such

reconstructions are unique.
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THEOREM 5.2.1 DUAL RECONSTRUCTION. Foz-anyp, q and m >0, ifp Im q

is defined then there exist u, L] such that u B4m u = p ~m q. Con vers~ly, for any

u,uandm>O, ifu~m v is defined then there exist some p, q such that

plmq=uwu.

We do not prove this theorem, for its proof is similar to the theorem given

below.

THEOREM 5.2.2 UNIQUE RECONSTRUCTION. Let @ be I or M . For any

natural number m,(p @m q = u @m v) =(p = u ~q = v).

PROOF. Proof is by induction on m:

m = O. The result follows from L2.

m=n+l. Assume that Q = 1.The proof is similar for @ = M We prove

the result by structural induction on p.

Base.

P = (a), q= (b), u = (c), u = (d)

(a)l ‘+1 (b) = (c)l’+’ (d)

- {definition of I‘+’}

(al’ b) = (cl’ d)

= {unique reconstruction using L2}

al’ b=clnd

= {induction on n}

(a=c)~(b+d)

= {L2}

((a) = (c)) A ({b) = (d))

Induction.

P= PO IP1>9=90191>U=UOI ul>u=uol~l

(PO IP,)I ~+l(qol ql)=(uo lul)l’+’(uolul)

= {definition of In‘ 1}

(poln+’ qo)l(plln+lql) =(uoln+l UO)I(UII”+l ZJl)

E {unique reconstruction using L2}

(poln+’ go) = (zLoln+l Uo) A (pl ln+l ql) = (ulln+l VI)

- {induction on the length of PO, q., PI, ql}

(p. = ZLo) A (q. ‘uo) ~ (pl = ZLI) A(ql = Ul)

= {L2}

(Pol Pl) = (uol Ul) A (qolql) = (VOIU1). ❑

Theorems 5.2.1 and 5.2.2 allow a richer variety of pattern matching in

function definitions, as we did for matrix transposition. We may employ

Irn, Mn for any natural m, n to construct a pattern over which a function can

be defined.
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5.3 Embedding Arrays in Hypercubes

An n-dimensional hypercube is a graph of 2 n nodes, n >0, where each node

has a unique n-bit label. Two nodes are neighbors, i.e, there is an edge

between them, exactly when their labels differ in a single bit. Therefore,

every node has n neighbors. We may represent a n-dimensional hypercube as

a powerlist of depth n; each level except the innermost consists of two

powerlists. The operators Iw, M’ for natural m, n can be used to access the

nodes in any one or any combination of dimensions.

We conclude with an example that shows how higher-dimensional struc-

tures such as hypercubes are easily handled in our theory. Given an array of

size 2m0 X 2ml X . . . 2 md, we claim that its elements can be placed at the

nodes of a hypercube of the dimension m. + ml + “”” + md, such that two

“adjacent” data items in the array are placed at neighboring nodes in the

hypercube. Here, two data items of the array are adjacent if their indices

differ in exactly one dimension and by 1 modulo IV where lV is the size of

that dimension. This is called “wrap around” adjacency.

The following embedding algorithm is described in Leighton [1992, Section

3.1.2]; it works as follows: if the array has only one dimension with 2 m

elements, then we create a gray code sequence, G m (see Section 4.3). Abbre-

viate G m by g. We place the ith item of the array at the node with label g,.

Adjacent items, at positions i and i + 1 (+ is taken modulo 2n), are placed

at nodes g, and g,+ ~, which differ in exactly one bit, by the construction.
This idea can be generalized to higher-dimensional arrays as follows.

Construct gray code sequences for each dimension independently; store the

item with index (io, zl, ..., id) at the node (g,o; g,l; . . . . g,d) where “;” denotes
the concatenations of the bit strings. By definition, adjacent items differ by 1

in exactly one dimension, k. Then, their gray code indices are identical in all

dimensions except k, and they differ in exactly one bit in dimension k.

We describe a function em that embeds an array in a hypercube. Given an

array of size 2m0 X 2rn1 X ~.. 2 md, it permutes its elements to an array

2X2 X””” X2

m

where m = m. + .“” + m ~, and the permutation preserves array adjacency as

described. The algorithm is inspired by the gray code function of Section 4.3.

In the following, S matches only with a scalar and P with a powerlist:

em(S) = (S)

em(P) = emP

em(ul u) = (emu) l(em(reu u)).

The first line is the rule for embedding a single item in a O-dimensional

hypercube. The next line simply says that an array having length 1 in a

dimension can be embedded by ignoring that dimension. The last line says
that we can embed a nonsingleton array by embedding the left half of

dimension O and the reverse of the right half in the two component hyper-

cubes of a larger hypercube.
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6. REMARKS

6.1 Related Work

Applying uniform operations on aggregates of data have proved to be ex-

tremely powerful in APL [Iverson 1962]; see Backus [1978] and Bird [1989]

for algebras of such operators. One of the earliest attempts at representing

data-parallel algorithms is in Preparata and Vuillemin [1981]: “an

algorithm. . . performs a sequence of basic operations on pairs of data that

are successively 2(h – 1), 2(k -2) , . ...20 = 1 locations apart.” An algorithm oper-

ating on 2 N pieces of data is described as a sequence of N parallel steps of

the above form where the k th step, O < k < N, applies in parallel a binary

operation OPER on pairs of data that are 2(N -k) apart. Preparata and

Vuillemin show that this paradigm can be used to describe a large number of

known parallel algorithms and that any such algorithm can be efficiently

implemented on the Cube Connected Cycle connection structure. Their style

of programming was imperative, making it difficult to apply algebraic manip-

ulations to such programs. Their programming paradigm fits in well within

our notation.

Mou and Hudak [1988] and Mou [1991] propose a functional notation to

describe divide-and-conquer-type parallel algorithms. Their notation is a vast

improvement over Preparata and Vuillemin’s in that changing from an

imperative style to a functional style of programming allows more succinct

expressions and the possibility of algebraic manipulations. The effectiveness

of this programming style on a scientific problem may be seen in Wang and

Mou [ 1991]. They have constructs similar to tie and zip, though they allow

unbalanced decompositions of lists. An effective method of programming with

vectors has been proposed in Blelloch [1990; 1993]. He proposed a small set of

“vector-scan” instructions that may be used as primitives in describing

parallel algorithms. Unlike our method, his allows control over the division of

the list and the number of iterations, depending on the values of the data

items, a necessary ingredient in many scientific problems. Jones and Sheeran

[1990] have developed a relational algebra for describing circuit components.

A circuit component is viewed as a relation, and the operators for combining

relations are given appropriate interpretations in the circuit domain.

Kapur and Subramaniam [1994] have implemented the powerlist notation

for the purpose of automatic theorem proving. They have proved many of the

algorithms in this article using an inductive theorem prover Rewrite Rule
Laboratory, or RRL, that is based on equality reasoning and rewrite rules.

They are now extending their theorem prover so that the similarity con-

straints on the powerlist constructors do not have to be stated explicitly.

One of the fundamental problems with the powerlist notation is to devise

compilation strategies for mapping programs to specific architectures. The

architecture that is the closest conceptually is the hypercube. Kornerup

[1994] has developed certain strategies whereby each parallel step in a

program is mapped to a constant number of local operations and communica-

tions at a hypercube node.
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Combinational circuit verification is an area in which the powerlist nota-

tion may be fruitfully employed. Adams [1994] has proved the correctness of

adder circuits using this notation. A ripple-carry adder is typically easy to

describe and prove, whereas a carry-lookahead adder is much more difficult.

.Adams described both circuits in our notation and proved their equivalence in

a remarkably concise fashion. In his work, he obtained a succinct description

of the carry-lookahead circuit by employing the prefix-sum function treated in

Section 4.7.

6.2 Powerlists of Arbitrary Length

We restricted the lengths of powerlists to be of the form 2 n, n >0, because

we could then develop a simple theory. For handling arbitrary-length lists,

Steele (personal communication, 1993) suggests padding enough “dummy”

elements to a list to make its length a power of 2. The advantage of this

scheme is that we still retain the simple algebraic laws of a powerlist.

Another approach is based on the observation that any positive integer is

either 1 or 2 x m or 2 X m + 1, for some positive integer m; therefore, we

reconstruct a nonsingleton list of odd length into two lists p and q, and an

element e, where e is either the first, middle, or last element. For instance,

the following function, reu, reverses a list:

rev(x) = (x)

reu(plq) = (reuq)l(revp)

reu(ple lq)=(reuqlelreup).

The last line of this definition applies to a nonsingleton list of odd length;

the list is reconstructed into two lists, p and q of equal length, and the

middle element e (We have abused the notation, applying I to three argu-

ments). Similarly, the function lf for a prefix-sum may be defined by:

if(x) = (x)

lf(p Mq)=(t”6p)Mt

lf(e NpHq)=e N(e@(t’@p))~ (e @t)

where f=lf(po q).

In this definition, the singleton list and lists of even length are treated as

before. A list of odd length is reconstructed into e, p, q, where e is the first

element of the argument list and p cu q constitutes the remaining portion. In

this case, the prefix-sum is obtained by appending the element e to the list

obtained by applying e @ to each element of lfl p ~ q). We have used the

convention that e @ L is the list obtained by applying e @ to each element of

list L.

6.3 The Interplay between Sequential and Parallel Computations

The notation proposed in this article addresses only a small aspect of parallel

computing. Powerlists have proved to be highly successful in expressing
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computations that are independent of the specific data values; such is the

case, for instance, in the Fast Fourier Transform, the Batcher merge, and the

prefix-sum. Typically, however, parallel and sequential computations are

interleaved. While the Fast Fourier Transform and Batcher merge represent

highly parallel computations, binary search is inherently sequential (there

are other parallel search strategies). Gaussian elimination represents a mix-

ture; the computation consists of a sequence of pivoting steps where each step

can be applied in parallel. Thus, parallel computations may have to be

performed in a certain sequence, and the sequence may depend on the data

values during a computation. More general methods as in Blelloch [1990] are

then required.

The powerlist notation can be integrated into a language that supports

sequential computation. In particular, this notation blends well with ML

[Milner et al. 1990] and LISP [McCarthy et al. 1962; Steele and Hillis 1986].

A mixture of linear lists and powerlists can exploit the various combinations

of sequential and parallel computing. A powerlist consisting of linear lists as

components admits of parallel processing in which each component is pro-

cessed sequentially. A linear list whose elements are powerlists suggests a

sequential computation where each step can be applied in parallel. Powerlists

of powerlists allow multidimensional parallel computations, whereas a linear

list of linear lists may represent a hierarchy of sequential computations.
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