
The Journal of Supercomputing, 2, 257-278 (1988) 

~, 1988 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

An Algebraic Model for Divide-and-Conquer and 

Its Parallelism* 

ZHIJING G. MOU 
PAUL HUDAK 
Yale UniversiO', Department of Computer Science, New Haven, CT 06520 

Abstract. A formal algebraic model for divide-and-conquer algorithms is presented. The model reveals the 

internal structure of divide-and-conquer functions, leads to high-level and functional-styled algorithms 
specification, and simplifies complexity analysis. Algorithms developed under the model contain vast 

amounts of parallelism and can be mapped fairly easily to parallel computers. 

1. Introduction 

Divide-and-conquer is a well-known strategy for designing parallel algorithms: A 
problem is recursively subdivided into relatively independent components, which are 

in turn operated on in parallel [Aho et al. 1974, Jamieson et al. 1987, Preparata and 
Vuillemin 1981, Ullman 1984]. The method is both simple--even the most novice 
programmers find it easy to grasp---and effective--it is the basis for many of the best 

known parallel algorithms. 
However, despite the widespread use of divide-and-conquer, it has received very 

little formal treatment in the literature. In this paper we develop a formal algebraic 
model of divide-and-conquer. Our motivation stems from the desire to answer the 

following questions: 

�9 What is the class of problems that can be attacked by divide-and-conquer? 

�9 What are the structural and domain properties of "'divide" and "combine" 

functions? 

�9 Are there other inherent constituents of divide-and-conquer algorithms aside from 
divide and combine functions? 

We begin in the next section by noticing that morphisms in basic algebra [Dornhoff 
and Hohn 1978] resemble the fundamental structure of divide-and-conquer. However, 
many problems that we would like to solve by divide-and-conquer are almost, but not 
quite, morphisms. Therefore, we introduce the notion of adjust functions which allow 
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us to generalize the concept of morphisms to pseudomorphisms and thus complete the 

foundation for our model. 

The model is further refined in Section 3, where the notions of space, divide 
function, and combine function are introduced. In Section 4, we study the nature of 

adjust functions and point out the relation between adjust functions and interspace 
communication. 

In Section 5 we show how divide-and-conquer algorithms are specified in terms of 

the constituent functions. We follow in Section 6 with ten examples demonstrating the 

applicability of  our model. In Section 7 we discuss in principle the parallel imple- 

mentation of divide-and-conquer under our model, and complexity and trade-off 

issues are addressed in Section 8. 

Aside from answering theoretical questions, the advantages of our approach in 

practice include the following: 

�9 It aids in the design of  divide-and-conquer algorithms. The algorithm design is 

reduced to the problem of identifying the constituent functions. 

�9 It improves the clari O' and modulariO' of  programming. The model's structure 

suggests simple constructs or higher order functions to capture divide-and-conquer 

behavior in a clean way. Furthermore, different divide-and-conquer algorithms 

often share the same constituent functions, thus encouraging reuse of  parts. 

�9 It facilitates the parallel implementation of  divide-and-conquer algorithms. Once we 
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Figure 1. Different types of pseudo-morphisms (k = 2). 
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understand how to map spaces to and implement the constituent functions on 

parallel computers, we can implement any divide-and-conquer algorithm. 

�9 It simplifies cornplexio' analysis. The complexity of divide-and-conquer algorithms 

can be easily derived from the complexity of  the constituent functions. 

Notation. We generally write function application in curried form, as i n f x  y, which 

is equivalent to ( f x ) y .  Function composition is d e n o t e d f  o g o h, and associates to 

the right. Tuples are denoted by (x~, x2 . . . . .  xk) and vectors by [x~ x2...x~]. The latter 

notation is overloaded in that we also use [X, cx] to denote an a lgebra-- the  distinction 

is always clear from context. A vector v is indexed by writing v(i), and its length is 

Ivl. 

2. Pseudo-morphisms as a Basis for Divide-and-Conquer 

We first review some basic concepts in algebra. A set S together with a k-ary operator 

c,: S ~ ~ S is an algebra [S,c, ] if S is closed under c, (i.e., for any k elements s~ . . . . .  sk e S, 

we have c~ ~s~ . . . . .  Sk) e S) .  Let function f be a mapping from set X to set Y. It is a 

morphism [Dornhoff and Hohn 1978] (see Figure l(a) if there are algebras [X,c~] and 

[Y, cr], such that 

f ( c x  (x ,  . . . . .  xk)) = c. (,f x l , . . ,  f Xk) 

which we prefer to write as 

( J ' O  Co) (X 1 . . . . .  Wk/~ = (CI 0 (,la[)j4)) (Xl,. . .  ,Xk) 

where map f (x l  . . . . .  xk)  = ( f  xj . . . .  ,J'xx) 

or just 

f o c ,  = c, o ( , n a p  11 

It is the presence of  map's that is the key to divide-and-conquer and that permits the 

parallel evaluation of the function on disjoint arguments. 

As an example, consider the function reduce defined over vectors V of elements 

from set U: 

( ~  pvl v( i) reduce @ v = ~ , =  

where @ is an associative binary operator defined over U. We can see that the 

function (reduce |  is a morphism from [V, cat] to [U, O], where cat is the vector 

concatenation operator. For  example, 
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((reduce +)  0 cat) ([1 2], [3 4]) = ( + O (map (reduce +))) ([1 2], [3 4]) = 10 

Morphisms constitute a fairly broad class of functions, and include all the linear 
functions encountered in mathematics and engineering such as differentiation, in- 
tegration, convolution, Fourier transformation, and many more basic functions in 

arithmetic and linear algebra. 

2.1 Postmorphisms 

The linearity of morphisms has long been explored in sequential computations, and 
has obvious significance for parallel processing. Unfortunately, the class of 
morphisms, wide as it is, does not include many functions that intuitively can also be 

decomposed in a similar way as morphisms. 
For example, consider the function (scan 0 ) :  V ~  V, where V is again the set of 

vectors with elements from set U. @ is an associative binary operator over U, and 

scan ~ v = v ' ,  where v'(i) = (~ i  v(k), for i =  1 tolvl 
k = l  

For algebra [V, cat], the function (scan) ~)) is not a morphism since ((scan 03) 0 cat) 
(vl,  v2) is not equal to cat (scan ~3 v i, scan ~) v2). For example, scan + [1 2 3 4] = [1 
3 6 10] while cat (scan + [1 2], scan + [3 4]) = [l 3 3 7]. However, upon closer 
inspection we find that the result is "almost" correct, and can be easily adjusted to the 
correct result. To see how, define the following function h to do the adjustment: 

h (vl v2) = (Vl, v'2), where V'2(i) = v%(i)Ovl(lv,]) 

Then we can see that 

((scan ~)) 0 cat) (vl ,  v2) = (cat 0 h 0 (map (scan G))) (v l ,  v2) 

Formally, a function f :  [X, cx] ~ [ Y, Cy] is called a postmorphism (see Figure 1 b) if there 

exists a postadjust function h : Y~ ~ yk such that 

( f O  Cx) ( x l , . . .  , x k ) =  (cs Oh 0 (map f ) )  ( x , , . . .  ,xz) 

2.2. Premorphisms 

Consider the function shuffle defined over vectors (of even length): 

shuffle ( v )  = v" 

where v" (i) = v ((decode 0 left-shift 0 encode) ( i -  1)), for i = 1 to IVI 
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where the function encode takes a number  and encodes it in binary, decode does the 

opposite,  and right-shift and left-shift shift the digits of  a binary number,  respectively, 

to the right and the left in wrapped-around fashion. Shuffle is not a morphism (nor 

is it a postmorphism) for algebra [V, cat] because, for example, 

(shuffle o cat) ([1 2], [3 4]) = [1 3 2 4] 

r (catO (map shuffle)) ([1 2], [3 4]) = [1 2 3 4] 

However,  if we introduce a function g: V 2 ~ V 2 to adjust the subarguments before 

shuffle is applied to each of  them, 

g (v, ,v2 ) = (v'l, v'2 ) 

where v] (/) = vl (i), 

= v2(lv2[ - i), 

v2 (/) = v: (i), 

= v  I (]vii - - i ) ,  

if i ~< (Iv, 1/2) 

otherwise 

if i > (Iv21/2) 

otherwise 

Then the function shuffle can also "behave"  like a morphism in the sense that it 

reduces to two applications on adjusted sub-arguments: 

(shuffle 0 cat) <Vl, 7.) 2 ) = (cat 0 (map shuffle) 0 g) (vl ,  v2) 

Formally,  a function f: [X, cx] = ~ [ Y, cy] is called a premorphism (see Figure l c) if there 

exists a preadjust function g:X ~ --, X k such that 

( f  O cx) (x ,  . . . . .  x~) = (c; 0 (map f)  0 g) ( X l , . . . , x k )  

2.3. Psetidomorphisms 

More generally, we say a function f:[X, cx]--* [Y,c~.] is a pseudomorphism (see Figure 

ld) if there exists a preadjust  function g : X k ~ U  ", and a postadjust  function 

h: yk __, t~,  such that 

f O cx = c). O h O (map f )  O g 

Obviously, pure morphisms,  premorphisms,  and postmorphisms are all special cases 

of  pseudomorphisms,  where one or both of  the adjust functions happen to be the 

identity function I. 
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3. Divide and Combine Functions on Space Domains 
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Pseudomorphisms capture the notion of divide-and-conquer in that they reduce the 

application of a function to several applications of  the same function. However, this 

only makes sense if the new applications are somehow made to smaller "pieces" of 

the input. In fact, pseudomorphisms do not constitute a complete model for divide- 

and-conquer before the following questions are answered: 

�9 Where is the notion of divide? 

�9 What is the relationship between divide and combine? 

�9 How do the algebras in pseudomorphisms come into existence? 

These questions are answered in this section. 

3.1. Space Domains 

Generally functions are mappings defined over structured data, which we model as a 

structured set called a space. Formally, a space s is a pair (U,R), where U is a universe 

of elements and R is a set (often singleton) of relations over U called its structure. The 

size of a space s = (U,R) is denoted by ]s[, and is defined as the cardinality of the 

universe U. 

For example, a graph (V,E) is modeled as a space with U = V and R = {E}. 

Similarly, a vector is modeled as a space with U as the set of its entries and the only 

element of R being a total ordering over the entries reflecting the vector structure. 

A space domain S is a (usually infinite) set of  spaces with certain common proper- 

ties. For example, all graphs constitute the graph space domain, and all vectors 

constitute the vector domain. 

Given two spaces s~ = ( G ,  Rl) and s2 = (U2, R2) in the same domain S, we say s~ 

is a subspace of s2, denoted by sL c s2, if UL c UR and for each relation r~ s Ri, there 

exists a corresponding relation r2~ Rz, such that r~ c r2. 

3.2. Divide Functions 

Note that for a pseudomorphismf:[X, cx] ---, [Y,q ], the operator e, often captures the 
notion of ~'combining" elements of X into larger ones. For example, we showed that 

(reduce 0 )  is a morphism from [V, cat] to [U, | where cat takes two subvectors and 

creates their concatenation. However, in divide-and-conquer algorithms we are 

foremost interested in the divide function that essentially performs the inverse of 

functions like cat. More specifically, for an algebra [X, cx] we are interested in a divide 

function de such that 

G o d , . = I  
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where I is the identity function. 

Let S be a space domain,  and d:S--* S k a total function. We say that d is a k-ary 

divide func t ion  over S if it is total and whenever for a space s = (U,R) ,  

then 

d s  -- (s~ . . . .  ,sk), where s~ = (Ui, R~) for i = 1 to k 

(1) si = s 

(2) W~Ll U i =  U 

(3) U , r ~ U / = 0 ,  f o r i C j  

(subspace) 

(complete)  

(mutually  exclusive) 

For  example, the following dtr is a divide function for the vector space domain that 

will divide a vector into two approximately equal subvectors: 

dlr v = nil, if (rvl = 1 ) 

= ( v l ,  v25, otherwise 

where Vl (i) = v(i), for i = 1 to Ivl/2 

v,_(i) = v(i  - I v ] /2 ) ,  for i = (Iv[/2 + 1) to Ivl 

We define nil to be a special element in S x and hence the mapping mapping  dtr is 

indeed total. 

3.3. Combine  Functions 

A k-ary combine funct ion  for a domain S is a total mapping c: Sk--* S. For  any k spaces 

( s l , . . .  ,s~.) e S k, we have 

c {s~ . . . . .  sk.) = s, s, ~ s, for i = 1 to k 

The vector catenation operator  cat, for example, is a combine function over the 

vector space domain:  

cat { v  I, v2 )  = v 

where v(i) = vl (i), 

=v2 ( i -  Iv I ]), 

if (i ~< Iv1 t) 

if (I v, ] < i ~< (Iv, [ + Iv2l)) 

Note  that cat is a left inverse o f  the divide function dtr. However,  the left inverse o f  

a divide function is generally not unique. For  example, another  left inverse o f  dtr is 
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picky-cat  @1, v25 = nil, if (IVl I - [v_O > i 

= cat @1, v2),  otherwise 

Picky-cat  is a subfunction of  cat since it is consistent with cat for all the values which 

are not mapped to nil. 

The subfunction relation in fact defines a partial order over the set C of  all the left 

inverses of  a divide function d. We define the inverse of divide function d to be 

d -  ~ = min (C). It can be shown that dtr i = picky-cat.  

3.4. Division Induced Algebras 

Obviously if c is a combine function over space domain S then [S,c] is an algebra, and 

we say that the algebra is induced by the divide function d if c = d- 1. Since the divide 

function is usually the starting point for a divide-and-conquer algorithm, it is con- 

venient to describe such an algorithm as a pseudomorphism from [X,d - l ]  to [Y,c.~], 

where the algebra [X,d 1] is induced by the divide function d. 

4. Adjust Functions 

Adjust functions reflect the degree of "interspace communication,"  and have impor- 

tant ramifications on the complexity of  divide-and-conquer. In this section, we will 

further explore the nature of  adjust functions. In particular, we will show how adjust 

functions can be decomposed further into two types of  functions, one reflecting 

interspace communication, the other not. 

Consider an adjust function a:S  k ~ S k, where 

a (sl . . . . .  sk) = (s'l . . . .  ,s~.), where s, si, s ' i eS  

Although there is a correspondence between the space s'i and the space si, the value 

of  space s~ in general depends on not only space s, but also on all sj fo r j  r i. Therefore 

we cannot in general decompose a into k subfunctions that do the individual 

mappings independently. 

On the other hand, we could consider an adjust function to be the composition of 
two functions re fand  loc: The former is what we call the reference function that fetches 

for each space the values needed from other spaces, and the latter is what we call the 

localf imction which performs a mapping on each space based on its own value and 

the values fetched from other spaces. In other words, a = loc 0 ref. 
Aside from increasing our understanding of the communications complexity, we 

will see that decomposing the adjust function in this way has the additional benefit 

of  uncovering some repeating communications patterns in many algorithms, which 

we can use in a modular  way. 
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4.1. Re ference  Funct ions  

In general the reference function can be represented as 

ref  ( s , , . . .  ,s~) = (s ' , , . . .  ,~k) 

w h e r e , = ( 4 . 1  . . . . .  ~ . k ) .  s , . ~ . j ~ S f o r i ,  j =  I t o k  

That  is, a reference function maps each space s, to a compound  space ~ consisting o f  

k component  spaces (~ .  1 . . . . .  ~,. k) .  Each component  space ~..j stores the values o f  

space s i referenced by space si. Note  that component  space .~.i is the space 
s, itself, and therefore can be omitted from the specification. 

For  example, the following are three reference functions that are commonly  used 

by functions defined over vectors (see Section 6). They  are also illustrated in Figure 

2. We will see in the next subsection that the reference functions contained in the 

adjust functions for scan and shuffle are (last-m 1) and mirr, respectively. 

corr (v l ,  v2) = (6~ , 62 ) 

where 6~ .2(i) = vz(i),  for i = 1 to [v~[ 

v 2 . 1 ( i ) = v ~ ( i ) ,  for i =  l to [621 

mirr  { v l ,  v~)  = {61 , i'2 ) 

where 0t .2(0 = v2(lw_[ - i), for i = 1 to ]'vii 
v_ , . l ( i )=v~  (Iv~]--i), f o r i =  1 to[621 

, 

6 C . . .  0 o o 0 . . .  0 o 

(a)  C o r r e s p o n d e n t  R e f e r e n c e  

o 0 . . .  6 o o 6 . . .  0 o 

(b)  M i r r o r - i m a g e  R e f e r e n c e  

0 O. . . .  O. 6 O O . . .  0 9 

k_k._ j 

(c.) L a s t - m  R e f e r e n c e  ( m = J . )  

Figure 2. Patterns of the commonly shared reference functions on vectors. 
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last-m m ( v , ,  v2 ) -- ('G , G_ ) 

where vl .2(i) = m-array  

where m-array  (i) = %(Iv21 - i), 

v2 . 1 (i) = m-array  

where m-array  (i) = vl (Ivll - i), 

Z.G. MOU AND P. HUDAK 

f o r / =  1 t o m  

for i = 1 to m 

4.2. Loca l  Functions 

A local function takes k " c o m p o u n d "  spaces produced by a reference function 

and maps  them to k spaces. The general form is thus 

loc (~, . . . . .  g,_ > = ( s ' , , .  . .,s~. ) 

Since the reference function has already performed the interspace references, the 

local funct ion in fact consists o f  k subfunctions (loc~ . . . . .  lock) ,  where loc~ 

= s~. Thus, instead o f  the above we will sometimes use the notat ion:  

loc (g~ . . . .  , g k )  = ( lo< . . . . .  loc~) ( ~  . . . . .  gk) = ( l o c ,  ~ . . . . .  loc~ gk) 

4.3. Example s  

To ease the readibility o f  the fol!owing examples we define some auxiliary functions, 

beginning with self'. 

se l f  ~ = ~. i  

and for the case o f  k = 2, we also define a function other: 

other s i=  4.2,  if i =  1 

= 4 . 1 ,  i f i = 2  

Finally, we define the functional  ento ' -wise  which takes a binary opera tor  defined over 

the entries o f  two vectors and returns a function which will perform the entry-wise 

operat ion to two vectors of  equal length: 

(entry-wise • )  (v t ,  v2) = %, where v3( i  ) = (i) G v2 (0 

N o w  we can define the postadjust  function in scan as 
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(h ...... |  = ( l o c t ,  loce> 0 last-m 
where loci = self  

/oc:= entry-wise @ 

and the preadjust function in shuffle as (observe that (map f )  = 

g~/,,,me = (map part-exch) O mu'r 
where part-exch ~,, = v; 

where v'i (/') = (self (:,) (/), 

= (other 6,) (I), 
=(other ~,) (0, 

= (self ~,) (/'), 

if (i = 1) and (i ~< Iv, I/2) 

i f ( i =  1) and (/ '> Iv, l/2) 

if (i = 2) and ( j  ~< Iv, I/2) 

otherwise 

<f,... f>): 

267 

4.4. Orthogonalio' o f  Divide~Combine and Adjust Functions 

Implicit in the definition of divide and combine functions is the fact that they do not 

alter the values of  the elements in the space. We further define a valid divide or 

combine function as one that does not dependon the values either. Thus a valid divide 

or combine function depends only on and affects only the structure of a space. An 

example ofnonvalid divide function is to partition a vector into two parts with an equal 

number of  nonzero elements. All of  the divide and combine functions considered in 

this paper are valid. 

The concept of adjust function naturally suggests that it preserves the structures of  

the spaces. Now let a be an adjust function over space domain S, and 

a (sl . . . .  ,&) = (s '  I . . . . .  s~) where s, = (U,, R,), sl -- (U,, R,) 

We say that a is valid if the relations in R~ are always isomorphic to the relations RI 

for i = to k. In other words, a valid adjust function depends on and affects only the 

universe of the spaces, and does not depend on or affect the structure of  the space. 

The orthogonal nature of  valid divide and combine functions on one hand, and 

valid adjust functions on the other, should now be clear. 

We should point out that the so-called divide and combine functions in some 
well-known algorithms are not valid by our definitions. For example, in quicksort 

[Aho et al. 1974]. The routine that partitions the input vector into two smaller vectors 
is not a valid divide function, and the function that merges two vectors in merge-sort 

is not a valid combine function. Interestingly, in Section 6 we will see that the merge 

routine in bitonic-sort, in fact, is itself a divide-and-conquer algorithm. 

5. Recursive Computation of Divide-and-Conquer 

Recall the relation defined in Section 2 for a pseudomorphism f :  
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f o Cx= C, o h O (map f )  O g 

Z.G. MOU AND P. HUDAK 

from which we can derive 

f o  c x o  d =  5 o h o (mapjO O g  o d 

but since cx o d = I, we have 

f = 9 o  h o (mapaO O g 0 d 

This equation literally dictates the form of  the functional, but there is one last detail 

needing discussion: Most divide-and-conquer algorithms reach a "bo t tom"  level in 

the division process, which in our model occurs when a divide function returns nil. For 

example, djr returns nil for unit-length vectors. This behavior, in fact, defines the 

termination property of a divide-and-conquer algorithm. 

At this bot tom level in the division process a divide-and-conquer algorithm typic- 

ally invokes a basis function fb on the atomic elements. Thus we include fb in our list 

of constituent functions, leading us to the following definition of the functional DC: 

DC(d, c, g, h, fb) = fj, 
where fa, x =fb x,  

= (c 0 h o (mapda,.) O g O  d) x, 
if (d x = nil) 
otherwise 

Let f :  [X,d ~] ~ [Y,c] be a pseudomorphism based on the algebras induced by the 

divide function d, with g as preadjust function and h as the postadjust functions, and 

letfb be the base function o f f  with respect to d. Then we h a v e f  = DC(d,c,g,hfb) = fdc. 
The function fd~ returned by the higher order function DC is called a divide-and- 
conquer function, or divacon for short. The functions,d,c,g,h and fb, are called the 
constituents of  the divacon. 

The recursive computation of  a divacon fdc applied to a space x can be depicted by 

the divacon graph DG OCa,, x), which consists of two phases. 

�9 The divide phase corresponds to the repeated application of the divide function d 

and preadjust function g, until the atomic spaces are generated at the "leaves." 

�9 The combine phase corresponds to the repeated application of the postadjust 
function h and combine function c until the " roo t "  is reached again. 

The base function fb is what ties the two phases together. Graphically one can draw 
this as two trees connected at their leaves, as shown in Figure 3 for DG ((scan + ), [1 

2 3 4 5 6 7 8]), where the names of the component functions applied at each level are 
included for clarity. The height of a divacon graph is the height of one of these trees, 
which are symmetric. 
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f 
i 

L_ 

,q, 21 h 

I I ,,!]. ; ~,!~.~ 

k,...[1 3] _..J 

[ -  [136 

K 
' [ 1 2 3 4 5 6 7 8 ]  ' t. j 

[12a~1 ~ f I~G 781 
I I i 

[1 2:3 41 _1) k,.. [a s 7 8 ] ~  

" i ,  , . /  

10] k f " -  [5 11 18 26] " ~  
I I I 

610] _J k,, [i5 2.128 36] J 

I [1 3 6 10 i~ 21 2s 361 .j 

app l i ed  c o n t a i n e d  
level 

fu tic t, iorl re fe rence  

0 '  d = dtr  - 

1 g = /  - 

1 '  d = dlr  -- 

2 g = /  - 

2'  d : d l r  --  

8 g = I  - 

3'  f ~ = I  - 

- 3 '  11 = h s c ~  l a s t _ m  1 

c = dl-r 1 - 13  

- 2 '  h = h ~ c a n  l a M _ m .  1 

c = d ~  ~ ~ 2 

-1 '  h = hscari l a M _ m  1 

c = dt~ ~ - 

-0 '  

Figure 3. The example divacon graph DG ((scan + ), [1 2 3 4 5 6 7 8]). 

6. A p p l i c a t i o n  E x a m p l e s  

To illustrate the expressive power, the concise form, the functional style, and the 

sharing of  constituent functions of  divacons, we present ten examples in this section. 

The efficiency of the algorithms was considered but was not the main criterion in 

selecting the examples. 

The commonly used divide, combine, reference, and local functions such as dlr, d~7 l, 

corr, mirr, last-m, self, other, and entry-wise are assumed to be global. The symbol G 

always stands for an associative binary operator,  and the symbol I stands for the 

identity function. The length of  a vector is conveniently assumed to be a power of  two. 

Example 1. Reduce function of a vector under an operator |  It is a pure morphism 

without adjust functions. 

reduce �9 = DC (dr,, @, I, L vector-to value) 
where vector-to-value [x] = x 

E x a m p l e  2. Reduce computed by a nonbalanced divide function. The divide function 
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used here cor responds  to the built-in cat" and cdr functions offered in Lisp-like 

languages. It is easy to t rans form other  example  functions defined over  vectors to 

p seudomorph i sms  with the unbalanced  divide function de,. 

reduce �9 = D C  (de,, |  L L vector- to-value)  

where dh, v = head, tail 

where head  (i) = v(1), for i = 1 

t a i l ( i ) = v ( i +  l), f o r i  = 1 t o ( I z , ] -  1) 

Example  3. Scan over  a vector  under  opera to r  |  This is a p r emorph i sm with identity 

function I as the base function. 

scan 0 = D C  (dr,, dt71 , L ( self.  (entry-wise  @))  O ( last-m 1) , / )  

Example  4. Shuff le of  a vector  is a p r emorph i sm with the base function fh = I. 

shuffle = D C  (4 , ,  dr, ' ,  (map  par t -exch)  o mirr,  L I) 

where par t - exch  is as defined in Section 4.2 

Example  5. Broadcas t  the value in v (1) to all entries of  a vector  v (br). It is presented 

below as a pos tmorph i sm;  however,  it can be defined as a p remorph i sm as well. 

b r =  D C  (dtr, dtT', I, ( self, o the r )  @ c o r r , / )  

Example  6. Fibonacci  sequence (fib). Let v(i)  = i for i = 1 to N, then the funct ionf ib  

v = v '  where v'(i)  = f ib ( i ) .  We compu te  this function by t ransforming  the natural  

number  sequence to a vector  o f  pairs, per forming  d iv ide-and-conquer  over  the pair  

vector, and finally t ransforming  the pair  vector  back into numbers .  The pair  (1,1) 

cor responds  to the coefficients in the defini t ionf(n) = f ( n  - 1) + f ( n  - 2), and the pair  

(2,1) cor responds  to the coefficients in the equat ion f(n) = 2 ( f -  2) + f ( n  - 3). The 

method  used in this example  actually can be easily generalized to solve any linear 

difference equat ions.  

f ib  = pa i r - to -number  o,fib~l, 0 number- to-pair  

where number- to-pair  v = Vpatr 

where %.,,, (i) = (0,1), if (i ~< 2) 

= (1,1), i f  (i is even) 

= (d,l), if ( i i s  odd)  

fiba~ = D C  (dr,, d,, ~ , L h/Tb, I) 
where ht~0 = (se l f ,  m u i r )  o ( last-m 2) 

where mul t  0 = v 

where v(i) = ((cl * al + c,_ *bl),  (cl * a: + c~ * b2)) 

where (c,, c_~) = ( s e l f ~ )  (i) 
(a, ,  a2) = ((other fa) (i)) (1) 
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(hi, 62) = ((other 0) (/)) (2) 

pair-to-number Vp~,. = v 

where v(i) = ca 

where (c., ci2) = %~i~ (i) 
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Example 7. Bitonic sort. Bitonic sort is a pos tmorphism with a premorphism as part  

o f  its postadjust  function. Also, observe that the two nested morphisms share the 

same local function. 

bitonic-sort = DC (dt~, dtT', L (loe 0 mirr), 1) 

where loc = merge 0 (map comp-and-exch) 

where merge = DC (d~,, d(  ~ , (loC.,erg~ 0 corr), L I) 

where loC.,e~g~ = (map comp-and-exch) 

where comp-and-exch (0) = v, 

where vi(j)  = (self Oi) (j),  
=(other ~,) (j), 

=(other vi) (J), 

= (self ~oi) (j),  

if (i = 1) and (self O~) ( j)  <~ (other v,) ( j )  

if (i = 1) and (self(3g) ( j)  > (other O) ( j )  

if (i = 2) and ( se l f , i )  ( j )  <<. (other Oi) (j), 

otherwise 

Example 8. Polynomial evaluation (poly). f ( x )  = ao*x ~ + . . .  + a, * .~. Let vector 

X = I x . . . x ]  with length (n + l). A = [a0...a,],  then poly can be defined in terms o f  

divacons re&tce and scan. 

poly ( A . X  ) = ((reduce + ) 0 (entry-wise * )) (A, scan * JO 

Example 9. Integer multiplication (im). Let x and y be two integers and let the function 

nums-to-bins (x,y) return two binary vectors X and Y representing x and y, respective- 

ly, then 

im = imjc 0 nums-to-bins 

where imd, = DC (dp. + + ,  L hi,., imb) 

where dp, (iV, Y) = nil, /f( lXI = 1 andlY]  = 1) 

= ( x , ,  Y~), (x, ,  ~5), (x2, Y~), (JC,, ~ ) ,  
otherwise 

where (iV., X;) = dtr (iV) 

(Y, ,  Y2) = air(Y) 
+ + (a, b, c, d) = a  +b +c  + d  

h,m = (loca, loct,, loc,., I )  0 refm 

where refim (a, b, c, d)  = (a, (b,c) c, d)  
log  a = a * 2 lal 

locb (b, c) = (b + c) * 2 tbl 2 

locc c = O 
im~ ([x], [ y]) = x ,  y) 
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Observe that multiplying an integer by a power of  two can be achieved easily by the 

binary number that represents the integer. 

Example 10. Expression tree evaluation (eval). Let t be a binary tree, where each 

internal node is a binary operator,  and each leaf node contains some ground value. 

Then the evaluation is a pure-morphism. The divide function used in the morphism 

is not balanced (unless t is), so there is no obvious efficient parallel implementation. 

The problem of  how to compute graph problems by balanced morphisms is beyond 

the scope of this paper. We present this example to show that morphisms can express 

problems in domains other than arrays. 

eval = D C  (b~, apply, I, I, node-to-value) 
where b, t = nil, if t is a tree of  one node 

= (root, left, right), otherwise 

where root is the root of  t 

left is the left subtree of t 

right is the right subtree of  t 

apply (op, "vl, "v2) = op (vl, v3) 
node-to-value node = value of the node 

7. Divide-and-Conquer on Parallel Computers 

In this section we identify the grain of  parallelism implied by divacons, and provide 

guidelines but not details of  how divacons may be mapped to parallel machines. 

For a divacon f4c, an obvious approach to parallelism is to map the nodes in the 

divacon graph DG (fc;c, x) to processors in a parallel computer.  The disadvantage of 

this approach,  however, is that the computat ion of spaces at upper levels of  the 

divacon graph become a bottleneck since upper level spaces have larger sizes. 

For a better alternative, let us introduce the concept of  distributed space. First recall 

that an m-ary relation r over a set U is a set of  m-tuples of elements from U; a 

subrelation of  r is a subset of  r; a subrelation of r induced by an element u s U, denoted 

by r (u), is the subset o f r  consisting of all tuples in r in which u is an element [Dornhoff 

and Hohn 1978]. With these notions, we can use an unstructured set s'  to represent 

a space s = (U, R): 

s ' =  {(u, {,'(u)I ,'ER})I u~ U} 

We call the set s'  the distributed f o rm  of the space s. The elements in a distributed space 

are called its points. A point has the form (u, {r(u)}), where u is an element of U and 

{r(u)} consists of  subrelations of  the relations in R. 

The alternative mapping strategy that we propose is to treat the points of  a space 

x as the grains of  parallelism. To show how fac x can be computed in parallel under 

this scheme, we only need to show how the application of each constituent function 

can be computed in parallel since the computat ion of  a divacon reduces to the 
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recursive applications of the constituent functions on disjoint spaces. We discuss this 

issue for each of the constituent functions below. 

Recall that a valid divide function never alters the values of the points, and the 
mapping that it does is independent of the values of other points. Therefore the (valid) 

divide function can be computed in parallel by all the points (processors) without 

communication. By a similar argument, (valid) combine functions can be computed 

by all the points in the spaces of the parallel. 

An adjust function can be analyzed in terms of its own constituent functions. The 

reference function obviously maps directly to the communication between processors, 

and will be further discussed in the next section. We know that no local functions 

contain interspace communication. With the notion of distributed space, we further 

classify them into weakO, local and strongO' local functions according to whether they 

contain interpoint communication or not. For example, the local functions in the 

bitonic sort divacon is weakly local, and the local functions in other examples are 

strongly local. The strongly local function can be computed locally by each point 
(processor) for all points in the space in parallel without communication, and the 

weakly local functions should be computed in turn by a divacon. 

The base functionfb is a subfunction off~c but only defined trivially over the atomic 

spaces. The recursive application of divide and preadjust functions will eventually 

map each point to an atomic space (assuming atomic spaces have size one), and so 

fb can be computed in parallel. 

Observe that a node in a divacon graph never connects to a node other than its 

direct son or father. This characteristic of divacon graphs is equivalent to the normal 
property of parallel algorithms in Ullman [1984]. It implies that as long as the 

appropriate information is passed from level to level, when a computation enters a 

new level in the divacon graph we can reuse the processors from the previous level. 

Therefore, the number of processors used by a divacon at a particular level is exactly 

equal to the number of points in all the spaces at that level. 

We have identified points in the spaces as the grain of parallelism in divacons. But 

we have purposely left the mapping between the set of  points to the set of computers 

unspecified. The reason is that the performance of divacons on parallel computers is 

largely independent of the particular topology of  a space and the particular topology 

of the parallel machines, as will be explained in the next section. 

8. Time and Processor Complexities of Divacons 

We show in this section how the time and processor complexity of divacons can be 

derived easily from those of its constituent functions. The concept of balance in 

divide-and-conquer is formally defined, and the impact of balance on time complexity 
is discussed. 

8.1. Communication on Parallel Computers 

The time complexity of parallel algorithms depends greatly on the cost of communica- 

tion among the processors. The time used by a particular phase of communication is 
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in turn attributed to two major  factors: the locality of  the communication and the 

pattern of  the communication,  where locality refers to whether or not the com- 

municating processors have direct physical channels and the pattern refers to how 

evenly the messages are coming in and out over different processors in the parallel 

machine. 

We observe that on small diameter machines, such as the hypercube and butterfly 

[Ullman 1984], the communication pattern is a much more important  factor than the 

communicat ion locality. With the same communication pattern, the communication 

time used by a phase of  communicat ion differs, at most, a logarithmic factor with and 

without locality [Valiant 1981, Ullman 1984]. With the same locality, different com- 

munication patterns may take time as little as constant or as much as linear (to the 

number  of  processors) with different communication pattern. We are therefore mot- 

ivated to a parallel computer  model where the communication pattern is the only 

factor affecting the communicat ion time. The dissimilarity between our model and 

real machines is intentional, since we want to concentrate on more decisive aspects 

of  complexity analysis. 

We consider a communication among the processors of  a parallel computer  to be 

a binary sender-receiver over the set of  processors; therefore it is a directed graph, 

called the communication graph. The fan-in and fan-out of a processor during a 

communicat ion are, respectively, the indegree and outdegree of  the node correspond- 

ing to the processor in the communicat ion graph. The fan-in and fan-out of  the 

communicat ion are, respectively, the maximum indegree and outdegree of the com- 

munication graph. 

Let Teomm denote the time required by a communication over the parallel computer,  

fan-hi . . . .  and fan-out . . . .  denote the fan-in and fan-out of  the communication; we 

assume 

Tcomm = 0 (fan-in . . . .  +fan-out . . . .  ) 

8.2. Time Complexity 

The time used to compute a d i v a c o n f  = DC (d, c, g, h,fb) is obviously the sum of  the 

time used at all levels of  the divacon graph DG (f,  x). Let T (function, n) denote the 

time used to compute a function on the space of size n, H denote the height of  the 
divacon graph, ni denote the size of  the spaces at level i, and A denote the size of  

atomic spaces; then 

Assuming the atomic spaces have bounded size, then the last term takes O(1) time; 

also since ni ~< n for all i, we have 
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T(f,n)=O(H*(T(d,n)+ T(c,n)+ T(g,n)+ T(h,n))) 
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The above equation tells us that the complexity of a divacon can be easily derived in 

terms of the complexity of its component functions and the height of the divacon 

graph. 
The two terms T (d, n) and T (c, n) reflect the time used by divide and combine 

functions. Assuming the functions d and c are valid, then T (d, n) = T (c, n) = O(1) 

since they can be computed locally. 

The other two terms T (g, n) and T (h, n) reflect the time used by preadjust and 

postadjust functions, respectively. Since an adjust function is the composition of local 

and reference functions, the time it uses is equal to the sum of the time used by its local 

and reference function; therefore we have 

T (g, n) = T(refg, n) + T (locg, n) 

T (h, n) = T(reft,, n) + T(loch, n) 

The term T(ref, n) reflects the communication time used by the adjust function. It can 
be decided by the fan-in and fan-out of the communication corresponding to the 

reference function. The corr and mirr reference functions correspond to the commun- 

ications with constant fan-in and fan-out and therefore T(corr. n ) =  T(mirr, 
n) -- O(1). The reference function last-m corresponds to communications with O(n) 

fan-out, but it can be implemented by the divacon br in Section 6 with O(log(n)) time. 

The term T(loc, n) reflects the time taken by the local function after the interspace 

reference. Clearly, for strongly local functions, T(loc, n) = O(1), since there is not even 

interpoint communication. Weakly local functions should be computed in turn by 

divacon, and analyzed recursively. 

The height H of a divacon graph is the multiplying factor of the divacon complexity 

as shown above, and it depends on only the divide function. To classify the divide 

functions, we say that a divide function over a domain S is balanced if there exists a 

constant division factor M > l such that for any space s~S ,  and d(s) = s~,...,sp, the 
following relation holds: 

(Isl/max(Is, I . . . . .  Iskl)) > M 

By this definition, we can see that the divide function dr, is balanced while dh, is not. 

The tree divide function used in Example 10 is not balanced either, unless the tree itself 
is balanced. 

A divacon with balanced divide function is called a balanced divacon. Balanced 

f scan shuffle [ br reduce j sort im fib poly 
T(/.,~) O(to~) O(lo~,,) IO(log,~l O(~o~.) /o(/&,~) O(lo~,~) O(to0~) O(to9 ~) 
P( f ,  n) n n I n n I n O(n 2) n 0( , , )  

Figure 4. Complexities of example applications. 
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divacons can be shown to have balanced divacon graphs in the sense that both the two 

parts of the divacon graph are balanced, and therefore have O(log(n)) heights, where 

n is the size of  the space. When the balanced divacons are mapped to parallel 

computers, most processors will be able to participate in the computation at all levels 

of  the divacon graph, which leads to better efficiency and speedup. Indeed, for a 

balanced d i v a c o n f =  DC (d, c, g, h, f b), the time complexity becomes 

T(f,  n) = O(log(n) * (T(d, n) + T(c, n) + T(g, n) + T(h, n))) 

It should be evident that nested balanced divacons yield polylogarithmic time perfor- 

ma'nce; therefore there is a relation between the class of problems that can be 

computed by nested balanced divacons and the class NC [Cook 1985]. 
With the above discussion, we can very easily derive the time complexity of all 

example divacons in Section 6. In Figure 4, we have listed some of the results. 

Although we have disregarded the locality as a factor of the communication cost, 

our approach in fact has offered a convenient handle to pursue the locality. This is 
because the communication inside divacons is reflected largely by the reference 

functions, and we can achieve the locality of  communication by mapping from points 

of spaces to processors of machines that will make the reference local. For  example, 

on hypercube machines, the mappings decided by a binary coding and gray coding of  

vectors will make the corr and mirr references local, respectively. 

8.3. Processor Complexity o f  Divacons and Time-Processor Trade-off 

Let P(f ,  n) denote the number of  processors required to compute a divacon f =  (d, 
c, g, h,fb) on a space of size n. From the discussion in the last section, we know that 

P(fdc, n) depends on only the number of processors used at the level of a divacon 

graph that has the maximum number of  total points. And we can derive it by 

induction easily. 
Observe that for a k-ary divide function d with division factor m, if d(s) = (s~, 

. . . .  s~) then the following relation holds: 

Isil~<"sl, f o r i =  1 t o k  
m 

Under our mapping scheme, this leads to the following recurrence: 

P(f ,  n) = k*  p(f, n/m) 

Obviously the base case for the recurrence is P(f ,  1) = 1. The solution to the recur- 

rence can be shown to be O(nl~ 
The above tells us that the processor complexity of a divacon depends solely on the 

divide function of  the divacon. And if the arity and the division factor of  the divide 

function are known then the processor complexity is totally decided. 
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For a divide function d with arity k and division factor m, we define the expanding 
exponential ~ and the expanding factor fl to be, respectively, 

:x,l = l o g m k  

flu = k/m 

The constant e is called the expanding exponential since we have 

/ ' ( f ~ ,  , l )  = n ~ 

The constant fl is called the expanding factor since it reflects the ratio of  processors 

used at two adjacent levels of the divacon graph. 

When the ~ and/~ of a divide function are equal to one, we say the divide function 

is space conservative. Divacons with conservative divide functions are said to be space 

conservative divacons. Clearly, P(f ,  11) = O(n) i f f  is space conservative. 

We can see that the integer multiplication divacon is not space conservative, and 

it uses a divide function with ~ = 2, and therefore P(im, n) = n 2 ;  all the other divacon 

examples are space conservative, and therefore P(f ,  n ) =  n. The nonconservative 

divide functions often appear at the divacons defined over Cartesian product 

domains. The block division in matrix multiplication [Aho et al. 1974] is another 

example. 

When the size of  a space is large, there may not be enough processors in a real 

machine. For space conservative divacons, we can statically map more than one point 

to one processor. For nonconservative divacons, the static control is not very effec- 

tive. However, we can dynamically force one processor to represent ~, times more 

points than it did at the previous level, where 7 is a constant called the compression 
factor. It is easy to see that when ), is equal to the expanding factor, the number of  

processors used by the divacon will become stable at all levels. It can also be shown 

that in terms of the efficiency &processors ,  neither the static nor the dynamic scheme 

will decrease the performance of  the divacon. 

9. Concluding Remarks 

We have presented an algebraic model of  divide-and-conquer algorithms, and showed 

how such algorithms can be specified, implemented, and analyzed in terms of the 

constituent functions. 

The computational  power of  divacons is Turing-equivalent, although its structure 

more naturally fits certain classes of  algorithms than others. The expressive power of  
divacons can, however, be further enhanced by relaxing some of the restrictions. For  

example, if we allow points to be shared by a number of  spaces, then the very 

operationally oriented pointer-jumping algorithms [Huang 1985] can be naturally 

defined as divacons. Also, if the arity of  the algebras is allowed to be variable, then 
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some parallel graph algorithms, such as the c o n n e c t e d  c o m p o n e n t  algorithms [Ullman 

1984], can be modeled by divacons. 

The significance o f  divide-and-conquer,  even for sequential computa t ion,  has been 

pointed out by Aho  et al. [1974]. They also pointed out the importance o f  balanced 

division, as did Berger and Bokhari  [1987] and others. Several other researchers have 

emphasized its use in parallel computing.  Preparata  and Viullemin [1981] have 

informally described the divide-and-conquer  paradigm and its implementat ion on 

cube-connected cycles. They also described two classes o f  divide-and-conquer:  

"descend"  and "ascend,"  which are what  we call pre- and postmorphisms.  Smith 

[1987] has concentrated on the practical side o f  developing divide-and-conquer  

algorithms. 

Most  o f  the divacons in this paper  are the functional abstract ion of  the algori thms 

that can be found in the literature, for example, in Aho  et al. [1974], Stone [1981], 
Ul lman [1984], and Ladner  and Fischer [1980]. M a n y  other  divide-and-conquer  

algori thms based on balanced algebra, such as F F T  and block matrix multiplication 

[Aho et al. 1974, Ullman 1984], can also be treated naturally by our  approach.  

We are presently developing a parallel p rogramming  language where divacons are 

the only form of  recursion, and which we plan to implement as outlined in this paper. 
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