
The Journal of Supercomputing, 2, 257-278 (1988)

~, 1988 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

An Algebraic Model for Divide-and-Conquer and

Its Parallelism*

ZHIJING G. MOU
PAUL HUDAK
Yale UniversiO', Department of Computer Science, New Haven, CT 06520

Abstract. A formal algebraic model for divide-and-conquer algorithms is presented. The model reveals the

internal structure of divide-and-conquer functions, leads to high-level and functional-styled algorithms
specification, and simplifies complexity analysis. Algorithms developed under the model contain vast

amounts of parallelism and can be mapped fairly easily to parallel computers.

1. Introduction

Divide-and-conquer is a well-known strategy for designing parallel algorithms: A
problem is recursively subdivided into relatively independent components, which are

in turn operated on in parallel [Aho et al. 1974, Jamieson et al. 1987, Preparata and
Vuillemin 1981, Ullman 1984]. The method is both simple--even the most novice
programmers find it easy to grasp---and effective--it is the basis for many of the best

known parallel algorithms.
However, despite the widespread use of divide-and-conquer, it has received very

little formal treatment in the literature. In this paper we develop a formal algebraic
model of divide-and-conquer. Our motivation stems from the desire to answer the

following questions:

�9 What is the class of problems that can be attacked by divide-and-conquer?

�9 What are the structural and domain properties of "'divide" and "combine"

functions?

�9 Are there other inherent constituents of divide-and-conquer algorithms aside from
divide and combine functions?

We begin in the next section by noticing that morphisms in basic algebra [Dornhoff
and Hohn 1978] resemble the fundamental structure of divide-and-conquer. However,
many problems that we would like to solve by divide-and-conquer are almost, but not
quite, morphisms. Therefore, we introduce the notion of adjust functions which allow

"This research was supported in part by DOE grant DOE FG02-86ER25012.

258 Z.G. MOU AND P. HUDAK

us to generalize the concept of morphisms to pseudomorphisms and thus complete the

foundation for our model.

The model is further refined in Section 3, where the notions of space, divide
function, and combine function are introduced. In Section 4, we study the nature of

adjust functions and point out the relation between adjust functions and interspace
communication.

In Section 5 we show how divide-and-conquer algorithms are specified in terms of

the constituent functions. We follow in Section 6 with ten examples demonstrating the

applicability of our model. In Section 7 we discuss in principle the parallel imple-

mentation of divide-and-conquer under our model, and complexity and trade-off

issues are addressed in Section 8.

Aside from answering theoretical questions, the advantages of our approach in

practice include the following:

�9 It aids in the design of divide-and-conquer algorithms. The algorithm design is

reduced to the problem of identifying the constituent functions.

�9 It improves the clari O' and modulariO' of programming. The model's structure

suggests simple constructs or higher order functions to capture divide-and-conquer

behavior in a clean way. Furthermore, different divide-and-conquer algorithms

often share the same constituent functions, thus encouraging reuse of parts.

�9 It facilitates the parallel implementation of divide-and-conquer algorithms. Once we

{ f - - -.~ f
0

r - - 5
. '~-o

Y2

~ 0 I

�9 ' L - V I T bl, I
L--]---T~u~ I | 2,11

[I I<U Vl

(a) Morphisms

I g2 I/ ,.~ I
k _ J o ~ o

(b) Post-raorphisms

(c) Pre-rnorphisrn~ (dj Pseudo-morphisras

Figure 1. Different types of pseudo-morphisms (k = 2).

AN ALGEBRAIC MODEL FOR DIVIDE-AND-CONQUER 259

understand how to map spaces to and implement the constituent functions on

parallel computers, we can implement any divide-and-conquer algorithm.

�9 It simplifies cornplexio' analysis. The complexity of divide-and-conquer algorithms

can be easily derived from the complexity of the constituent functions.

Notation. We generally write function application in curried form, as i n f x y, which

is equivalent to (f x) y . Function composition is d e n o t e d f o g o h, and associates to

the right. Tuples are denoted by (x~, x2 xk) and vectors by [x~ x2...x~]. The latter

notation is overloaded in that we also use [X, cx] to denote an a lgebra-- the distinction

is always clear from context. A vector v is indexed by writing v(i), and its length is

Ivl.

2. Pseudo-morphisms as a Basis for Divide-and-Conquer

We first review some basic concepts in algebra. A set S together with a k-ary operator

c,: S ~ ~ S is an algebra [S,c,] if S is closed under c, (i.e., for any k elements s~ sk e S,

we have c~ ~s~ Sk) e S) . Let function f be a mapping from set X to set Y. It is a

morphism [Dornhoff and Hohn 1978] (see Figure l(a) if there are algebras [X,c~] and

[Y, cr], such that

f (c x (x , xk)) = c. (,f x l , . . , f Xk)

which we prefer to write as

(J ' O Co) (X 1 Wk/~ = (CI 0 (,la[)j4)) (Xl,. . . ,Xk)

where map f (x l xk) = (f xj ,J'xx)

or just

f o c , = c, o (, n a p 11

It is the presence of map's that is the key to divide-and-conquer and that permits the

parallel evaluation of the function on disjoint arguments.

As an example, consider the function reduce defined over vectors V of elements

from set U:

(~ pvl v(i) reduce @ v = ~ , =

where @ is an associative binary operator defined over U. We can see that the

function (reduce | is a morphism from [V, cat] to [U, O], where cat is the vector

concatenation operator. For example,

260 Z.G. MOU AND P. HUDAK

((reduce +) 0 cat) ([1 2], [3 4]) = (+ O (map (reduce +))) ([1 2], [3 4]) = 10

Morphisms constitute a fairly broad class of functions, and include all the linear
functions encountered in mathematics and engineering such as differentiation, in-
tegration, convolution, Fourier transformation, and many more basic functions in

arithmetic and linear algebra.

2.1 Postmorphisms

The linearity of morphisms has long been explored in sequential computations, and
has obvious significance for parallel processing. Unfortunately, the class of
morphisms, wide as it is, does not include many functions that intuitively can also be

decomposed in a similar way as morphisms.
For example, consider the function (scan 0) : V ~ V, where V is again the set of

vectors with elements from set U. @ is an associative binary operator over U, and

scan ~ v = v ' , where v'(i) = (~ i v(k), for i = 1 tolvl
k = l

For algebra [V, cat], the function (scan) ~)) is not a morphism since ((scan 03) 0 cat)
(vl, v2) is not equal to cat (scan ~3 v i, scan ~) v2). For example, scan + [1 2 3 4] = [1
3 6 10] while cat (scan + [1 2], scan + [3 4]) = [l 3 3 7]. However, upon closer
inspection we find that the result is "almost" correct, and can be easily adjusted to the
correct result. To see how, define the following function h to do the adjustment:

h (vl v2) = (Vl, v'2), where V'2(i) = v%(i)Ovl(lv,])

Then we can see that

((scan ~)) 0 cat) (vl , v2) = (cat 0 h 0 (map (scan G))) (v l , v2)

Formally, a function f : [X, cx] ~ [Y, Cy] is called a postmorphism (see Figure 1 b) if there

exists a postadjust function h : Y~ ~ yk such that

(f O Cx) (x l , . . . , x k) = (cs Oh 0 (map f)) (x , , . . . ,xz)

2.2. Premorphisms

Consider the function shuffle defined over vectors (of even length):

shuffle (v) = v"

where v" (i) = v ((decode 0 left-shift 0 encode) (i - 1)), for i = 1 to IVI

AN ALGEBRAIC MODEL FOR DIVIDE-AND-CONQUER 261

where the function encode takes a number and encodes it in binary, decode does the

opposite, and right-shift and left-shift shift the digits of a binary number, respectively,

to the right and the left in wrapped-around fashion. Shuffle is not a morphism (nor

is it a postmorphism) for algebra [V, cat] because, for example,

(shuffle o cat) ([1 2], [3 4]) = [1 3 2 4]

r (catO (map shuffle)) ([1 2], [3 4]) = [1 2 3 4]

However, if we introduce a function g: V 2 ~ V 2 to adjust the subarguments before

shuffle is applied to each of them,

g (v, ,v2) = (v'l, v'2)

where v] (/) = vl (i),

= v2(lv2[- i),

v2 (/) = v: (i),

= v I (]vii - - i) ,

if i ~< (Iv, 1/2)

otherwise

if i > (Iv21/2)

otherwise

Then the function shuffle can also "behave" like a morphism in the sense that it

reduces to two applications on adjusted sub-arguments:

(shuffle 0 cat) <Vl, 7.) 2) = (cat 0 (map shuffle) 0 g) (vl , v2)

Formally, a function f: [X, cx] = ~ [Y, cy] is called a premorphism (see Figure l c) if there

exists a preadjust function g:X ~ --, X k such that

(f O cx) (x , x~) = (c; 0 (map f) 0 g) (X l , . . . , x k)

2.3. Psetidomorphisms

More generally, we say a function f:[X, cx]--* [Y,c~.] is a pseudomorphism (see Figure

ld) if there exists a preadjust function g : X k ~ U ", and a postadjust function

h: yk __, t~, such that

f O cx = c). O h O (map f) O g

Obviously, pure morphisms, premorphisms, and postmorphisms are all special cases

of pseudomorphisms, where one or both of the adjust functions happen to be the

identity function I.

262

3. Divide and Combine Functions on Space Domains

Z.G. MOU AND P. HUDAK

Pseudomorphisms capture the notion of divide-and-conquer in that they reduce the

application of a function to several applications of the same function. However, this

only makes sense if the new applications are somehow made to smaller "pieces" of

the input. In fact, pseudomorphisms do not constitute a complete model for divide-

and-conquer before the following questions are answered:

�9 Where is the notion of divide?

�9 What is the relationship between divide and combine?

�9 How do the algebras in pseudomorphisms come into existence?

These questions are answered in this section.

3.1. Space Domains

Generally functions are mappings defined over structured data, which we model as a

structured set called a space. Formally, a space s is a pair (U,R), where U is a universe

of elements and R is a set (often singleton) of relations over U called its structure. The

size of a space s = (U,R) is denoted by]s[, and is defined as the cardinality of the

universe U.

For example, a graph (V,E) is modeled as a space with U = V and R = {E}.

Similarly, a vector is modeled as a space with U as the set of its entries and the only

element of R being a total ordering over the entries reflecting the vector structure.

A space domain S is a (usually infinite) set of spaces with certain common proper-

ties. For example, all graphs constitute the graph space domain, and all vectors

constitute the vector domain.

Given two spaces s~ = (G , Rl) and s2 = (U2, R2) in the same domain S, we say s~

is a subspace of s2, denoted by sL c s2, if UL c UR and for each relation r~ s Ri, there

exists a corresponding relation r2~ Rz, such that r~ c r2.

3.2. Divide Functions

Note that for a pseudomorphismf:[X, cx] ---, [Y,q], the operator e, often captures the
notion of ~'combining" elements of X into larger ones. For example, we showed that

(reduce 0) is a morphism from [V, cat] to [U, | where cat takes two subvectors and

creates their concatenation. However, in divide-and-conquer algorithms we are

foremost interested in the divide function that essentially performs the inverse of

functions like cat. More specifically, for an algebra [X, cx] we are interested in a divide

function de such that

G o d , . = I

AN ALGEBRAIC MODEL FOR DIVIDE-AND-CONQUER 263

where I is the identity function.

Let S be a space domain, and d:S--* S k a total function. We say that d is a k-ary

divide func t ion over S if it is total and whenever for a space s = (U,R) ,

then

d s -- (s~ ,sk), where s~ = (Ui, R~) for i = 1 to k

(1) si = s

(2) W~Ll U i = U

(3) U , r ~ U / = 0 , f o r i C j

(subspace)

(complete)

(mutually exclusive)

For example, the following dtr is a divide function for the vector space domain that

will divide a vector into two approximately equal subvectors:

dlr v = nil, if (rvl = 1)

= (v l , v25, otherwise

where Vl (i) = v(i), for i = 1 to Ivl/2

v,_(i) = v(i - I v] /2) , for i = (Iv[/2 + 1) to Ivl

We define nil to be a special element in S x and hence the mapping mapping dtr is

indeed total.

3.3. Combine Functions

A k-ary combine funct ion for a domain S is a total mapping c: Sk--* S. For any k spaces

(s l , . . . ,s~.) e S k, we have

c {s~ sk.) = s, s, ~ s, for i = 1 to k

The vector catenation operator cat, for example, is a combine function over the

vector space domain:

cat { v I, v2) = v

where v(i) = vl (i),

=v2 (i - Iv I]),

if (i ~< Iv1 t)

if (I v,] < i ~< (Iv, [+ Iv2l))

Note that cat is a left inverse o f the divide function dtr. However, the left inverse o f

a divide function is generally not unique. For example, another left inverse o f dtr is

264 Z.G. MOU AND P. HUDAK

picky-cat @1, v25 = nil, if (IVl I - [v_O > i

= cat @1, v2), otherwise

Picky-cat is a subfunction of cat since it is consistent with cat for all the values which

are not mapped to nil.

The subfunction relation in fact defines a partial order over the set C of all the left

inverses of a divide function d. We define the inverse of divide function d to be

d - ~ = min (C). It can be shown that dtr i = picky-cat.

3.4. Division Induced Algebras

Obviously if c is a combine function over space domain S then [S,c] is an algebra, and

we say that the algebra is induced by the divide function d if c = d- 1. Since the divide

function is usually the starting point for a divide-and-conquer algorithm, it is con-

venient to describe such an algorithm as a pseudomorphism from [X,d - l] to [Y,c.~],

where the algebra [X,d 1] is induced by the divide function d.

4. Adjust Functions

Adjust functions reflect the degree of "interspace communication," and have impor-

tant ramifications on the complexity of divide-and-conquer. In this section, we will

further explore the nature of adjust functions. In particular, we will show how adjust

functions can be decomposed further into two types of functions, one reflecting

interspace communication, the other not.

Consider an adjust function a:S k ~ S k, where

a (sl sk) = (s'l ,s~.), where s, si, s ' i eS

Although there is a correspondence between the space s'i and the space si, the value

of space s~ in general depends on not only space s, but also on all sj fo r j r i. Therefore

we cannot in general decompose a into k subfunctions that do the individual

mappings independently.

On the other hand, we could consider an adjust function to be the composition of
two functions re fand loc: The former is what we call the reference function that fetches

for each space the values needed from other spaces, and the latter is what we call the

localf imction which performs a mapping on each space based on its own value and

the values fetched from other spaces. In other words, a = loc 0 ref.
Aside from increasing our understanding of the communications complexity, we

will see that decomposing the adjust function in this way has the additional benefit

of uncovering some repeating communications patterns in many algorithms, which

we can use in a modular way.

AN ALGEBRAIC MODEL FOR DIVIDE-AND-CONQUER 965

4.1. Re ference Funct ions

In general the reference function can be represented as

ref (s , , . . . ,s~) = (s ' , , . . . ,~k)

w h e r e , = (4 . 1 ~ . k) . s , . ~ . j ~ S f o r i , j = I t o k

That is, a reference function maps each space s, to a compound space ~ consisting o f

k component spaces (~ . 1 ~,. k) . Each component space ~..j stores the values o f

space s i referenced by space si. Note that component space .~.i is the space
s, itself, and therefore can be omitted from the specification.

For example, the following are three reference functions that are commonly used

by functions defined over vectors (see Section 6). They are also illustrated in Figure

2. We will see in the next subsection that the reference functions contained in the

adjust functions for scan and shuffle are (last-m 1) and mirr, respectively.

corr (v l , v2) = (6~ , 62)

where 6~ .2(i) = vz(i), for i = 1 to [v~[

v 2 . 1 (i) = v ~ (i) , for i = l to [621

mirr { v l , v~) = {61 , i'2)

where 0t .2(0 = v2(lw_[- i), for i = 1 to]'vii
v_ , . l (i)=v~ (Iv~]--i), f o r i = 1 to[621

,

6 C . . . 0 o o 0 . . . 0 o

(a) C o r r e s p o n d e n t R e f e r e n c e

o 0 . . . 6 o o 6 . . . 0 o

(b) M i r r o r - i m a g e R e f e r e n c e

0 O. . . . O. 6 O O . . . 0 9

k_k._ j

(c.) L a s t - m R e f e r e n c e (m = J .)

Figure 2. Patterns of the commonly shared reference functions on vectors.

266

last-m m (v , , v2) -- ('G , G_)

where vl .2(i) = m-array

where m-array (i) = %(Iv21 - i),

v2 . 1 (i) = m-array

where m-array (i) = vl (Ivll - i),

Z.G. MOU AND P. HUDAK

f o r / = 1 t o m

for i = 1 to m

4.2. Loca l Functions

A local function takes k " c o m p o u n d " spaces produced by a reference function

and maps them to k spaces. The general form is thus

loc (~, g,_ > = (s ' , , . . .,s~.)

Since the reference function has already performed the interspace references, the

local funct ion in fact consists o f k subfunctions (loc~ lock) , where loc~

= s~. Thus, instead o f the above we will sometimes use the notat ion:

loc (g~ , g k) = (lo< loc~) (~ gk) = (l o c , ~ loc~ gk)

4.3. Example s

To ease the readibility o f the fol!owing examples we define some auxiliary functions,

beginning with self'.

se l f ~ = ~. i

and for the case o f k = 2, we also define a function other:

other s i= 4.2, if i = 1

= 4 . 1 , i f i = 2

Finally, we define the functional ento ' -wise which takes a binary opera tor defined over

the entries o f two vectors and returns a function which will perform the entry-wise

operat ion to two vectors of equal length:

(entry-wise •) (v t , v2) = %, where v3(i) = (i) G v2 (0

N o w we can define the postadjust function in scan as

AN ALGEBRAIC MODEL FOR DIVIDE-AND-CONQUER

(h | = (l o c t , loce> 0 last-m
where loci = self

/oc:= entry-wise @

and the preadjust function in shuffle as (observe that (map f) =

g~/,,,me = (map part-exch) O mu'r
where part-exch ~,, = v;

where v'i (/') = (self (:,) (/),

= (other 6,) (I),
=(other ~,) (0,

= (self ~,) (/'),

if (i = 1) and (i ~< Iv, I/2)

i f (i = 1) and (/ '> Iv, l/2)

if (i = 2) and (j ~< Iv, I/2)

otherwise

<f,... f>):

267

4.4. Orthogonalio' o f Divide~Combine and Adjust Functions

Implicit in the definition of divide and combine functions is the fact that they do not

alter the values of the elements in the space. We further define a valid divide or

combine function as one that does not dependon the values either. Thus a valid divide

or combine function depends only on and affects only the structure of a space. An

example ofnonvalid divide function is to partition a vector into two parts with an equal

number of nonzero elements. All of the divide and combine functions considered in

this paper are valid.

The concept of adjust function naturally suggests that it preserves the structures of

the spaces. Now let a be an adjust function over space domain S, and

a (sl ,&) = (s ' I s~) where s, = (U,, R,), sl -- (U,, R,)

We say that a is valid if the relations in R~ are always isomorphic to the relations RI

for i = to k. In other words, a valid adjust function depends on and affects only the

universe of the spaces, and does not depend on or affect the structure of the space.

The orthogonal nature of valid divide and combine functions on one hand, and

valid adjust functions on the other, should now be clear.

We should point out that the so-called divide and combine functions in some
well-known algorithms are not valid by our definitions. For example, in quicksort

[Aho et al. 1974]. The routine that partitions the input vector into two smaller vectors
is not a valid divide function, and the function that merges two vectors in merge-sort

is not a valid combine function. Interestingly, in Section 6 we will see that the merge

routine in bitonic-sort, in fact, is itself a divide-and-conquer algorithm.

5. Recursive Computation of Divide-and-Conquer

Recall the relation defined in Section 2 for a pseudomorphism f :

268

f o Cx= C, o h O (map f) O g

Z.G. MOU AND P. HUDAK

from which we can derive

f o c x o d = 5 o h o (mapjO O g o d

but since cx o d = I, we have

f = 9 o h o (mapaO O g 0 d

This equation literally dictates the form of the functional, but there is one last detail

needing discussion: Most divide-and-conquer algorithms reach a "bo t tom" level in

the division process, which in our model occurs when a divide function returns nil. For

example, djr returns nil for unit-length vectors. This behavior, in fact, defines the

termination property of a divide-and-conquer algorithm.

At this bot tom level in the division process a divide-and-conquer algorithm typic-

ally invokes a basis function fb on the atomic elements. Thus we include fb in our list

of constituent functions, leading us to the following definition of the functional DC:

DC(d, c, g, h, fb) = fj,
where fa, x =fb x,

= (c 0 h o (mapda,.) O g O d) x,
if (d x = nil)
otherwise

Let f : [X,d ~] ~ [Y,c] be a pseudomorphism based on the algebras induced by the

divide function d, with g as preadjust function and h as the postadjust functions, and

letfb be the base function o f f with respect to d. Then we h a v e f = DC(d,c,g,hfb) = fdc.
The function fd~ returned by the higher order function DC is called a divide-and-
conquer function, or divacon for short. The functions,d,c,g,h and fb, are called the
constituents of the divacon.

The recursive computation of a divacon fdc applied to a space x can be depicted by

the divacon graph DG OCa,, x), which consists of two phases.

�9 The divide phase corresponds to the repeated application of the divide function d

and preadjust function g, until the atomic spaces are generated at the "leaves."

�9 The combine phase corresponds to the repeated application of the postadjust
function h and combine function c until the " roo t " is reached again.

The base function fb is what ties the two phases together. Graphically one can draw
this as two trees connected at their leaves, as shown in Figure 3 for DG ((scan +), [1

2 3 4 5 6 7 8]), where the names of the component functions applied at each level are
included for clarity. The height of a divacon graph is the height of one of these trees,
which are symmetric.

AN ALGEBRAIC MODEL FOR DIVIDE-AND-CONQUER 269

f
i

L_

,q, 21 h

I I ,,!]. ; ~,!~.~

k,...[1 3] _..J

[- [136

K
' [1 2 3 4 5 6 7 8] ' t. j

[12a~1 ~ f I~G 781
I I i

[1 2:3 41 _1) k,.. [a s 7 8] ~

" i , , . /

10] k f " - [5 11 18 26] " ~
I I I

610] _J k,, [i5 2.128 36] J

I [1 3 6 10 i~ 21 2s 361 .j

app l i ed c o n t a i n e d
level

fu tic t, iorl re fe rence

0 ' d = dtr -

1 g = / -

1 ' d = dlr --

2 g = / -

2' d : d l r --

8 g = I -

3' f ~ = I -

- 3 ' 11 = h s c ~ l a s t _ m 1

c = dl-r 1 - 13

- 2 ' h = h ~ c a n l a M _ m . 1

c = d ~ ~ ~ 2

-1 ' h = hscari l a M _ m 1

c = dt~ ~ -

-0 '

Figure 3. The example divacon graph DG ((scan +), [1 2 3 4 5 6 7 8]).

6. A p p l i c a t i o n E x a m p l e s

To illustrate the expressive power, the concise form, the functional style, and the

sharing of constituent functions of divacons, we present ten examples in this section.

The efficiency of the algorithms was considered but was not the main criterion in

selecting the examples.

The commonly used divide, combine, reference, and local functions such as dlr, d~7 l,

corr, mirr, last-m, self, other, and entry-wise are assumed to be global. The symbol G

always stands for an associative binary operator, and the symbol I stands for the

identity function. The length of a vector is conveniently assumed to be a power of two.

Example 1. Reduce function of a vector under an operator | It is a pure morphism

without adjust functions.

reduce �9 = DC (dr,, @, I, L vector-to value)
where vector-to-value [x] = x

E x a m p l e 2. Reduce computed by a nonbalanced divide function. The divide function

270 Z.G. MOU AND P. HUDAK

used here cor responds to the built-in cat" and cdr functions offered in Lisp-like

languages. It is easy to t rans form other example functions defined over vectors to

p seudomorph i sms with the unbalanced divide function de,.

reduce �9 = D C (de,, | L L vector- to-value)

where dh, v = head, tail

where head (i) = v(1), for i = 1

t a i l (i) = v (i + l), f o r i = 1 t o (I z ,] - 1)

Example 3. Scan over a vector under opera to r | This is a p r emorph i sm with identity

function I as the base function.

scan 0 = D C (dr,, dt71 , L (self. (entry-wise @)) O (last-m 1) , /)

Example 4. Shuff le of a vector is a p r emorph i sm with the base function fh = I.

shuffle = D C (4 , , dr, ' , (map par t -exch) o mirr, L I)

where par t - exch is as defined in Section 4.2

Example 5. Broadcas t the value in v (1) to all entries of a vector v (br). It is presented

below as a pos tmorph i sm; however, it can be defined as a p remorph i sm as well.

b r = D C (dtr, dtT', I, (self, o the r) @ c o r r , /)

Example 6. Fibonacci sequence (fib). Let v(i) = i for i = 1 to N, then the funct ionf ib

v = v ' where v'(i) = f ib (i) . We compu te this function by t ransforming the natural

number sequence to a vector o f pairs, per forming d iv ide-and-conquer over the pair

vector, and finally t ransforming the pair vector back into numbers . The pair (1,1)

cor responds to the coefficients in the defini t ionf(n) = f (n - 1) + f (n - 2), and the pair

(2,1) cor responds to the coefficients in the equat ion f(n) = 2 (f - 2) + f (n - 3). The

method used in this example actually can be easily generalized to solve any linear

difference equat ions.

f ib = pa i r - to -number o,fib~l, 0 number- to-pair

where number- to-pair v = Vpatr

where %.,,, (i) = (0,1), if (i ~< 2)

= (1,1), i f (i is even)

= (d,l), if (i i s odd)

fiba~ = D C (dr,, d,, ~ , L h/Tb, I)
where ht~0 = (se l f , m u i r) o (last-m 2)

where mul t 0 = v

where v(i) = ((cl * al + c,_ *bl), (cl * a: + c~ * b2))

where (c,, c_~) = (s e l f ~) (i)
(a, , a2) = ((other fa) (i)) (1)

AN ALGEBRAIC MODEL FOR DIVIDE-AND-CONQUER

(hi, 62) = ((other 0) (/)) (2)

pair-to-number Vp~,. = v

where v(i) = ca

where (c., ci2) = %~i~ (i)

271

Example 7. Bitonic sort. Bitonic sort is a pos tmorphism with a premorphism as part

o f its postadjust function. Also, observe that the two nested morphisms share the

same local function.

bitonic-sort = DC (dt~, dtT', L (loe 0 mirr), 1)

where loc = merge 0 (map comp-and-exch)

where merge = DC (d~,, d(~ , (loC.,erg~ 0 corr), L I)

where loC.,e~g~ = (map comp-and-exch)

where comp-and-exch (0) = v,

where vi(j) = (self Oi) (j),
=(other ~,) (j),

=(other vi) (J),

= (self ~oi) (j),

if (i = 1) and (self O~) (j) <~ (other v,) (j)

if (i = 1) and (self(3g) (j) > (other O) (j)

if (i = 2) and (se l f , i) (j) <<. (other Oi) (j),

otherwise

Example 8. Polynomial evaluation (poly). f (x) = ao*x ~ + . . . + a, * .~. Let vector

X = I x . . . x] with length (n + l). A = [a0...a,], then poly can be defined in terms o f

divacons re&tce and scan.

poly (A . X) = ((reduce +) 0 (entry-wise *)) (A, scan * JO

Example 9. Integer multiplication (im). Let x and y be two integers and let the function

nums-to-bins (x,y) return two binary vectors X and Y representing x and y, respective-

ly, then

im = imjc 0 nums-to-bins

where imd, = DC (dp. + + , L hi,., imb)

where dp, (iV, Y) = nil, /f(lXI = 1 andlY] = 1)

= (x , , Y~), (x, , ~5), (x2, Y~), (JC,, ~) ,
otherwise

where (iV., X;) = dtr (iV)

(Y, , Y2) = air(Y)
+ + (a, b, c, d) = a +b +c + d

h,m = (loca, loct,, loc,., I) 0 refm

where refim (a, b, c, d) = (a, (b,c) c, d)
log a = a * 2 lal

locb (b, c) = (b + c) * 2 tbl 2

locc c = O
im~ ([x], [y]) = x , y)

272 Z.G. MOU AND P. HUDAK

Observe that multiplying an integer by a power of two can be achieved easily by the

binary number that represents the integer.

Example 10. Expression tree evaluation (eval). Let t be a binary tree, where each

internal node is a binary operator, and each leaf node contains some ground value.

Then the evaluation is a pure-morphism. The divide function used in the morphism

is not balanced (unless t is), so there is no obvious efficient parallel implementation.

The problem of how to compute graph problems by balanced morphisms is beyond

the scope of this paper. We present this example to show that morphisms can express

problems in domains other than arrays.

eval = D C (b~, apply, I, I, node-to-value)
where b, t = nil, if t is a tree of one node

= (root, left, right), otherwise

where root is the root of t

left is the left subtree of t

right is the right subtree of t

apply (op, "vl, "v2) = op (vl, v3)
node-to-value node = value of the node

7. Divide-and-Conquer on Parallel Computers

In this section we identify the grain of parallelism implied by divacons, and provide

guidelines but not details of how divacons may be mapped to parallel machines.

For a divacon f4c, an obvious approach to parallelism is to map the nodes in the

divacon graph DG (fc;c, x) to processors in a parallel computer. The disadvantage of

this approach, however, is that the computat ion of spaces at upper levels of the

divacon graph become a bottleneck since upper level spaces have larger sizes.

For a better alternative, let us introduce the concept of distributed space. First recall

that an m-ary relation r over a set U is a set of m-tuples of elements from U; a

subrelation of r is a subset of r; a subrelation of r induced by an element u s U, denoted

by r (u), is the subset o f r consisting of all tuples in r in which u is an element [Dornhoff

and Hohn 1978]. With these notions, we can use an unstructured set s' to represent

a space s = (U, R):

s ' = {(u, {,'(u)I ,'ER})I u~ U}

We call the set s' the distributed f o rm of the space s. The elements in a distributed space

are called its points. A point has the form (u, {r(u)}), where u is an element of U and

{r(u)} consists of subrelations of the relations in R.

The alternative mapping strategy that we propose is to treat the points of a space

x as the grains of parallelism. To show how fac x can be computed in parallel under

this scheme, we only need to show how the application of each constituent function

can be computed in parallel since the computat ion of a divacon reduces to the

AN ALGEBRAIC MODEL FOR DIVIDE-AND-CONQUER 273

recursive applications of the constituent functions on disjoint spaces. We discuss this

issue for each of the constituent functions below.

Recall that a valid divide function never alters the values of the points, and the
mapping that it does is independent of the values of other points. Therefore the (valid)

divide function can be computed in parallel by all the points (processors) without

communication. By a similar argument, (valid) combine functions can be computed

by all the points in the spaces of the parallel.

An adjust function can be analyzed in terms of its own constituent functions. The

reference function obviously maps directly to the communication between processors,

and will be further discussed in the next section. We know that no local functions

contain interspace communication. With the notion of distributed space, we further

classify them into weakO, local and strongO' local functions according to whether they

contain interpoint communication or not. For example, the local functions in the

bitonic sort divacon is weakly local, and the local functions in other examples are

strongly local. The strongly local function can be computed locally by each point
(processor) for all points in the space in parallel without communication, and the

weakly local functions should be computed in turn by a divacon.

The base functionfb is a subfunction off~c but only defined trivially over the atomic

spaces. The recursive application of divide and preadjust functions will eventually

map each point to an atomic space (assuming atomic spaces have size one), and so

fb can be computed in parallel.

Observe that a node in a divacon graph never connects to a node other than its

direct son or father. This characteristic of divacon graphs is equivalent to the normal
property of parallel algorithms in Ullman [1984]. It implies that as long as the

appropriate information is passed from level to level, when a computation enters a

new level in the divacon graph we can reuse the processors from the previous level.

Therefore, the number of processors used by a divacon at a particular level is exactly

equal to the number of points in all the spaces at that level.

We have identified points in the spaces as the grain of parallelism in divacons. But

we have purposely left the mapping between the set of points to the set of computers

unspecified. The reason is that the performance of divacons on parallel computers is

largely independent of the particular topology of a space and the particular topology

of the parallel machines, as will be explained in the next section.

8. Time and Processor Complexities of Divacons

We show in this section how the time and processor complexity of divacons can be

derived easily from those of its constituent functions. The concept of balance in

divide-and-conquer is formally defined, and the impact of balance on time complexity
is discussed.

8.1. Communication on Parallel Computers

The time complexity of parallel algorithms depends greatly on the cost of communica-

tion among the processors. The time used by a particular phase of communication is

274 Z.G. MOU AND P. HUDAK

in turn attributed to two major factors: the locality of the communication and the

pattern of the communication, where locality refers to whether or not the com-

municating processors have direct physical channels and the pattern refers to how

evenly the messages are coming in and out over different processors in the parallel

machine.

We observe that on small diameter machines, such as the hypercube and butterfly

[Ullman 1984], the communication pattern is a much more important factor than the

communicat ion locality. With the same communication pattern, the communication

time used by a phase of communicat ion differs, at most, a logarithmic factor with and

without locality [Valiant 1981, Ullman 1984]. With the same locality, different com-

munication patterns may take time as little as constant or as much as linear (to the

number of processors) with different communication pattern. We are therefore mot-

ivated to a parallel computer model where the communication pattern is the only

factor affecting the communicat ion time. The dissimilarity between our model and

real machines is intentional, since we want to concentrate on more decisive aspects

of complexity analysis.

We consider a communication among the processors of a parallel computer to be

a binary sender-receiver over the set of processors; therefore it is a directed graph,

called the communication graph. The fan-in and fan-out of a processor during a

communicat ion are, respectively, the indegree and outdegree of the node correspond-

ing to the processor in the communicat ion graph. The fan-in and fan-out of the

communicat ion are, respectively, the maximum indegree and outdegree of the com-

munication graph.

Let Teomm denote the time required by a communication over the parallel computer,

fan-hi and fan-out denote the fan-in and fan-out of the communication; we

assume

Tcomm = 0 (fan-in +fan-out)

8.2. Time Complexity

The time used to compute a d i v a c o n f = DC (d, c, g, h,fb) is obviously the sum of the

time used at all levels of the divacon graph DG (f, x). Let T (function, n) denote the

time used to compute a function on the space of size n, H denote the height of the
divacon graph, ni denote the size of the spaces at level i, and A denote the size of

atomic spaces; then

Assuming the atomic spaces have bounded size, then the last term takes O(1) time;

also since ni ~< n for all i, we have

AN ALGEBRAIC MODEL FOR DIVIDE-AND-CONQUER

T(f,n)=O(H*(T(d,n)+ T(c,n)+ T(g,n)+ T(h,n)))

275

The above equation tells us that the complexity of a divacon can be easily derived in

terms of the complexity of its component functions and the height of the divacon

graph.
The two terms T (d, n) and T (c, n) reflect the time used by divide and combine

functions. Assuming the functions d and c are valid, then T (d, n) = T (c, n) = O(1)

since they can be computed locally.

The other two terms T (g, n) and T (h, n) reflect the time used by preadjust and

postadjust functions, respectively. Since an adjust function is the composition of local

and reference functions, the time it uses is equal to the sum of the time used by its local

and reference function; therefore we have

T (g, n) = T(refg, n) + T (locg, n)

T (h, n) = T(reft,, n) + T(loch, n)

The term T(ref, n) reflects the communication time used by the adjust function. It can
be decided by the fan-in and fan-out of the communication corresponding to the

reference function. The corr and mirr reference functions correspond to the commun-

ications with constant fan-in and fan-out and therefore T(corr. n) = T(mirr,
n) -- O(1). The reference function last-m corresponds to communications with O(n)

fan-out, but it can be implemented by the divacon br in Section 6 with O(log(n)) time.

The term T(loc, n) reflects the time taken by the local function after the interspace

reference. Clearly, for strongly local functions, T(loc, n) = O(1), since there is not even

interpoint communication. Weakly local functions should be computed in turn by

divacon, and analyzed recursively.

The height H of a divacon graph is the multiplying factor of the divacon complexity

as shown above, and it depends on only the divide function. To classify the divide

functions, we say that a divide function over a domain S is balanced if there exists a

constant division factor M > l such that for any space s~S , and d(s) = s~,...,sp, the
following relation holds:

(Isl/max(Is, I Iskl)) > M

By this definition, we can see that the divide function dr, is balanced while dh, is not.

The tree divide function used in Example 10 is not balanced either, unless the tree itself
is balanced.

A divacon with balanced divide function is called a balanced divacon. Balanced

f scan shuffle [br reduce j sort im fib poly
T(/.,~) O(to~) O(lo~,,) IO(log,~l O(~o~.) /o(/&,~) O(lo~,~) O(to0~) O(to9 ~)
P(f , n) n n I n n I n O(n 2) n 0(, ,)

Figure 4. Complexities of example applications.

276 Z.G. MOU AND P. HUDAK

divacons can be shown to have balanced divacon graphs in the sense that both the two

parts of the divacon graph are balanced, and therefore have O(log(n)) heights, where

n is the size of the space. When the balanced divacons are mapped to parallel

computers, most processors will be able to participate in the computation at all levels

of the divacon graph, which leads to better efficiency and speedup. Indeed, for a

balanced d i v a c o n f = DC (d, c, g, h, f b), the time complexity becomes

T(f, n) = O(log(n) * (T(d, n) + T(c, n) + T(g, n) + T(h, n)))

It should be evident that nested balanced divacons yield polylogarithmic time perfor-

ma'nce; therefore there is a relation between the class of problems that can be

computed by nested balanced divacons and the class NC [Cook 1985].
With the above discussion, we can very easily derive the time complexity of all

example divacons in Section 6. In Figure 4, we have listed some of the results.

Although we have disregarded the locality as a factor of the communication cost,

our approach in fact has offered a convenient handle to pursue the locality. This is
because the communication inside divacons is reflected largely by the reference

functions, and we can achieve the locality of communication by mapping from points

of spaces to processors of machines that will make the reference local. For example,

on hypercube machines, the mappings decided by a binary coding and gray coding of

vectors will make the corr and mirr references local, respectively.

8.3. Processor Complexity o f Divacons and Time-Processor Trade-off

Let P(f , n) denote the number of processors required to compute a divacon f = (d,
c, g, h,fb) on a space of size n. From the discussion in the last section, we know that

P(fdc, n) depends on only the number of processors used at the level of a divacon

graph that has the maximum number of total points. And we can derive it by

induction easily.
Observe that for a k-ary divide function d with division factor m, if d(s) = (s~,

. . . . s~) then the following relation holds:

Isil~<"sl, f o r i = 1 t o k
m

Under our mapping scheme, this leads to the following recurrence:

P(f , n) = k* p(f, n/m)

Obviously the base case for the recurrence is P(f , 1) = 1. The solution to the recur-

rence can be shown to be O(nl~
The above tells us that the processor complexity of a divacon depends solely on the

divide function of the divacon. And if the arity and the division factor of the divide

function are known then the processor complexity is totally decided.

AN ALGEBRAIC MODEL FOR DIVIDE-AND-CONQUER 277

For a divide function d with arity k and division factor m, we define the expanding
exponential ~ and the expanding factor fl to be, respectively,

:x,l = l o g m k

flu = k/m

The constant e is called the expanding exponential since we have

/ ' (f ~ , , l) = n ~

The constant fl is called the expanding factor since it reflects the ratio of processors

used at two adjacent levels of the divacon graph.

When the ~ and/~ of a divide function are equal to one, we say the divide function

is space conservative. Divacons with conservative divide functions are said to be space

conservative divacons. Clearly, P(f , 11) = O(n) i f f is space conservative.

We can see that the integer multiplication divacon is not space conservative, and

it uses a divide function with ~ = 2, and therefore P(im, n) = n 2 ; all the other divacon

examples are space conservative, and therefore P(f , n) = n. The nonconservative

divide functions often appear at the divacons defined over Cartesian product

domains. The block division in matrix multiplication [Aho et al. 1974] is another

example.

When the size of a space is large, there may not be enough processors in a real

machine. For space conservative divacons, we can statically map more than one point

to one processor. For nonconservative divacons, the static control is not very effec-

tive. However, we can dynamically force one processor to represent ~, times more

points than it did at the previous level, where 7 is a constant called the compression
factor. It is easy to see that when), is equal to the expanding factor, the number of

processors used by the divacon will become stable at all levels. It can also be shown

that in terms of the efficiency &processors , neither the static nor the dynamic scheme

will decrease the performance of the divacon.

9. Concluding Remarks

We have presented an algebraic model of divide-and-conquer algorithms, and showed

how such algorithms can be specified, implemented, and analyzed in terms of the

constituent functions.

The computational power of divacons is Turing-equivalent, although its structure

more naturally fits certain classes of algorithms than others. The expressive power of
divacons can, however, be further enhanced by relaxing some of the restrictions. For

example, if we allow points to be shared by a number of spaces, then the very

operationally oriented pointer-jumping algorithms [Huang 1985] can be naturally

defined as divacons. Also, if the arity of the algebras is allowed to be variable, then

278 Z.G. MOU AND P. HUDAK

some parallel graph algorithms, such as the c o n n e c t e d c o m p o n e n t algorithms [Ullman

1984], can be modeled by divacons.

The significance o f divide-and-conquer, even for sequential computa t ion, has been

pointed out by Aho et al. [1974]. They also pointed out the importance o f balanced

division, as did Berger and Bokhari [1987] and others. Several other researchers have

emphasized its use in parallel computing. Preparata and Viullemin [1981] have

informally described the divide-and-conquer paradigm and its implementat ion on

cube-connected cycles. They also described two classes o f divide-and-conquer:

"descend" and "ascend," which are what we call pre- and postmorphisms. Smith

[1987] has concentrated on the practical side o f developing divide-and-conquer

algorithms.

Most o f the divacons in this paper are the functional abstract ion of the algori thms

that can be found in the literature, for example, in Aho et al. [1974], Stone [1981],
Ul lman [1984], and Ladner and Fischer [1980]. M a n y other divide-and-conquer

algori thms based on balanced algebra, such as F F T and block matrix multiplication

[Aho et al. 1974, Ullman 1984], can also be treated naturally by our approach.

We are presently developing a parallel p rogramming language where divacons are

the only form of recursion, and which we plan to implement as outlined in this paper.

Acknowledgments

We thank Steve Anderson for many helpful discussions, and Alan Perlis for his

comments on the earlier versions o f this paper. We are also grateful to Chris Hatchell

for his help in preparing this manuscript .

References

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. 1974. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Mass.

Berger, M. J., and Bokhari, S. H. 1987. A partitioning strategy for nonuniform problems on multiprocess-
ors. [EEE Transactions on Computers, C-36(5):570-580.

Cook, S. A. 1985. A taxonomy of problems with fast parallel algorithms, bformation and Control, 64:2-22.
Dornhoff, L. L., and Hohn, F. E. 1978. Applied Mordern Algebra. Macmillan, New York.
Huang, M. -D. 1985. Solving graph problems with optimal speedup on mesh-of-tree networks. In Proc.

Twenty-sixth Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, pp.
232-24O.

Jamieson, L. H., Gannon, D. B., and Douglass, R. J. 1987. The Characteristics of Parallel Algorithms. The
MIT Press, Cambridge. Mass.

Ladner, R. E., and Fischer, M. J. 1980. Parallel prefix computation. Journal of the ACM, 27(4):831-838.
Preparata, F. P., and Vuillemin, J. 1981. The cube-connected cycles: A versatile network for parallel

computation. Communications of ACM, 8(5):300-309.
Smith, D. R. 1987. Applications of a strategy for designing divide-and-conquer algorithms. Science of

Computer Programming, (8):213-229.
Stone, H. S. 1971. Parallel processing with the perfect shuffle. IEEE Transactions on Computers, C-

20(2): 153-160.
Ullman, J. D. 1984. Computational Aspect of VLSI. Computer Science Press.
Valiant, L. G. 1981. Universal schemes for parallel communication. In Proc. Thirteenth Annual ACM

Symposium on the Theory of Computing, pp. 263-277.

