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Introduction 

Both knowledge and wisdom extend man's reach. Knowledge led to computers, 
wisdom to chopsticks. Unfortunately our association is overinvolved with the 
former. The latter will have to wait for a more sublime day. 

On what does and will the fame of Turing rest? That he proved a theorem showing 
that for a general computing device--later dubbed a "Turing machine"--there 
existed functions which it could not compute? I doubt it. More likely it rests on the 
model he invented and employed: his formal mechanism. 

This model has captured the imagination and mobilized the thoughts of a genera- 
tion of scientists. It  has provided a basis for arguments leading to theories. His 
model has proved so useful that its generated activity has been distributed not only 
in mathematics, but through several technologies as well. The arguments that have 
been employed are not always formal and the consequent creations not all abstract. 
Indeed a most fruitful consequence of the Turing machine has been with the crea- 
tion, study and computation of functions which are computable, i.e., in computer 
programming. This is not surprising since computers can compute so much more 
than we yet know how to specify. 

I am sure that all will agree that this model has been enormously valuable. His- 
tory will forgive me for not devoting any attention in this lecture to the effect which 
Turing had on the development of the general-purpose digital computer, which has 
further accelerated our involvement with the theory and practice of computation. 

Since the appearance of Turing's model there have, of course, been others which 
have concerned and benefited us in computing. I think, however, that only one has 
had an effect as great as Turing's: the formal mechanism called ALGOL Many will 
immediately disagree, pointing out that too few of us have understood it or used it. 
While such has, unhappily, been the case, it is not the point. The impulse given by 
ALGOL to the development of research in computer science is relevant while the 
number of adherents is not. ALGOL, tOO, has mobilized our thoughts and has pro- 
vided us with a basis for our arguments. 

I have long puzzled over why ALGOL has been such a useful model in our field. 
Perhaps some of the reasons are: 

(a) its international sponsorship; 
(b) the clarity of description in print of its syntax; 
(c) the natural way it combines important programmatic features of assembly 

and subroutine programming; 
(d) the fact that the language is naturally decomposable so that one may suggest 
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and define rather extensive modifications to parts of the language without destroying 
its impressive harmony of structure and notation. There is an appreciated substance 
to the phrase "ALGoL-like" which is often used in arguments about programming, 
languages and computation. ALTOS appears to be a durable model, and even flour- 
ishes under surgery--be it explorative, plastic or amputative; 

(e) the fact that  it is tant~dizingly inappropriate for many tasks we wish to pro- 
gram. 

Of one thing I am sure: ALGOL does not owe its magic to its process of birth: by 
committee, Thus, we should not be disappointed when eggs, similarly fertilized, 
hatch duller models. These latter, while illuminating impressive improvements over 
ALGOL, bring on only a yawn from our collective imaginations. These may be im- 
provements over ALGOL, but they are not successors as models. 

Naturally we should and do put to good use the improvements they offer to 
rectify the weakness of ALGOL. And we should also ponder why they fail to stimulate 
our creative energies. Why, we should ask, will computer science research, even 
computer practice, work, but not leap, forward under their influence? I do not pre- 
tend to know the whole answer, but I am sure that an important part of their dull- 
ness comes from focusing attention on the wrong weaknesses of ALGOL. 

The Synthesis of Language and Data Structures 

We know that we design a language to simplify the expression of an unbounded 
number of algorithms created by an important class of problems. The design should 
be performed only when the algorithms for this class impose, or are likely to impose, 
after some cultivation, considerable traffic on computers as well as considerable com- 
position time by programmers using existing languages. The language, then, must 
reduce the cost of a set of transactions to pay its cost of design, maintenance and 
improvement. 

Successor languages come into being from a variety of causes: 

(a) The correction of an error or emission or superfluity in a given language exposes 
a natural redesign which yields a superior language. 

(b) The correction of an error or omission or superfluity in a given language re- 
quires a redesign to produce a useful language. 

(c) From any two existing languages a third can usually be created which (i) con- 
rains the facilities of both in an integrated form, and (it) requires a grammar and 
evaluation rules less complicated than the collective grammar and evaluation rules 
of both. 

• With the above in mind, where might one commence in synthesizing a successor 
model which will not only improve the commerce with machines but will focus our 
attention on important problems within computation itself? 

I believe the natural starting point must be the orgaa~ation and classifying of 
data. I t  is, to say the least, difficult to create an algorithm without knowing the 
nature of its data. When we attempt to represent an algorithm in a programming 
language, we must know the representation of the algorithm's data in that  language 
before we can hope to do a useful computation. 

Since our successor is to be a general programming language, it should possess 
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general data structures. Depending on how you look at it, this is neither as hard nor 
as easy as you might think. How should this possession be arranged? Let us see 
what has been done in the languages we already have. There the approach has been 
as follows: 

(a) A few "primitive" data structures, e.g., integers, reals, arrays homogeneous 
in type, lists, strings and files, are defined into the language. 

(b) On these structures a "sufficient" set of operations, e.g., arithmetic, logical, 
extractive, assignment and combinational, is provided. 

(c) Any other data structure is considered to be nonprimitive and must be repre- 
sented in terms of primitive ones. The inherent organization in the nonprimitive 
structures is explicitly provided for by operations over the primitive data, e.g., the 
relationship between the real and imaginary parts of a complex number by real arith- 
metic. 

(d) The "sufficient" set of operations for these nonprimitive data structures is 
organized as procedures. 

This process of extension cannot be faulted. Every programming language must 
permit its facile use, for ultimately it is always required. However, if this process 
of extension is too extensively used, algorithms often fail to exhibit a clarity of struc- 
ture which they really possess. Even worse, they tend to execute more slowly than 
necessary. The former weakness arises because the langnage was defined the wrong 
way for the algorithm, while the latter exists because the language forces overorgan- 
ization in the data and requires administration during execution that could have 
been done once prior to execution of "the algorithm. In both cases, variables have 
been bound at the wrong time by the syntax and the evaluation rules. 

I think that all of us are aware that our languages have not had enough data 
types. Certainly, in our successor model we should not attempt to remedy this short- 
coming by adding a few more, e.g., a limited number of new types and a general 
catchall structure. 

Our experience with the definition of functions should have told us what to do: not 
to concentra"te on a complete set of defined functions at the level of general use, 
but to provide within the language the structures and control from which the effi- 
cient definition and use of functions within programs would follow. 

Consequently, we should focus our attention in our successor model on providing 
the means for defining data structures. But this is not of itself enough. The "suffi- 
cient" set of accompanying operations, the contexts in which they occur and their 
evaluation rules must also .then be given within the program for which the data 
structures are specified. 

A list of some of the capabilities that must be provided for data structures would 
include: 

(a) structure definition; 
(b) assignment of a structure to an identifier, i.e., giving the identifier information 

cells; 
(e) rules for naming the parts, given the structure; 
(d) assignment of values to the cells attached to an identifier; 
(e) rules for referencing the identifier's attached cells; 
(f) rules of combination, copy and erasure both of structure and cell contents. 
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These capabilities are certainly now provided in limited form in most languages, 
but usually in too fixed a way within their syntax and evaluation rules. 

We know that the designers of a language cannot fix how much information will 
reside in structure and how much in the data carried within a structure. Each pro- 
gram must be Permitted its natural choice to achieve a desired balance between 
time and storage. We know there is no single way to represent arrays or list struc- 
tures or strings or files or combinations of them. The choice depends on 

(a) the frequency of access; 
(b) the frequency of structure changes in which given data is embedded, e.g., 

appending to a file new record structures or bordering arrays; 
(c) the cost of unnecessary bulk in computer storage requirements; 
(d) the cost of unnecessary time in accessing data; and 
(e) the importance of an algorithmic representation capable of orderly growth so 

that clarity of structure always exists. 
These choices, goodness knows, are difficult for a programmer to make. They  are 

certainly impossible to make at the design level. 
Data  structures cannot be created out of thin air. Indeed the method we custom- 

arily employ is the use of a background machine with fixed, primitive data 
structures. These structures are those identified with real computers, though the 
background machine might be more abstract as far as the defining of data structures 
is concerned. Once the background machine is chosen, additional structure as re- 
quired by our definitions must be represented as data, i.e., as a name or pointer to 
a structure. Not  all pointers reference the same kind of structure. Since segments of 
a program are themselves structures, pointers such as "procedure identifier contents 
of (x)" establish a class of variables whose values are procedure names. 

Constants and Variables 

Truly, the flexibility of a language is measured by that  which programmers may be 
permitted to vary ,  either in composition or in execution. The systematic develop- 
ment of variability in language is a central problem in programming and hence in 
the design of our successor. Always our experience presents us with special cases 
from which we establish the definition of new variables. Each new experience focuses 
our attention on the need for more generality. Time sharing is one of our new experi- 
ences that is likely to become a habit. Time sharing focuses our attention on the 
management of our systems and the management by programmers of their texts 
before, during and after execution. Interaction with program will become increas- 
ingly flexible, and our successor must not make this difficult to achieve. The vision 
we have of conversational programming takes in much more than rapid turn around 
time and convenient debugging aids: our most interesting programs are never wrong 
and never final. As programmers we must isolate that  which is new with conversa- 
tional programming before we can hope to provide an appropriate language model 
for it. I contend that what is new is the requirement to make variable in our lan- ~ 
guages what we previously had taken as fixed. I do not refer to new data classes 
now, but  to variables whose values are programs or parts of programs, syntax or 
parts of syntax, and regimes of control. 

Most of our attention is now paid to the development of systems for managing 
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files which improve the administration of the overall system. Relatively little is 
focused on improving the management of a computation. Whereas the former can 
be done outside the languages in which we write our programs, for tile latter we 
must improve our control over variability within %he programming language we use 
to solve our problems. 

In the processing of a program text an occurrence of a segment of texts may appear 
in the text once but be executed more than once. This raises the need to identify 
both constancy and variability. We generally take that which has the form of being 
variable and make it constant by a process of initialization; and we often permit this 
process itself to be subject to replication. This process of initialization is a funda- 
mental one and our successor must have a methodical way of treating it. 

Let us consider some instances of initialization and variability in ALGOL: 
(a) Entry to a block. On entry to a block declarations make initializations, but 

only about some properties of identifiers. Thus, in teger  x initializes the property 
of being an integer, but it is not possible to initialize the value of x as something that 
will not change during the scope of the block. The declaration procedure  P ( . . . )  ; 
• . .  ; emphatically initializes the identifier P, but it is not possible to change it in 
the block, a r r ay  A [l:n, l :m] is assigned an initial structure. I t  is not possible to 
initialize the values of its cells, or to vary the structure attached to the identifier A. 

(b) for statement. These expressions, which I will call the step and until elements, 
cannot be initialized. 

(c) Procedure declaration. This is an initialization of the procedure identifier. On 
a procedure call, its formal parameters are initialized as procedure identifiers are, 
and they may even be initialized as to value. However, different calls establish dif- 
ferent initializations of the formal parameter identifiers but not different initiali- 
zation patterns of the values. 

The choice permitted in ALGOL in the binding of form and value to identifiers has 
been considered adequate. However, if we look at the operations of assignment of 
form, evaluation of form and initialization as important functions to be rationally 
specified in a language, we might find ALC~0L to be limited and even capricious in its 
available choices. We should expect the successor to be far less arbitrary and 
limited. 

Let me give a trivial example• In the.for statement the use of a construct such as 
value E, where E is an expression, as a step element would signal the initialization 
of the expression E. value is a kind of operator that controls the binding o f  value 
to a form. There is a natural scope attached to each application of the operator• 

I have mentioned that  procedure identifiers are initialized through declaration. 
Then the attachment of procedure to identifier can be changed by assignment. I 
have already mentioned how this can be done by means of pointers. There are, of 
course, other ways. The simplest is not to change the identifier at all, but rather to 
have a selectiom index that picks a procedure out of a set. The initialization now 
defines an array of forms, e.g., procedure array P [l:k] (.fl, f 2 , . . .  , f j ) ;  • • • 
b e g i n . . ,  e n d ; . . .  ; b e g i n . . ,  end; The call P [~] (al,  a2, . . . ,  as) would select 
the ith procedure body for execution. Or one could define a procedure swi tch  
P :ffi A, B, C and procedure designational expressions so that  the above call would 
select the i th  procedure designational expression for execution. The above ap- 
proaches are %oo static for some applications and they lack an important property of 
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assignment: the ability to determine when an assigned form is no longer accessib]~ 
so that its storage may be otherwise used. A possible application for such procedures ,  
i.e., ones that are dynamically assigned, is as generators. Suppose we have a p r o e e .  

/¢ 

dure for computing (a) ~ CC~ (N)X ~ as an approximation to some funct iora  
k=0 

(b) f(x) = ~ CkX k, when the integer N is specified. Now once having found t h e  

Ck(N), we are merely interested in evaluating (a) for different values of x. We m i g h t  
then wish to define a procedure which prepares (a) from (b). This procedure, on i t s  
initial execution, assigns, either to itself or to some other identifier, the p r o c e d u r e  
which computes (a). Subsequent calls on that identifier will only yield this c r e a t e d  
computation. Such dynamic assignment raises a number of attractive possibili t ies = 

(a) Some of the storage for the program can be released as a consequence of t h e  
second assignment. 

(b) Data storage can be assigned as the own of the procedure identifier w h o s e  
declaration or definition is created. 

(c) The initial call can modify the resultant definition, e.g., call by name or c a l l  
by value of a formal parameter in the initial call will effect the kind of d e f i n i t i o n  
obtained. 

It is easy to see that the point I am getting at is the necessity of at taching a "U:tli- 
form approach to initialization and the variation of form and value at tached t o  
identifiers. This is a requirement of the computation process. As such our s u c c e s s o r  
language must possess a general way of commanding the actions of i n i t i a l i za t ion  
and variation for its classes of identifiers. 

One of the actions we wish to perform in conversational programming is the s y s -  
tematic, or controlled, modification of values of data and text, as distinguished f r o m  
the unsystematic modification which occurs in debugging. The performance of s l x o h  
actions clearly implies that  certain pieces of a text are understood to be v a r i a b l e .  
Again we accomplish this by declaration, by initialization and by assignment. T h u s  
we may write, in a block heading, the declarations 

real x, s; 
arithmetic expression t, u; 

In the accompanying text the occurrence of s := x -q- t; causes the value of t h e  
arithmetic expression assigned to t, e.g., by input., to be added to that  of x and t h e  
result assigned as the value of s. We observe that t may have been entered and s t o r e d  
as a form. The operation -t- can then only be accomplished after a suitable t r a n s f e r  
function shall have been applied. The fact that a partial translation of the e x p r e s s i o n  
is all that can be done at the classical "translate time" should not deter us. I t  i s  
time that we began to face the problems of partial translation in a systematic w a y .  
The natural pieces of text which can be variable are those identified by the s y n t a c t i c  
units of the language. 

I t  is somewhat more difficult to arrange for unpremeditated variation of prograna~.  
Here the major problems are the identification of the text to be varied in the origints~l 
text, and how to find its correspondent under the translation process in the t e x t  
actually being evaluated. I t  is easy to say: execute the original text in t e rp re t ive ly -  
But it is through intermediate solutions lying between translation and interpretat ioxa 
that the satisfactory balance of costs is to be found. I should like to express a p o i n t  
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of view in the next section which may shed some light o~1 achievi~lg this balatme as 
each program requires it. 

Data Structure and Syntax 

Even though list structures and recursive control will not play a central role in our 
successor language, it will owe a great deal to Lisp. This language induces humorous 
arguments among programmers, often being damned and praised for the same fea- 
ture. I should only like to point out here that its description consciously reveals the 
proper components of language definition with more clarity than any language I 
know of. The description of Lisp includes not only its syntax, but the representation 
of its syntax as a data structure of the language, and the representation of the envi- 
ronment data structure also as a data structure of the language. Actually the de- 
scription hedges somewhat on the latter description, but not in any fundamental 
way. From the foregoing descriptions it becomes possible to give a description of the 
evaluation process as a Lisp program using a few primitive functions. While this 
completeness of description is possible with other languages, it is not generally 
thought of as part of their defining description. 

An examination of ALGOL shows that its data structures are not appropriate for 
representing ALOOL texts, at least not in a way appropriate for descriptions of the 
language's evaluation scheme. The same remark may be made about its inappropri- 
ateness for describing the environmental data structure of ALGOL programs. 

I regard it as critical that our successor language achieve the balance of possessing 
the data structures appropriate "to representing syntax and environment so that 
the evaluation process can be clearly stated in the language. 

Why is it so important to give such a description? Is it merely to attach to the 
language the elegant property of "closure" so that bootstrapping can be organized? 
Hardly. I t  is the key to the systematic construction of programming systems capable 
of conversational computing. 

A programming language has a syntax and a set of evaluation rules. They are 
connected through the representation of programs as data to which the evaluation 
rules apply. This data structure is the internal or evaluation directed syntax of the 
language. We compose programs in the external syntax which, for the purposes of 
human communication, we fix. The internal syntax is generally assumed to be so 
translator and machine dependent that it is almost never described in the literature. 
Usually there is a translation process which takes text from an external to an internal 
syntax representation. Actually the variation in the internal description is more 
fundamentally associated with the evaluation rules than the machine on which it is 
to be executed. The choice of evaluation rules depends in a critical way on the bind- 
ing time of the variables of the language. 

This points out an approach to the organization of evaluation useful in the case of 
texts which change. Since the internal data structure reflects the variability of the 
text being processed, let the translation process choose the appropriate internal 
representation of the syntax, and a general evaluator select specific evaluation rules 
on the basis of the syntax structure chosen. Thus we must give clues in the external 
syntax which indicate the variable. For example, the occurrence of arithmetic  
expression t; real u,v; and the statement u : =  v/3*t; indicates the possibility of a 
different internal syntax for v/3 and the value of t. It  should be pointed out that t 
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behaves very much like an ALGOL formal parameter. However, the control over 
assignment is less regimented. I think this merely points out that formal-actual 
assignments are independent of the closed subroutine concept and that they have 
been united in the procedure construct as a way of specifying the scope of an initial- 
ization. 

In the case of unpremeditated change a knowledge of the internal syntax struc- 
ture makes possible the least amount of retranslation and alteration of the evaluation 
rules when text is varied. 

Since one has to examine and construct the data structures and evaluation rules 
entirely in some language, it seems reasonable that it be in the source language itself. 
One may define as the target of translation an internal syntax whose character 
strings are a subset of those permitted in the source language. Such a syntax, if 
chosen to be close to machine code, ~an then be evaluated by rules which are very 
much like those of a machine. 

While I have spoken glibly about variability attached to the identifiers of the 
language, I have said nothing about the variability of control. We do not really 
have a way of describing control, so we cannot declare its regimes. We should expect 
our successor to have the kinds of control that ALooz~ has--and more. Parallel 
operation is one kind of control about which much study is being done. Another one 
just beginning to appear in languages is the distributed control, which I will call 
monitoring. Process A continuously monitors process B so that when B attains a 
certain state, A intervenes to control the future activity of the process. The control 
within A could be written when P then  S; P is a predicate which is always, within 
some defining scope, under test. Whenever P is true, the computation under sur- 
veillance is interrupted and S is executed. We wish to mechanize this construct by 
testing P whenever an action has been performed which could possibly make P 
true, but not otherwise. We must then, in defining the language, the environment 
and the evaluation rules, include the states which can be monitored during execu- 
tion. From these primitive states others can be constructed by programming. With 
a knowledge of these primitive states, arrangement for splicing in testing at possible 
points can be done even before the specific predicates are defined within a program. 
We may then trouble-shoot our programs without disturbing the programs them- 
selves. 

Variation of the Syntax 

Within the confines of a single language an astonishing amount of variability is at- 
tainable. Still all experience tells us that our changing needs will place increasing 
pressure on the language itself to change. The precise nature of these changes cannot 
be anticipated be designers, since they are the consequence of programs yet to be 
written for problems not yet solved. Ironically, it is the most useful and successful 
languages that are most subject to this pressure for change. Fortunately, the early 
kind of variation to be expected is somewhat predictable. Thus, in scientific comput- 
ing the representation and arithmetic of numbers varies, but the nature of expres- 
sions does not change except through its operands and operators. The variation in 
syntax from these sources is quite easily taken care of. In effect the syntax and eval- 
uation rules of arithmetic expression are left undefined in the language. Instead 
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syntax and evaluation rules are provided in the language for programming the 
definition of arithmetic expression, and to set the scope of such definitions. 

The only real difficulty in this one-night-stand language definition game is the 
specification of the evaluation rules. They must be given with care. For example, 
in introducing this way the arithmetic of matrices, the evaluation of matrix expres- 
sions should be careful of the use of temporary storage and not perform unnecessary 
iterations. 

A natural technique to employ in the use of definitions is to start with a language 
X, consider the definitions as enlarging the syntax to that of a language X ~ and give 
the evaluation rules as a reduction process which reduces any text in X ~ to an equiv- 
alent one in X. 

It  should be remarked that the variation of the syntax requires a representation 
of the syntax, preferably as a data structure of X itself. 

Conclusion 

Programming languages are built around the variable---its operations, control and 
data structures. Since these are concepts common to all programming, general 
language must focus on their orderly development. While we owe a great debt to 
Turing for his simple model, which also focused on the important concepts, we do 
not hesitate to operate with more sophisticated machines and data than he found 
necessary. Programmers should never be satisfied with languages which permit them 
to program everything, but to program nothing of interest easily. Our progress, 
then, is measured by the balance we achieve between efficiency and generality. 
As the nature of our involvement with computation changes--and it does--the 
appropriate description of language changes; our emphasis shifts. I feel that our 
successor model will show such a change. Computer science is a restless infant and 
its progress depends as much on shifts in point of view as on the orderly development 
of our current concepts. 

None of the ideas presented here are new; they are just forgotten from time to 
time. 

I wish to thank the Association for the privilege of delivering this first Turing 
lecture. And what better way is there to end this lecture than to say that if Turing 
were here today he would say things differently in a lecture named differently. 
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